Your browser doesn't support javascript.
loading
تبين: 20 | 50 | 100
النتائج 1 - 20 de 97
المحددات
1.
مقالة ي صينى | WPRIM | ID: wpr-1018025

الملخص

Objective:Aiming at the problem of target user electroencephalogram (EEG) recognition, an EEG recognition method was presented based on common spatial patterns (CSP) and transfer learning.Methods:Firstly, preprocess was adopted on the original EEG data, and time windows 0.5~2.5 s and broad frequency band 8~30 Hz EEG signals, which contained α and β wave, were selected. Here event-related desynchronization (ERD) phenomenon existed significant differences. Afterwards, by CSP preprocessed EEG signals of multi-user were conducted to extract feature and feature vectors were obtained, respectively. Finally, by transfer learning target user EEG recognition was completed.Results:In channel Cz, ERD of right hand motor imagery was higher than ERD of foot motor imagery. The classification accuracy of users aa, al, av, aw, and ay were 93.8%, 100.0%, 84.2%, 94.6%, and 94.4%, respectively. The average classification accuracy was 92.4%, which was better than the commonly used classifiers SVM and EM. The method was only lower than the method of the first winner in the competition adopted by Tsinghua University 1.8%.Conclusions:EEG recognition method based on CSP and transfer learning increased target user EEG recognition performance by using non-target users and had important implications for the study of motor imagery brain-computer interface.

2.
Chinese Medical Ethics ; (6): 61-68, 2024.
مقالة ي صينى | WPRIM | ID: wpr-1026131

الملخص

In the field of ethics,issues related to brain-computer interface(BCI)technology mainly focus on physical and mental ethics,as well as social ethics,including personal privacy rights,whether a person is a person in the complete sense,the attribution of social responsibility.The population involved includes patients,doctors,and the whole social group in which patients live.In addition to analyzing physical and mental ethical risks,this paper also analyzed the potential ethical issues that may exist in the future large-scale application of BCI based on the current research status,mainly including the right of informed consent,privacy,and decision-making of physical and mental ethical risks,the responsibility attribution and fairness of social ethical risks,the responsibility ascription and equity of social ethical risk,and the question that whether the brain is the carrier of machine or the machine is the continuation of the brain in future ethical risks.Solutions have been proposed in the three levels of individual,system,and institution to provide governance recommendations for the future development of BCI.In addition,local data was obtained by collecting and summarizing relevant opinions through social research.Based on these,the future risks of BCI were introduced for the first time,and from the perspective of ethics,solutions to future problems were explored.

3.
مقالة ي صينى | WPRIM | ID: wpr-1013378

الملخص

ObjectiveTo explore the effect of brain-computer interface (BCI) based on visual, auditory and motor feedback combined with transcranial direct current stimulation (tDCS) on upper limb function in stroke patients. MethodsFrom March to October, 2023, 45 stroke inpatients in Xuzhou Rehabilitation Hospital and Xuzhou Central Hospital were divided into BCI group (n = 15), tDCS group (n = 15) and combined group (n = 15) randomly. All the groups received routine rehabilitation, while BCI group received BCI training, tDCS group received tDCS, while the combined group received tDCS and followed by BCI training immediately, for four weeks. They were assessed with Fugl-Meyer Assessment-Upper Extremities (FMA-UE), Action Research Arm Test (ARAT), modified Barthel Index (MBI) and delta-alpha ratio (DAR) and power ratio index (PRI) of electroencephalogram before and after treatment. ResultsThe scores of FMA-UE, ARAT and MBI increased in all the groups after treatment (|t| > 5.350, P < 0.001), and all these indexes were the best in the combined group (F > 3.366, P < 0.05); while DAR and PRI decreased in all the groups (|t| > 2.208 , P < 0.05), they were the best in the combined group (F > 5.224, P < 0.01). ConclusionBCI based on visual, auditory and motor feedback combined with tDCS can further improve the motor function of upper limbs and the activities of daily living of stroke patients.

