Your browser doesn't support javascript.
loading
Topologically protected entanglement switching around exceptional points.
Tang, Zan; Chen, Tian; Tang, Xing; Zhang, Xiangdong.
Afiliação
  • Tang Z; Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, 100081, Beijing, China.
  • Chen T; Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, 100081, Beijing, China. chentian@bit.edu.cn.
  • Tang X; Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, 100081, Beijing, China.
  • Zhang X; Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurements of Ministry of Education, Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, 100081, Beijing, China. zhangxd@bit.edu.cn.
Light Sci Appl ; 13(1): 167, 2024 Jul 16.
Article em En | MEDLINE | ID: mdl-39013861
ABSTRACT
The robust operation of quantum entanglement states is crucial for applications in quantum information, computing, and communications1-3. However, it has always been a great challenge to complete such a task because of decoherence and disorder. Here, we propose theoretically and demonstrate experimentally an effective scheme to realize robust operation of quantum entanglement states by designing quadruple degeneracy exceptional points. By encircling the exceptional points on two overlapping Riemann energy surfaces, we have realized a chiral switch for entangled states with high fidelity. Owing to the topological protection conferred by the Riemann surface structure, this switching of chirality exhibits strong robustness against perturbations in the encircling path. Furthermore, we have experimentally validated such a scheme on a quantum walk platform. Our work opens up a new way for the application of non-Hermitian physics in the field of quantum information.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article