Inhalable Stem Cell Exosomes Promote Heart Repair After Myocardial Infarction.
Circulation
; 150(9): 710-723, 2024 Aug 27.
Article
em En
| MEDLINE
| ID: mdl-39186525
ABSTRACT
BACKGROUND:
Exosome therapy shows potential for cardiac repair after injury. However, intrinsic challenges such as short half-life and lack of clear targets hinder the clinical feasibility. Here, we report a noninvasive and repeatable method for exosome delivery through inhalation after myocardial infarction (MI), which we called stem cell-derived exosome nebulization therapy (SCENT).METHODS:
Stem cell-derived exosomes were characterized for size distribution and surface markers. C57BL/6 mice with MI model received exosome inhalation treatment through a nebulizer for 7 consecutive days. Echocardiographies were performed to monitor cardiac function after SCENT, and histological analysis helped with the investigation of myocardial repair. Single-cell RNA sequencing of the whole heart was performed to explore the mechanism of action by SCENT. Last, the feasibility, efficacy, and general safety of SCENT were demonstrated in a swine model of MI, facilitated by 3-dimensional cardiac magnetic resonance imaging.RESULTS:
Recruitment of exosomes to the ischemic heart after SCENT was detected by ex vivo IVIS imaging and fluorescence microscopy. In a mouse model of MI, SCENT ameliorated cardiac repair by improving left ventricular function, reducing fibrotic tissue, and promoting cardiomyocyte proliferation. Mechanistic studies using single-cell RNA sequencing of mouse heart after SCENT revealed a downregulation of Cd36 in endothelial cells (ECs). In an EC-Cd36fl/- conditional knockout mouse model, the inhibition of CD36, a fatty acid transporter in ECs, led to a compensatory increase in glucose utilization in the heart and higher ATP generation, which enhanced cardiac contractility. In pigs, cardiac magnetic resonance imaging showed an enhanced ejection fraction (Δ=11.66±5.12%) and fractional shortening (Δ=5.72±2.29%) at day 28 after MI by SCENT treatment compared with controls, along with reduced infarct size and thickened ventricular wall.CONCLUSIONS:
In both rodent and swine models, our data proved the feasibility, efficacy, and general safety of SCENT treatment against acute MI injury, laying the groundwork for clinical investigation. Moreover, the EC-Cd36fl/- mouse model provides the first in vivo evidence showing that conditional EC-CD36 knockout can ameliorate cardiac injury. Our study introduces a noninvasive treatment option for heart disease and identifies new potential therapeutic targets.Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Exossomos
/
Camundongos Endogâmicos C57BL
/
Infarto do Miocárdio
Limite:
Animals
/
Humans
/
Male
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article