4.
مقالة ي صينى | WPRIM | ID: wpr-1021275

الملخص

BACKGROUND:Current rehabilitation programs are effective in treating post-stroke sequelae,but the treatment cycle is long and the labor cost is high.Brain-computer interface technology can be used for the treatment of post-stroke patients by extracting signals from the brain's neural activity through special equipment and converting this signal into commands that can be recognized by a computer. OBJECTIVE:To analyze and summarize the application of brain-computer interface technology in the upper limb motor function rehabilitation of stroke patients in recent years and to explore the clinical value of brain-computer interface technology in the upper limb function rehabilitation of stroke patients. METHODS:CNKI and PubMed were retrieved for relevant literature published from 2000 to 2022.The keywords were"stroke,electroencephalogram,brain-computer interface,upper limb,virtual reality technology,functional electrical stimulation,exoskeleton"in Chinese and"stroke,brain-computer interface,computer assistance,upper limb,virtual reality technology,functional electrical stimulation,exoskeleton"in English. RESULTS AND CONCLUSION:The brain-computer interface has shown promise for the restoration of upper limb motor function in stroke patients and has been shown to produce results that are unattainable with conventional treatments,and is well worth further research and promotion,but the mechanisms have not been fully elucidated.Also the ability to accurately decode all degrees of freedom of upper limb movements to provide flexible and natural control remains a challenge from the perspective of brain-computer interface systems that capture electroencephalogram signals from patients.Future research should focus on clarifying the specific neural mechanisms by which brain-computer interface technology facilitates upper limb motor recovery after stroke and identifying rehabilitation options such as brain-computer interfaces combined with external devices to facilitate upper limb motor function recovery in stroke patients.

5.
مقالة | IMSEAR | ID: sea-225563

الملخص

Background: The brain-computer interface (BCI) is gaining much attention to treat neurological disorders and improve brain-dependent functions. Significant achievements over the last decade have focused on engineering and computation technology to enhance the recording of signals and the generation of output stimuli. Nevertheless, many challenges remain for the translation of BCIs to clinical applications. Methods: We review the relevant data on the four significant gaps in enhancing BCI's clinical implementation and effectiveness. Results: The paper describes three methods to bridge the current gaps in the clinical application of BCI. The first is using a brain-directed adjuvant with a high safety profile, which can improve the accuracy of brain signaling, summing of information, and production of stimuli. The second is implementing a second-generation artificial intelligence system that is outcome-oriented for improving data streaming, recording individualized brain-variability patterns into the algorithm, and improving closed-loop learning at the level of the brain and with the target organ. The system overcomes the compensatory mechanisms that underlie the loss of stimuli' effectiveness for ensuring sustainable effects. Finally, we use inherent brain parameters relevant to consciousness and brain function to bridge some of the described gaps. Conclusions: Combined with the currently developed techniques for enhancing effectiveness and ensuring a sustainable response, these methods can potentially improve the clinical outcome of BCI techniques.

