Your browser doesn't support javascript.
loading
A Janus Microsphere Delivery System Orchestrates Immunomodulation and Osteoinduction by Fine-tuning Release Profiles.
Shi, Yang; Gu, Jingyi; Zhang, Chun; Mi, Rui; Ke, Zhiwei; Xie, Mingjun; Jin, Wenjing; Shao, Changyu; He, Yong; Shi, Jue; Xie, Zhijian.
Afiliação
  • Shi Y; Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials
  • Gu J; Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials
  • Zhang C; Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials
  • Mi R; Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials
  • Ke Z; Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials
  • Xie M; Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
  • Jin W; Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials
  • Shao C; Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials
  • He Y; State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.
  • Shi J; Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.
  • Xie Z; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China.
Small ; : e2403835, 2024 Jul 10.
Article em En | MEDLINE | ID: mdl-38984921
ABSTRACT
Bone regeneration is a well-orchestrated process synergistically involving inflammation, angiogenesis, and osteogenesis. Therefore, an effective bone graft should be designed to target multiple molecular events and biological demands during the bone healing process. In this study, a biodegradable gelatin methacryloyl (GelMA)-based Janus microsphere delivery system containing calcium phosphate oligomer (CPO) and bone morphogenetic protein-2 (BMP-2) is developed based on natural biological events. The exceptional adjustability of GelMA facilitates the controlled release and on-demand application of biomolecules, and optimized delivery profiles of CPO and BMP-2 are explored. The sustained release of CPO during the initial healing stages contributes to early immunomodulation and promotes mineralization in the late stage. Meanwhile, the administration of BMP-2 at a relatively high concentration within the therapeutic range enhances the osteoinductive property. This delivery system, with fine-tuned release patterns, induces M2 macrophage polarization and creates a conducive immuno-microenvironment, which in turn facilitates effective bone regeneration in vivo. Collectively, this study proposes a bottom-up concept, aiming to develop a user-friendly and easily controlled delivery system targeting individual biological events, which may offer a new perspective on developing function-optimized biomaterials for clinical use.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article