Your browser doesn't support javascript.
loading
تبين: 20 | 50 | 100
النتائج 1 - 16 de 16
المحددات
إضافة المرشحات








نوع الدراسة
النطاق السنوي
1.
Acta Pharmaceutica Sinica B ; (6): 3220-3230, 2021.
مقالة ي الانجليزية | WPRIM | ID: wpr-922789

الملخص

As a typical human pathogenic fungus,

2.
Acta Pharmaceutica Sinica B ; (6): 961-977, 2021.
مقالة ي الانجليزية | WPRIM | ID: wpr-881178

الملخص

As one of the most important components of caveolae, caveolin-1 is involved in caveolae-mediated endocytosis and transcytosis pathways, and also plays a role in regulating the cell membrane cholesterol homeostasis and mediating signal transduction. In recent years, the relationship between the expression level of caveolin-1 in the tumor microenvironment and the prognostic effect of tumor treatment and drug treatment resistance has also been widely explored. In addition, the interplay between caveolin-1 and nano-drugs is bidirectional. Caveolin-1 could determine the intracellular biofate of specific nano-drugs, preventing from lysosomal degradation, and facilitate them penetrate into deeper site of tumors by transcytosis; while some nanocarriers could also affect caveolin-1 levels in tumor cells, thereby changing certain biophysical function of cells. This article reviews the role of caveolin-1 in tumor prognosis, chemotherapeutic drug resistance, antibody drug sensitivity, and nano-drug delivery, providing a reference for the further application of caveolin-1 in nano-drug delivery systems.

3.
Acta Pharmaceutica Sinica B ; (6): 1412-1433, 2021.
مقالة ي الانجليزية | WPRIM | ID: wpr-888812
4.
Acta Pharmaceutica Sinica B ; (6): 1767-1788, 2021.
مقالة ي الانجليزية | WPRIM | ID: wpr-888834

الملخص

Ischemic stroke is a cerebrovascular disease normally caused by interrupted blood supply to the brain. Ischemia would initiate the cascade reaction consisted of multiple biochemical events in the damaged areas of the brain, where the ischemic cascade eventually leads to cell death and brain infarction. Extensive researches focusing on different stages of the cascade reaction have been conducted with the aim of curing ischemic stroke. However, traditional treatment methods based on antithrombotic therapy and neuroprotective therapy are greatly limited for their poor safety and treatment efficacy. Nanomedicine provides new possibilities for treating stroke as they could improve the pharmacokinetic behavior of drugs

5.
Acta Pharmaceutica Sinica B ; (6): 2031-2047, 2021.
مقالة ي الانجليزية | WPRIM | ID: wpr-888849

الملخص

Post-traumatic stress disorder (PTSD) is a psychiatric disease that seriously affects brain function. Currently, selective serotonin reuptake inhibitors (SSRIs) are used to treat PTSD clinically but have decreased efficiency and increased side effects. In this study, nasal cannabidiol inclusion complex temperature-sensitive hydrogels (CBD TSGs) were prepared and evaluated to treat PTSD. Mice model of PTSD was established with conditional fear box. CBD TSGs could significantly improve the spontaneous behavior, exploratory spirit and alleviate tension in open field box, relieve anxiety and tension in elevated plus maze, and reduce the freezing time. Hematoxylin and eosin and c-FOS immunohistochemistry slides showed that the main injured brain areas in PTSD were the prefrontal cortex, amygdala, and hippocampus CA1. CBD TSGs could reduce the level of tumor necrosis factor-

6.
Acta Pharmaceutica Sinica B ; (6): 2306-2325, 2021.
مقالة ي الانجليزية | WPRIM | ID: wpr-888864

الملخص

Blood-brain barrier (BBB) strictly controls matter exchange between blood and brain, and severely limits brain penetration of systemically administered drugs, resulting in ineffective drug therapy of brain diseases. However, during the onset and progression of brain diseases, BBB alterations evolve inevitably. In this review, we focus on nanoscale brain-targeting drug delivery strategies designed based on BBB evolutions and related applications in various brain diseases including Alzheimer's disease, Parkinson's disease, epilepsy, stroke, traumatic brain injury and brain tumor. The advances on optimization of small molecules for BBB crossing and non-systemic administration routes (