6.
مقالة ي صينى | WPRIM | ID: wpr-989353

الملخص

Objective:To improve the users’ comfort of steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) through high-frequency stimulation and overcome the problem of accuracy decline caused by high frequency by combining dual-frequency encoding.Methods:Two dual-frequency high-frequency 60-instruction paradigms based on left and right visual fields and checkerboard stimuli were designed based on the 25.5 - 39.6 Hz frequency. Thirteen subjects participated in the experiment, and spectrum and spatial characteristics analyses were performed on SSVEP signals. The filter bank parameters were optimized based on the spectrum characteristics. Extended canonical correlation analysis (eCCA), ensemble task-related component analysis (eTRCA), and task-discriminant component analysis (TDCA) were used for SSVEP recognition.Results:Stable SSVEP was successfully induced in both the left and right visual fields and the checkerboard grid paradigm. The left and right visual fields had high signal-to-noise ratios for the fundamental frequency and its harmonics and weak signal-to-noise ratios for intermodulation components, whereas the intermodulation components of the 2 stimulus frequencies of the checkerboard grid, f1 + f2, had significantly higher signal-to-noise ratios than the second harmonic components above 30 Hz, and there was also a f2 ? f1 component and a 2 f1 ? f2 component. Combined with brain topography, it can be seen that the f1 and f2 response components of the left and right visual fields are located on opposite sides of the visual field, while the checkerboard grids are both concentrated in the center of the occipital region. Regarding the lateralization of brain topography amplitude and signal-to-noise ratio, the mean values of the PO3 and PO4 signal-to-noise ratios at the stimulation frequency of the left and right visual fields are consistent with the contralateral response characteristics. The 5 fb ? 1 method is the optimal filter set setting method, and the recognition correctness rate of TDCA for the left and right visual fields is the highest. However, the comparison of the recognition correctness rate of tessellated lattice eTRCA and TDCA is not statistically significant ( P > 0.05). The information transmission rates of the three algorithms all increase and then decrease with the increase in data length. Conclusions:The designed dual-frequency, high-frequency SSVEP-BCI paradigm is able to better balance performance and comfort and provides a basis for practical large instruction set BCI design methods.

7.
مقالة ي صينى | WPRIM | ID: wpr-961943

الملخص

ObjectiveTo observe the effect of brain-computer interface (BCI) training based on motor imagery on hand function in hemiplegic patients with subacute stroke. MethodsFrom June, 2020 to December, 2021, 40 patients with hemiplegia in subacute stroke from Department of Rehabilitation Medicine, Fifth Affiliated Hospital of Zhengzhou University were divided into control group (n = 20) and experimental group (n = 20) using random number table. Both groups accepted medication and routine comprehensive rehabilitation, while the control group accepted hand rehabilitation robot training, and the experimental group accepted the robot training using motor imagery-based BCI, for four weeks. They were assessed with Fugl-Meyer Assessment-Upper Extremities (FMA-UE), modified Barthel Index, modified Ashworth scale, and measured integrated electromyogram of the superficial finger flexors, finger extensors and short thumb extensors of the affected forearm during maximum isometric voluntary contraction with surface electromyography. ResultsTwo patients in the control group and one in the experimental group dropped off. All the indexes improved in both groups after treatment (t > 2.322, Z > 2.631, P < 0.05), and they were better in the experimental group than in the control group (t > 2.227, Z > 2.078, P < 0.05), except the FMA-UE score of wrist. ConclusionMotor imagery-based BCI training is more effective on hand function and activities of daily living in hemiplegic patients with subacute stroke.

8.
مقالة ي صينى | WPRIM | ID: wpr-965035

الملخص

ObjectiveTo conduct a visualized analysis of the research related to the use of brain-computer interface technology for stroke rehabilitation in the past ten years, and identify and predict the hot spots and hot trends in order to promote the further development of this field. MethodsThe Web of Science Core Collection database was searched for literature related to brain-computer interface technology for stroke rehabilitation from January, 2011 to October, 2022. CiteSpace 5.8.R3 was used to analyze the number of publications, countries, institutions, authors, keywords, co-citations, and grant support. Results and ConclusionA total of 592 papers were included, and the annual number of publications in this field of research showed a rapid growth trend, and the research enthusiasm continued to increase. The United States was in the leading position in this field, with the highest number of cooperative publications and the highest intermediary centrality; China had certain advantages in this field, but still needed to strengthen the exchange and cooperation with other countries/regions. Foreign institutions and authors had formed a network of close cooperative relationships, and formed a high-impact team represented by Niels Birbaumer, Cuntai Guan, Kai Keng Ang, etc.; there were poor cooperative relationships among domestic authors and institutions, and there were geographical restrictions and lack of high-impact academic groups. The keywords "motor imagery" and "recovery" formed ten major clusters and 15 prominent words with high variation rates, showing a trend of diversification in research directions. The study of the efficacy of upper limb motor rehabilitation and central mechanisms has been the hot topics in this field and will continue for some time in the future; the use of lower limb brain-computer interface systems for improving foot drop, gait and balance in stroke patients and the application of multimodal brain-computer interfaces will probably become a hot topic in the future. Finally, the use of brain-computer interface-guided neurofeedback training for cognitive and language rehabilitation in stroke also needs attention.

