الملخص
Objective:To explore the mechanism of Ginseng Radix et Rhizoma- Notoginseng Radix et Rhizoma- Chuanxiong Rhizoma medicinal pair in delaying heart aging based on animal experiments, network pharmacology and molecular docking. Methods:Mice were divided into control group, aging group, metformin group and TCM group according to random number table method. All the groups were injected subcutaneously by D-galactose except the control group to build the subacute aging model. Two weeks later, the metformin group was given metformin suspension (150 mg/kg), the TCM group was given Ginseng Radix et Rhizoma- Notoginseng Radix et Rhizoma- Chuanxiong Rhizoma lyophilized powder solution (650 mg/kg), and the control group and aging group were given an equivalent volume of ultrapure water by gastric gavage, once a day, six times a week, for 10 weeks. The level of heart TERT mRNA was detected by PCR; the expression of heart p53 was observed by immunohistochemical staining; the morphology of heart tissue was observed by HE staining. TCMSP and SwissTargetPrediciton databases were used to retrieve the active components and targets of Ginseng Radix et Rhizoma- Notoginseng Radix et Rhizoma- Chuanxiong Rhizoma medicinal pair; TTD, OMIM, Gene, HAGR, DisGeNET and other data platforms were used to screen the targets of heart aging; after the drug and disease targets were intersected, the active components of them were collected; STRING database, Cytoscape 3.8.0 software, etc. were used to make PPI of the intersection targets, and screen out the key targets; FunRich was used to perform enrichment analysis of cellular components, molecular functions, biological processes, and biological signal pathways for key targets; Schr?dinger Maestro software was used to do the molecular docking of the screened active components and key targets, and docking results were visualized via PyMOL 2.1 software. Results:Experiment results showed that Ginseng Radix et Rhizoma- Notoginseng Radix et Rhizoma- Chuanxiong Rhizoma could significantly ameliorate the damage of aging heart tissues, elevate TERT mRNA level, while significantly reducing the positive expression of p53. A total of 32 active components from the medicinal pair were screened, corresponding to 637 target genes. There were 263 targets for heart aging, and 67 intersection targets of drug active component targets and heart aging targets. 31 key targets were obtained after screening. Enrichment analysis showed that molecular functions were related to transcription factor activity and protein-tyrosine kinase activity. Biological processes involved signal transduction and cell communication. Signaling pathways mainly involved PDGFR-beta, PI3K-Akt, S1P1, Glypican, TRAIL, and Glypican 1. The molecular docking results showed that kaempferol, suchilactone, and ginsenoside Rg5_qt in the medicinal pair had a strong binding ability to p53. Conclusion:Ginseng Radix et Rhizoma- Notoginseng Radix et Rhizoma- Chuanxiong Rhizoma may achieve the effect of delaying heart aging by inhibiting p53 expression, providing a foundation for further research on mechanism of invigorating qi and activating blood circulation drugs to delay heart aging.
الملخص
Extracellular vesicles are spherical membrane vesicles formed by bimolecular lipid layers and are secreted and released into the extracellular environment by many kinds of cells.Extracellular vesicles include exosomes, microparticles and apoptotic bodies, which represent newly discovered ways of intercellular communication and can be used as biomarkers to distinguish a variety of diseases.However, how extracellular vesicles change with age and the underlying mechanisms for these changes are not clear.This article reviews current research on extracellular vesicles, with a focus on the relationship between extracellular vesicles and aging and its role in aging-related diseases.Furthermore, its practical application in aging is also discussed, in order to provide new ideas for the intervention of the aging process and the treatment of aging-related diseases.