Your browser doesn't support javascript.
loading
تبين: 20 | 50 | 100
النتائج 1 - 2 de 2
المحددات
إضافة المرشحات








اللغة
النطاق السنوي
1.
Herald of Medicine ; (12): 78-84, 2024.
مقالة ي صينى | WPRIM | ID: wpr-1023682

الملخص

With the deepening of modern drug research,traditional computer simulation can not meet the needs of future drug design experiments.As a classic technology of standard computer simulation,molecular simulation can construct and analyze complex molecular models to study the dynamic processes of molecular motion.However,the simulation results are easy to be affected by human factors.In recent years,the integration of artificial intelligence and molecular simulation has become a new method of drug design research.Artificial intelligence technology uses big data to screen out the corresponding compounds for molecular simulation and feedback on the simulation results to the artificial intelligence system to optimize the artificial neural network.The combination of artificial intelligence and molecular simulation technology improves the efficiency of drug design research,reduces the influence of human factors on simulation results,and increases the credibility of simulation results.In this review,we summarized the progress of artificial intelligence and molecular simulation technology in drug design to provide a reference for the change from computer assisted drug design(CADD)to artificial intelligence-aided drug design(AIDD)in future pharmaceutical development.

2.
مقالة ي صينى | WPRIM | ID: wpr-1008902

الملخص

As one of the traditional computer simulation techniques, molecular simulation can intuitively display and quantify molecular structure and explain experimental phenomena from the microscopic molecular level. When the simulation system increases, the amount of calculation will also increase, which will cause a great burden on the simulation system. Coarse-grained molecular dynamics is a method of mesoscopic molecular simulation, which can simplify the molecular structure and improve computational efficiency, as a result, coarse-grained molecular dynamics is often used when simulating macromolecular systems such as drug carrier materials. In this article, we reviewed the recent research results of using coarse-grained molecular dynamics to simulate drug carriers, in order to provide a reference for future pharmaceutical preparation research and accelerate the entry of drug research into the era of precision drug design.


الموضوعات
Molecular Dynamics Simulation , Drug Carriers
اختيار الاستشهادات
تفاصيل البحث