9.
مقالة ي صينى | WPRIM | ID: wpr-970686

الملخص

Steady-state visual evoked potential (SSVEP) has been widely used in the research of brain-computer interface (BCI) system in recent years. The advantages of SSVEP-BCI system include high classification accuracy, fast information transform rate and strong anti-interference ability. Most of the traditional researches induce SSVEP responses in low and middle frequency bands as control signals. However, SSVEP in this frequency band may cause visual fatigue and even induce epilepsy in subjects. In contrast, high-frequency SSVEP-BCI provides a more comfortable and natural interaction despite its lower amplitude and weaker response. Therefore, it has been widely concerned by researchers in recent years. This paper summarized and analyzed the related research of high-frequency SSVEP-BCI in the past ten years from the aspects of paradigm and algorithm. Finally, the application prospect and development direction of high-frequency SSVEP were discussed and prospected.


الموضوعات
Humans , Brain-Computer Interfaces , Evoked Potentials, Visual , Algorithms
10.
مقالة ي صينى | WPRIM | ID: wpr-982233

الملخص

Implanted brain-computer interface (iBCI) is a system that establishes a direct communication channel between human brain and computer or an external devices by implanted neural electrode. Because of the good functional extensibility, iBCI devices as a platform technology have the potential to bring benefit to people with nervous system disease and progress rapidly from fundamental neuroscience discoveries to translational applications and market access. In this report, the industrialization process of implanted neural regulation medical devices is reviewed, and the translational pathway of iBCI in clinical application is proposed. However, the Food and Drug Administration (FDA) regulations and guidances for iBCI were expounded as a breakthrough medical device. Furthermore, several iBCI products in the process of applying for medical device registration certificate were briefly introduced and compared recently. Due to the complexity of iBCI in clinical application, the translational applications and industrialization of iBCI as a medical device need the closely cooperation between regulatory departments, companies, universities, institutes and hospitals in the future.


الموضوعات
Humans , Brain-Computer Interfaces , Brain/physiology , Electrodes, Implanted
11.
مقالة ي صينى | WPRIM | ID: wpr-1008888

الملخص

Coding with high-frequency stimuli could alleviate the visual fatigue of users generated by the brain-computer interface (BCI) based on steady-state visual evoked potential (SSVEP). It would improve the comfort and safety of the system and has promising applications. However, most of the current advanced SSVEP decoding algorithms were compared and verified on low-frequency SSVEP datasets, and their recognition performance on high-frequency SSVEPs was still unknown. To address the aforementioned issue, electroencephalogram (EEG) data from 20 subjects were collected utilizing a high-frequency SSVEP paradigm. Then, the state-of-the-art SSVEP algorithms were compared, including 2 canonical correlation analysis algorithms, 3 task-related component analysis algorithms, and 1 task discriminant component analysis algorithm. The results indicated that they all could effectively decode high-frequency SSVEPs. Besides, there were differences in the classification performance and algorithms' speed under different conditions. This paper provides a basis for the selection of algorithms for high-frequency SSVEP-BCI, demonstrating its potential utility in developing user-friendly BCI.


الموضوعات
Humans , Brain-Computer Interfaces , Evoked Potentials, Visual , Algorithms , Discriminant Analysis , Electroencephalography
12.
مقالة ي صينى | WPRIM | ID: wpr-1008891

