Biphasic regulation of development of the high-affinity saxitoxin receptor by innervation in rat skeletal muscle.
J Gen Physiol
; 80(5): 753-68, 1982 Nov.
Article
em En
| MEDLINE
| ID: mdl-6294222
Specific binding of 3H-saxitoxin (STX) was used to quantitate the density of voltage-sensitive sodium channels in developing rat skeletal muscle. In adult triceps surae, a single class of sites with a KD = 2.9 nM and a density of 21 fmol/mg wet wt was detected. The density of these high-affinity sites increased from 2.0 fmol/mg wet wt to the adult value in linear fashion during days 2-25 after birth. Denervation of the triceps surae at day 11 or 17 reduced final saxitoxin receptor site density to 10.4 or 9.2 fmol/mg wet wt, respectively, without changing KD. Denervation of the triceps surae at day 5 did not alter the subsequent development of saxitoxin receptor sites during days 5-9 and accelerated the increase of saxitoxin receptor sites during days 9-13. After day 13, saxitoxin receptor development abruptly ceased and the density of saxitoxin receptor sites declined to 11 fmol/wg wet wt. These results show that the regulation of high-affinity saxitoxin receptor site density by innervation is biphasic. During the first phase, which is independent of continuing innervation, the saxitoxin receptor density increases to 47-57% of the adult level. After day 11, the second phase of development, which is dependent on continuing innervation, gives rise to the adult density of saxitoxin receptors.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Receptores de Droga
/
Saxitoxina
/
Músculos
Limite:
Animals
Idioma:
En
Ano de publicação:
1982
Tipo de documento:
Article