Your browser doesn't support javascript.
loading
تبين: 20 | 50 | 100
النتائج 1 - 2 de 2
المحددات
إضافة المرشحات








النطاق السنوي
1.
مقالة ي الانجليزية | WPRIM | ID: wpr-966965

الملخص

Background and Objectives@#mRNA-based protein expression technology has been used to express functional proteins. We have previously generated dopamine neurons from rat-embryo derived neural precursor cells (NPCs) through repeated transfection of synthetic transcription factor mRNA encoding dopamine-inducible genes. However, NPCs began to die approximately 10 d post-transfection. In this study, we examined a long-term transfection protocol that did not affect cell viability. @*Methods@#and Results: Experiments were performed in eight groups sorted according to the start date of mRNA transfection. mRNA was transfected into NPCs daily for 21 d and live cell images of each group were recorded. NPCs which were differentiated for more than five days showed sustained gene expression and appreciable viability despite daily mRNA transfection for 21 d. @*Conclusions@#Repeated mRNA transfection requires cells with a sufficient differentiation period.

2.
مقالة ي الانجليزية | WPRIM | ID: wpr-764070

الملخص

The concept of cellular reprogramming was developed to generate induced neural precursor cells (iNPCs)/dopaminergic (iDA) neurons using diverse approaches. Here, we investigated the effects of various nanoscale scaffolds (fiber, dot, and line) on iNPC/iDA differentiation by direct reprogramming. The generation and maturation of iDA neurons (microtubule-associated protein 2-positive and tyrosine hydroxylase-positive) and iNPCs (NESTIN-positive and SOX2-positive) increased on fiber and dot scaffolds as compared to that of the flat (control) scaffold. This study demonstrates that nanotopographical environments are suitable for direct differentiation methods and may improve the differentiation efficiency.


الموضوعات
Cellular Reprogramming , Nanofibers , Neurons , Tyrosine
اختيار الاستشهادات
تفاصيل البحث