الملخص

Patients with amyotrophic lateral sclerosis ( ALS ) often have difficulty in expressing their intentions through language and behavior, which prevents them from communicating properly with the outside world and seriously affects their quality of life. The brain-computer interface (BCI) has received much attention as an aid for ALS patients to communicate with the outside world, but the heavy device causes inconvenience to patients in the application process. To improve the portability of the BCI system, this paper proposed a wearable P300-speller brain-computer interface system based on the augmented reality (MR-BCI). This system used Hololens2 augmented reality device to present the paradigm, an OpenBCI device to capture EEG signals, and Jetson Nano embedded computer to process the data. Meanwhile, to optimize the system's performance for character recognition, this paper proposed a convolutional neural network classification method with low computational complexity applied to the embedded system for real-time classification. The results showed that compared with the P300-speller brain-computer interface system based on the computer screen (CS-BCI), MR-BCI induced an increase in the amplitude of the P300 component, an increase in accuracy of 1.7% and 1.4% in offline and online experiments, respectively, and an increase in the information transfer rate of 0.7 bit/min. The MR-BCI proposed in this paper achieves a wearable BCI system based on guaranteed system performance. It has a positive effect on the realization of the clinical application of BCI.


الموضوعات
Humans , Amyotrophic Lateral Sclerosis , Brain-Computer Interfaces , Quality of Life , Event-Related Potentials, P300 , Wearable Electronic Devices
13.
Journal of Biomedical Engineering ; (6): 1126-1134, 2023.
مقالة ي صينى | WPRIM | ID: wpr-1008942

الملخص

Due to the high complexity and subject variability of motor imagery electroencephalogram, its decoding is limited by the inadequate accuracy of traditional recognition models. To resolve this problem, a recognition model for motor imagery electroencephalogram based on flicker noise spectrum (FNS) and weighted filter bank common spatial pattern ( wFBCSP) was proposed. First, the FNS method was used to analyze the motor imagery electroencephalogram. Using the second derivative moment as structure function, the ensued precursor time series were generated by using a sliding window strategy, so that hidden dynamic information of transition phase could be captured. Then, based on the characteristic of signal frequency band, the feature of the transition phase precursor time series and reaction phase series were extracted by wFBCSP, generating features representing relevant transition and reaction phase. To make the selected features adapt to subject variability and realize better generalization, algorithm of minimum redundancy maximum relevance was further used to select features. Finally, support vector machine as the classifier was used for the classification. In the motor imagery electroencephalogram recognition, the method proposed in this study yielded an average accuracy of 86.34%, which is higher than the comparison methods. Thus, our proposed method provides a new idea for decoding motor imagery electroencephalogram.


الموضوعات
Brain-Computer Interfaces , Imagination , Signal Processing, Computer-Assisted , Electroencephalography/methods , Algorithms , Spectrum Analysis
14.
Journal of Biomedical Engineering ; (6): 1235-1241, 2023.
مقالة ي صينى | WPRIM | ID: wpr-1008955

الملخص

Rapid serial visual presentation (RSVP) is a type of psychological visual stimulation experimental paradigm that requires participants to identify target stimuli presented continuously in a stream of stimuli composed of numbers, letters, words, images, and so on at the same spatial location, allowing them to discern a large amount of information in a short period of time. The RSVP-based brain-computer interface (BCI) can not only be widely used in scenarios such as assistive interaction and information reading, but also has the advantages of stability and high efficiency, which has become one of the common techniques for human-machine intelligence fusion. In recent years, brain-controlled spellers, image recognition and mind games are the most popular fields of RSVP-BCI research. Therefore, aiming to provide reference and new ideas for RSVP-BCI related research, this paper reviewed the paradigm design and system performance optimization of RSVP-BCI in these three fields. It also looks ahead to its potential applications in cutting-edge fields such as entertainment, clinical medicine, and special military operations.


الموضوعات
Humans , Brain-Computer Interfaces , Electroencephalography/methods , Brain/physiology , Artificial Intelligence , Photic Stimulation/methods
15.
مقالة ي صينى | WPRIM | ID: wpr-981550

الملخص

The development and potential application of brain-computer interface (BCI) technology is closely related to the human brain, so that the ethical regulation of BCI has become an important issue attracting the consideration of society. Existing literatures have discussed the ethical norms of BCI technology from the perspectives of non-BCI developers and scientific ethics, while few discussions have been launched from the perspective of BCI developers. Therefore, there is a great need to study and discuss the ethical norms of BCI technology from the perspective of BCI developers. In this paper, we present the user-centered and non-harmful BCI technology ethics, and then discuss and look forward on them. This paper argues that human beings can cope with the ethical issues arising from BCI technology, and as BCI technology develops, its ethical norms will be improved continuously. It is expected that this paper can provide thoughts and references for the formulation of ethical norms related to BCI technology.


