Your browser doesn't support javascript.
loading
High-sensitivity narrow­band T-shaped cantilever Fabry-perot acoustic sensor for photoacoustic spectroscopy.
Wang, Jilong; Wang, Qiaoyun; Yan, Chongyue; Xu, Shunyuan; Zou, Xin; Wu, Qiang; Ng, Wai Pang; Binns, Richard; Fu, Yong-Qing.
Afiliação
  • Wang J; College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning Province 110819, China.
  • Wang Q; College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning Province 110819, China.
  • Yan C; Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China.
  • Xu S; College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning Province 110819, China.
  • Zou X; College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning Province 110819, China.
  • Wu Q; College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning Province 110819, China.
  • Ng WP; Faculty of Engineering & Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
  • Binns R; Faculty of Engineering & Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
  • Fu YQ; Faculty of Engineering & Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
Photoacoustics ; 38: 100626, 2024 Aug.
Article em En | MEDLINE | ID: mdl-38966593
ABSTRACT
Photoacoustic spectroscopy (PAS) has been rapidly developed and applied to different detection scenarios. The acoustic pressure detection is an important part in the PAS system. In this paper, an ultrahigh sensitivity Fabry-Perot acoustic sensor with a T-shaped cantilever was proposed. To achieve the best acoustic pressure effect, the dimension of the cantilever structure was designed and optimized by finite element analysis using COMSOL Multiphysics. Simulation results showed that the sensitivity of such T-shaped cantilever was 1.5 times higher than that based on a rectangular cantilever, and the resonance frequency of T-shaped cantilever were able to modulate from 800 Hz to 1500 Hz by adjusting the multi-parameter characteristics. Experimental sensing results showed that the resonance frequency of T-shaped Fabry-Perot acoustic sensor was 1080 Hz, yielding a high sensitivity of 1.428 µm/Pa, with a signal-to-noise ratio (SNR) of 84.8 dB and a detectable pressure limit of 1.9 µPa/Hz1/2@1 kHz. We successfully used such acoustic sensor to measure acetylene (C2H2) concentration in the PAS. The sensitivity of PAS for C2H2 gas was 3.22 pm/ppm with a concentration range of 50 ppm ∼100 ppm, and the minimum detection limit was 24.91ppb.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article