In-situ Ti4+-doped modification of layer-structured Ni-rich LiNi0.83Co0.11Mn0.06O2 cathode materials for high-energy lithium-ion batteries.
J Colloid Interface Sci
; 677(Pt B): 91-100, 2025 Jan.
Article
em En
| MEDLINE
| ID: mdl-39137566
ABSTRACT
The further commercialization of layer-structured Ni-rich LiNi0.83Co0.11Mn0.06O2 (NCM83) cathode for high-energy lithium-ion batteries (LIBs) has been challenged by severe capacity decay and thermal instability owing to the microcracks and harmful phase transitions. Herein, Ti4+-doped NCM83 cathode materials are rationally designed via a simple and low-cost in-situ modification method to improve the crystal structure and electrode-electrolyte interface stability by inhibiting irreversible polarizations and harmful phase transitions of the NCM83 cathode materials due to Ti4+-doped forms stronger metal-O bonds and a stable bulk structural. In addition, the optimal doping amount of the composite cathode material is also determined through the results of physical characterization and electrochemical performance testing. The optimized Ti4+-doped NCM83 cathode material presents wider Li+ ions diffusion channels (c = 14.1687 Å), lower Li+/Ni2+ mixing degree (2.68 %), and compact bulk structure. The cell assembled with the optimized Ti4+-doped NCM83 cathode material exhibits remarkable capacity retention ratio of 95.4 % after 100cycles at 2.0C and room temperature, and outstanding reversible discharge specific capacity of 148.2 mAh g-1 at 5.0C. Even under elevated temperature of 60 °C, it delivers excellent capacity retention ratio of 92.2 % after 100cycles at 2.0C, which is significantly superior to the 47.9 % of the unmodified cathode material. Thus, the in-situ Ti4+-doped strategy presents superior advantages in enhancing the structural stability of Ni-rich cathode materials for LIBs.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2025
Tipo de documento:
Article