الملخص
Alanine mother liquor, a type of industrial waste from alanine fermentation, was used as a nitrogen source to produce docosahexaenoic acid (DHA) by Schizochytrium sp. B4D1. The results indicated that yeast extract could trigger the utilization of the alanine mother liquor. Additionally, the alanine can be quenched during the culture, which aids in DHA accumulation. The medium components were optimized via response surface methodology as follows: 99.98-g/L glucose, 0.05-g/L yeast extract and a 183.17 dilution factor of the alanine mother liquid (v/v, with an alanine content of 0.72 g/L) and 17.98% inoculum concentration (v/v). Finally, in a 50-mL shake-flask fermentation, the DHA yield was 2.29 g/L.
الموضوعات
Docosahexaenoic Acids/biosynthesis , Alanine/metabolism , Stramenopiles/metabolism , Yeasts , Intercellular Signaling Peptides and Proteins/isolation & purification , Alanine/analysis , Fermentation , Glucose , Industrial Wasteالملخص
Background: Mutation breeding is one of the most important routes to achieving high docosahexaenoic acid (DHA) productivity using Schizochytrium. However, few selection strategies have been reported that aim to generate a high DHA content in Schizochytrium lipids. Results: First, culture temperature altered the butanol tolerance of Schizochytrium limacinum B4D1. Second, S. limacinum E8 was obtained by selecting mutants with high butanol tolerance. This mutant exhibited a 17.97% lower proportion of DHA than the parent strain S. limacinum B4D1. Third, a negative selection strategy was designed in which S. limacinum F6, a mutant with poor butanol tolerance, was obtained. The proportion of DHA in S. limacinum F6 was 11.22% higher than that of parent strain S. limacinum B4D1. Finally, the performances of S. limacinum B4D1, E8 and F6 were compared. These three strains had different fatty acid profiles, but there was no statistical difference in their biomasses and lipid yields. Conclusion: It was feasible to identified the relative DHA content of S. limacinum mutants based on their butanol tolerance.
الموضوعات
Docosahexaenoic Acids/biosynthesis , Butanols/metabolism , Stramenopiles/genetics , Stramenopiles/metabolism , Selection, Genetic , Temperature , Eicosapentaenoic Acid/metabolism , Biomass , Butanols/toxicity , Fatty Acids/metabolism , Fatty Acids/chemistry , Stramenopiles/drug effects , Fermentation , Mutationالملخص
Background: Malate involves in the citrate/malate and transhydrogenase cycles to provide precursors for docosahexaenoic acid (DHA) synthesis. The optimal strategy was investigated for increasing DHA production in Schizochytrium species during fermentation. Results: DHA production increased by 47% and reached 5.51 g/L when 4 g malate/L was added during the rapid lipid accumulation stage in shake-flasks culture. Inducing effects of malate was further investigated through the analysis of three kinetic parameters, including specificcell growth rate(μ), specific glucose consumption rate (qGlu)and DHA formation rate (qDHA). DHA concentration was enhanced through a novel fed-batch strategy to a maximum value of 30.7 g/L, giving a yield of 0.103 g DHA/g glucose and a productivity of 284 mg L-1 h-1. Conclusion: A novel malate feeding strategy was developed that enhanced DHA yield and productivity of Schizochytrium species which may offer a desirable method for industrial applications.