7.
Acta Pharmaceutica Sinica B ; (6): 2859-2879, 2021.
مقالة ي الانجليزية | WPRIM | ID: wpr-888891

الملخص

Parkinson's disease (PD) is the second most common neurodegenerative disease, but none of the current treatments for PD can halt the progress of the disease due to the limited understanding of the pathogenesis. In PD development, the communication between the brain and the gastrointestinal system influenced by gut microbiota is known as microbiota-gut-brain axis. However, the explicit mechanisms of microbiota dysbiosis in PD development have not been well elucidated yet. FLZ, a novel squamosamide derivative, has been proved to be effective in many PD models and is undergoing the phase I clinical trial to treat PD in China. Moreover, our previous pharmacokinetic study revealed that gut microbiota could regulate the absorption of FLZ

8.
Acta Pharmaceutica Sinica B ; (6): 987-1003, 2020.
مقالة ي الانجليزية | WPRIM | ID: wpr-828829

الملخص

Blood-brain barrier (BBB) breakdown and the associated microvascular hyperpermeability are hallmark features of several neurological disorders, including traumatic brain injury (TBI). However, there is no viable therapeutic strategy to rescue BBB function. Tissue inhibitor of metalloproteinase-1 (TIMP1) has been considered to be beneficial for vascular integrity, but the molecular mechanisms underlying the functions of TIMP1 remain elusive. Here, we report that TIMP1 executes a protective role on neuroprotective function ameliorating BBB disruption in mice with experimental TBI. In human brain microvessel endothelial cells (HBMECs) exposed to hypoxia and inflammation injury, the recombinant TIMP1 (rTIMP1) treatment maintained integrity of junctional proteins and trans-endothelial tightness. Mechanistically, TIMP1 interacts with CD63/integrin 1 complex and activates downstream FAK signaling, leading to attenuation of RhoA activation and F-actin depolymerization for endothelial cells structure stabilization. Notably, these effects depend on CD63/integrin 1 complex, instead of the MMP-inhibitory function. Together, our results identified a novel MMP-independent function of TIMP1 in regulating endothelial barrier integrity. Therapeutic interventions targeting TIMP1 and its downstream signaling may be beneficial to protect BBB function following brain injury and neurological disorders.

9.
Acta Pharmaceutica Sinica B ; (6): 239-248, 2020.
مقالة ي الانجليزية | WPRIM | ID: wpr-787632

الملخص

Nowadays, nanotechnology is revolutionizing the approaches to different fields from manufacture to health. Carbon nanotubes (CNTs) as promising candidates in nanomedicine have great potentials in developing novel entities for central nervous system pathologies, due to their excellent physicochemical properties and ability to interface with neurons and neuronal circuits. However, most of the studies mainly focused on the drug delivery and bioimaging applications of CNTs, while neglect their application prospects as therapeutic drugs themselves. At present, the relevant reviews are not available yet. Herein we summarized the latest advances on the biomedical and therapeutic applications of CNTs and for neurological diseases treatments as inherent therapeutic drugs. The biological mechanisms of CNTs-mediated bio-medical effects and potential toxicity of CNTs were also intensely discussed. It is expected that CNTs will exploit further neurological applications on disease therapy in the near future.

10.
Acta Pharmaceutica Sinica B ; (6): 475-487, 2020.
مقالة ي الانجليزية | WPRIM | ID: wpr-792995

الملخص

ProBiotic-4 is a probiotic preparation composed of , , , and . This study aims to investigate the effects of ProBiotic-4 on the microbiota-gut-brain axis and cognitive deficits, and to explore the underlying molecular mechanism using senescence-accelerated mouse prone 8 (SAMP8) mice. ProBiotic-4 was orally administered to 9-month-old SAMP8 mice for 12 weeks. We observed that ProBiotic-4 significantly improved the memory deficits, cerebral neuronal and synaptic injuries, glial activation, and microbiota composition in the feces and brains of aged SAMP8 mice. ProBiotic-4 substantially attenuated aging-related disruption of the intestinal barrier and blood-brain barrier, decreased interleukin-6 and tumor necrosis factor- at both mRNA and protein levels, reduced plasma and cerebral lipopolysaccharide (LPS) concentration, toll-like receptor 4 (TLR4) expression, and nuclear factor-B (NF-B) nuclear translocation in the brain. In addition, not only did ProBiotic-4 significantly decreased the levels of -H2AX, 8-hydroxydesoxyguanosine, and retinoic-acid-inducible gene-I (RIG-I), it also abrogated RIG-I multimerization in the brain. These findings suggest that targeting gut microbiota with probiotics may have a therapeutic potential for the deficits of the microbiota-gut-brain axis and cognitive function in aging, and that its mechanism is associated with inhibition of both TLR4-and RIG-I-mediated NF-B signaling pathway and inflammatory responses.

اختيار الاستشهادات
تفاصيل البحث