الملخص
Background and Objectives@#Osteoblasts are derived from bone marrow mesenchymal stem cells (BMMSCs) and playimportant role in bone remodeling. While our previous studies have investigated the cell subtypes and heterogeneity in osteoblasts and BMMSCs separately, cell-to-cell communications between osteoblasts and BMMSCs in vivo in humans have not been characterized. The aim of this study was to investigate the cellular communication between human primary osteoblasts and bone marrow mesenchymal stem cells. @*Methods@#and Results: To investigate the cell-to-cell communications between osteoblasts and BMMSCs and identifynew cell subtypes, we performed a systematic integration analysis with our single-cell RNA sequencing (scRNA-seq) transcriptomes data from BMMSCs and osteoblasts. We successfully identified a novel preosteoblasts subtype which highly expressed ATF3, CCL2, CXCL2 and IRF1. Biological functional annotations of the transcriptomes suggested that the novel preosteoblasts subtype may inhibit osteoblasts differentiation, maintain cells to a less differentiated status and recruit osteoclasts. Ligand-receptor interaction analysis showed strong interaction between mature osteoblasts and BMMSCs. Meanwhile, we found FZD1 was highly expressed in BMMSCs of osteogenic differentiation direction. WIF1 and SFRP4, which were highly expressed in mature osteoblasts were reported to inhibit osteogenic differentiation. We speculated that WIF1 and sFRP4 expressed in mature osteoblasts inhibited the binding of FZD1 to Wnt ligand in BMMSCs, thereby further inhibiting osteogenic differentiation of BMMSCs. @*Conclusions@#Our study provided a more systematic and comprehensive understanding of the heterogeneity of osteogenic cells. At the single cell level, this study provided insights into the cell-to-cell communications between BMMSCs and osteoblasts and mature osteoblasts may mediate negative feedback regulation of osteogenesis process.
الملخص
<p><b>OBJECTIVE</b>Obesity is becoming a worldwide health problem. The genome wide association (GWA) study particularly for body mass index (BMI) has not been successfully conducted in the Chinese. In order to identify novel genes for BMI variation in the Chinese, an initial GWA study and a follow up replication study were performed.</p><p><b>METHODS</b>Affymetrix 500K SNPs were genotyped for initial GWA of 597 Northern Chinese. After quality control, 281,533 SNPs were included in the association analysis. Three SNPs were genotyped in a Southern Chinese replication sample containing 2 955 Chinese Han subjects. Association analyses were performed by Plink software.</p><p><b>RESULTS</b>Eight SNPs were significantly associated with BMI variation after false discovery rate (FDR) correction (P=5.45×10⁻⁷-7.26×10⁻⁶, FDR q=0.033-0.048). Two adjacent SNPs (rs4432245 & rs711906) in the eukaryotic translation initiation factor 2 alpha kinase 4 (EIF2AK4) gene were significantly associated with BMI (P=6.38×10⁻⁶ & 4.39×10⁻⁶, FDR q=0.048). In the follow-up replication study, we confirmed the associations between BMI and rs4432245, rs711906 in the EIF2AKE gene (P=0.03 & 0.01, respectively).</p><p><b>CONCLUSION</b>Our study suggests novel mechanisms for BMI, where EIF2AK4 has exerted a profound effect on the synthesis and storage of triglycerides and may impact on overall energy homeostasis associated with obesity. The minor allele frequencies for the two SNPs in the EIF2AK4 gene have marked ethnic differences between Caucasians and the Chinese. The association of the EIF2AK4 gene with BMI is suggested to be 'ethnic specific' in the Chinese.</p>
الموضوعات
Aged , Female , Humans , Male , Middle Aged , Asian People , Genetics , Body Mass Index , China , Epidemiology , Genetic Predisposition to Disease , Genome-Wide Association Study , Obesity , Ethnology , Genetics , Polymorphism, Single Nucleotide , Protein Serine-Threonine Kinases , Geneticsالملخص
<p><b>BACKGROUND</b>Alcohol dependence (AD) is a complex disorder characterized by impaired control over drinking. It is determined by both genetic and environmental factors. The recent approach of genome-wide association study (GWAS) is a powerful tool for identifying complex disease-associated susceptibility alleles, however, a few GWASs have been conducted for AD, and their results are largely inconsistent. The present study aimed to screen the loci associated with alcohol-related phenotypes using GWAS technology.</p><p><b>METHODS</b>A genome-wide association study with the behavior of regular alcohol drinking and alcohol consumption was performed to identify susceptibility genes associated with AD, using the Affymetrix 500K SNP array in an initial sample consisting of 904 unrelated Caucasian subjects. Then, the initial results in GWAS were replicated in three independent samples: 1972 Caucasians in 593 nuclear families, 761 unrelated Caucasian subjects, and 2955 unrelated Chinese Hans.</p><p><b>RESULTS</b>Several genes were associated with the alcohol-related phenotypes at the genome-wide significance level, with the ankyrin repeat domain 7 gene (ANKRD7) showing the strongest statistical evidence for regular alcohol drinking and suggestive statistical evidence for alcohol consumption. In addition, certain haplotypes within the ANKRD7 and cytokine-like1 (CYTL1) genes were significantly associated with regular drinking behavior, such as one ANKRD7 block composed of the SNPs rs6466686-rs4295599-rs12531086 (P = 6.51 × 10(-8)). The association of alcohol consumption was successfully replicated with rs4295599 in ANKRD7 gene in independent Caucasian nuclear families and independent unrelated Chinese Hans, and with rs16836497 in CYTL1 gene in independent unrelated Caucasians. Meta-analyses based on both the GWAS and replication samples further supported the observed significant associations between the ANKRD7 or CYTL1 gene and alcohol consumption.</p><p><b>CONCLUSION</b>The evidence suggests that ANKRD7 and CYTL1 genes may play an important role in the variance in AD risk.</p>