الموضوعات
Humans , Brain-Computer Interfaces , Technology , Brain , User-Computer Interface , Electroencephalography
16.
مقالة ي صينى | WPRIM | ID: wpr-981557

الملخص

High-frequency steady-state asymmetric visual evoked potential (SSaVEP) provides a new paradigm for designing comfortable and practical brain-computer interface (BCI) systems. However, due to the weak amplitude and strong noise of high-frequency signals, it is of great significance to study how to enhance their signal features. In this study, a 30 Hz high-frequency visual stimulus was used, and the peripheral visual field was equally divided into eight annular sectors. Eight kinds of annular sector pairs were selected based on the mapping relationship of visual space onto the primary visual cortex (V1), and three phases (in-phase[0º, 0º], anti-phase [0º, 180º], and anti-phase [180º, 0º]) were designed for each annular sector pair to explore response intensity and signal-to-noise ratio under phase modulation. A total of 8 healthy subjects were recruited in the experiment. The results showed that three annular sector pairs exhibited significant differences in SSaVEP features under phase modulation at 30 Hz high-frequency stimulation. And the spatial feature analysis showed that the two types of features of the annular sector pair in the lower visual field were significantly higher than those in the upper visual field. This study further used the filter bank and ensemble task-related component analysis to calculate the classification accuracy of annular sector pairs under three-phase modulations, and the average accuracy was up to 91.5%, which proved that the phase-modulated SSaVEP features could be used to encode high- frequency SSaVEP. In summary, the results of this study provide new ideas for enhancing the features of high-frequency SSaVEP signals and expanding the instruction set of the traditional steady state visual evoked potential paradigm.


الموضوعات
Humans , Evoked Potentials, Visual , Brain-Computer Interfaces , Healthy Volunteers , Signal-To-Noise Ratio
17.
مقالة ي صينى | WPRIM | ID: wpr-981558

الملخص

The brain-computer interface (BCI) based on motor imagery electroencephalography (MI-EEG) enables direct information interaction between the human brain and external devices. In this paper, a multi-scale EEG feature extraction convolutional neural network model based on time series data enhancement is proposed for decoding MI-EEG signals. First, an EEG signals augmentation method was proposed that could increase the information content of training samples without changing the length of the time series, while retaining its original features completely. Then, multiple holistic and detailed features of the EEG data were adaptively extracted by multi-scale convolution module, and the features were fused and filtered by parallel residual module and channel attention. Finally, classification results were output by a fully connected network. The application experimental results on the BCI Competition IV 2a and 2b datasets showed that the proposed model achieved an average classification accuracy of 91.87% and 87.85% for the motor imagery task, respectively, which had high accuracy and strong robustness compared with existing baseline models. The proposed model does not require complex signals pre-processing operations and has the advantage of multi-scale feature extraction, which has high practical application value.


الموضوعات
Humans , Time Factors , Brain , Electroencephalography , Imagery, Psychotherapy , Neural Networks, Computer
18.
Chinese Journal of Neuromedicine ; (12): 747-752, 2023.
مقالة ي صينى | WPRIM | ID: wpr-1035877

الملخص

Cognitive dysfunction is one of the serious sequelae of stroke. Brain-computer interface technology, as a rehabilitation technology to promote the neural function recovery, has been gradually applied to the assessment and rehabilitation of cognitive dysfunction after stroke. Brain computer interface establishs connection between the human brain and the machine, conducts closed-loop feedback training, helps patients improve brain functional activities, and finally achieves cognitive rehabilitation. This article introduces the current clinical application of brain-computer interface in rehabilitation of cognitive function after stroke and its possible neurophysiological mechanism, aiming to provide a new idea for rehabilitation of stroke patients.

19.
مقالة ي صينى | WPRIM | ID: wpr-973344

الملخص

ObjectiveTo investigate the effects of visual motion-induced brain-computer interface (BCI) technology on upper limb motor function and cognitive function of patients with stroke. MethodsFrom July, 2021 to March, 2022, 50 stroke patients with upper limb hand dysfunction in Shaanxi Provincial Rehabilitation Hospital were randomly divided into control group (n = 25) and experimental group (n = 25). Both groups received conventional rehabilitation therapy, in addition, the control group received passive rehabilitation training, and the experimental group received visual motion-induced BCI rehabilitation training, for two weeks. They were assessed with Fugl-Meyer Assessment-Upper Extremities (FMA-UE), modified Barthel Index (MBI) and Montreal Cognitive Assessment (MoCA) before and after treatment. Brain participation was evaluated during the whole training process of the experimental group. ResultsBefore treatment, there was no difference in the scores of FMA-UE, MBI and MoCA between two groups (P > 0.05). Two weeks after treatment, the scores of FMA-UE, MBI and MoCA improved in both groups (t > 2.481, P < 0.001), and were better in the exprimental group than in the control group (t > 2.453, P < 0.05); the mean brain participation of the experimental group increased 21% after treatment. ConclusionVisual motion-induced BCI rehabilitation training could promote the recovery of motor function of upper limb, and cognitive function of patients with stroke.

20.
Rev. mex. ing. bioméd ; 44(spe1): 23-37, Aug. 2023. tab, graf
مقالة ي الانجليزية | LILACS-Express | LILACS | ID: biblio-1565604

الملخص

Abstract In this paper, we present an attention classification method using Machine-Learning Algorithms. The EEG signals were recorded from ten engineering students with an EPOC+BCI using the electrodes F3, F4, P7, and P8 while solving some mathematical operations. The recording time for these activities is around 20 minutes. Next, a similar time EEG register is obtained while doing non-academic activities, such as chattering with the staff, checking cell phones, or playing a video game. With these EEG registers, we obtained a set of features to train and evaluate attention using Machine Learning algorithms. This research shows how engineering students interact with math topics in solving mental operations and complex reasoning by increasing brain domain and knowledge for mathematical reasoningrelated processes, such as sustained and shifting attention and logical constructions for object interaction during operations resolution. The Random Forest algorithm (RF) obtained the highest accuracy with 0.7392, an F1 Score of 0.7430, and the highest Specificity/Accuracy with 0.7261.


Resumen Se presenta un método de clasificación de la atención utilizando algoritmos de aprendizaje automático. Con las señales EEG de diez estudiantes de ingeniería adquiridas utilizando los electrodos F3, F4, P7 y P8 de una BCI EPOC+ mientras resuelven productos escalares, multiplicaciones algebraicas simples, simplificaciones e integrales por aproximadamente 20 minutos. Posteriormente, se obtiene un registro EEG de tiempo similar mientras se realizan actividades no académicas, como charlar con el personal, consultar el móvil o jugar a un videojuego. Se obtienen algunas características/parámetros, se entrenan y evalúan varios algoritmos de aprendizaje automático para la clasificación de la atención. Los resultados de esta investigación pueden mejorar la forma en que los estudiantes de ingeniería interactúan con los temas matemáticos en la resolución de operaciones mentales y razonamientos complejos, aumentando el dominio y el conocimiento cerebral para los procesos relacionados con el razonamiento matemático, como la atención sostenida y cambiante y las construcciones lógicas para la interacción con objetos durante la resolución de operaciones. El clasificador Random Forest obtuvo la mayor precisión con 0.7392, una puntuación F1 de 0.7430 y la mayor especificidad/precisión con 0.7261.

اختيار الاستشهادات
تفاصيل البحث