Your browser doesn't support javascript.
loading
تبين: 20 | 50 | 100
النتائج 1 - 20 de 2.823
المحددات
1.
Braz. j. med. biol. res ; 57: e13889, fev.2024. tab, graf
مقالة ي الانجليزية | LILACS-Express | LILACS | ID: biblio-1568967

الملخص

With the escalating incidence and mortality rates of cancer, there is an ever-growing emphasis on the research of anticancer drugs. Cordycepin, the primary nucleoside antibiotic isolated from Cordyceps militaris, has emerged as a remarkable agent for cancer prevention and treatment. Functioning as a natural targeted antitumor drug, cordycepin assumes an increasingly pivotal role in cancer therapy. This review elucidates the mechanisms of cordycepin in inhibiting tumor cell proliferation, inducing apoptosis, as well as its capabilities in suppressing angiogenesis and metastasis. Moreover, the immunomodulatory effects of cordycepin in cancer treatment are explored. Additionally, the current status, challenges, and future prospects of cordycepin application in clinical trials are briefly discussed. The objective is to provide a valuable reference for the utilization of cordycepin in cancer treatment.

2.
Braz. j. med. biol. res ; 57: e13796, fev.2024. tab, graf
مقالة ي الانجليزية | LILACS-Express | LILACS | ID: biblio-1568973

الملخص

Previous studies show that glycogen synthase kinase 3β (GSK3B) plays an important role in tumorigenesis. However, its role in cervical cancer is unclear. The present study silenced GSK3B with siRNAs and/or chemical inhibitors to determine its role in HeLa cervical cancer cell proliferation and migration as well as in xenograft tumor growth. Cell Counting Kit (CCK)-8 and 5-ethynyl-2'-deoxyuridine (EdU) assays were used to determine cell survival and proliferation. Scratch and Transwell® assays were used to evaluate cell migration. Xenograft tumors were used to evaluate the effect of GSK3B on tumor growth. Transcriptomic sequencing was used to clarify the mechanisms underlying the foregoing processes. Public databases and clinical specimens showed that GSK3B was upregulated in cervical cancer tissues and correlated with poor prognosis. In vitro experiments indicated that GSK3B inhibition reduced cell viability, proliferation, and migration. In vivo experiments demonstrated that GSK3B inhibition slowed xenograft tumor growth. Transcriptomic sequencing revealed that GSK3B inhibition modulated the phosphatidylinositol 3-carboxykinase (PI3K)/protein kinase B (Akt) and extracellular matrix (ECM)-receptor interaction signaling pathways. GSK3B inhibition decreased the protein levels of phosphorylated PI3K and Akt and the levels of mesenchymal markers but increased those of epithelial markers. An activator of the PI3K/Akt signaling pathway counteracted the suppressive effects of GSK3B inhibition on HeLa cell viability and proliferation and on PI3K/Akt signaling. Our data suggested that GSK3B regulated cervical cancer cell proliferation and migration by modulating the PI3K/Akt signaling pathway and epithelial-to-mesenchymal transition (EMT).

3.
مقالة ي صينى | WPRIM | ID: wpr-1006509

الملخص

Objective@#To investigate the effects of electrochemically dealloying of Ti6Al4V abutments on human gingival fibroblasts (HGFs) and to provide experimental evidence for surface modification of implant abutments.@*Methods@#The samples were divided into an NC group (negative control, no other treatment on a smooth surface), an NM-1 group (nanomesh-1, electrochemical dealloying treatment in 1 mol/L NaOH 1 h on 2 V voltage), and an NM-2 group (nanomesh-2, electrochemical dealloying treatment in 5 mol/L NaOH 1 h on 2 V voltage). The surface morphologies of the samples and the adhesion of HGFs on the sample surfaces were observed with scanning electron microscopy (SEM). The surface hydrophilicities of the samples were measured with a contact angle measuring instrument. The proliferation of HGFs on the different samples were evaluated with CCK-8, and the expression of adhesion-related genes, including collagen Ⅰ (COL1A1), collagen Ⅲ (COL3A1), fibronectin 1 (FN1), focal adhesion kinase (FAK), vinculin (VCL), integrin α2 (ITGA2), and integrin β1 (ITGB1), on the different samples was measured with qRT-PCR. The expression of vinculin on the surfaces of HGFs was observed via confocal laser scanning microscopy (CLSM) after immunofluorescent staining. Collagen fiber secretion and syntheses of HGFs from different samples were evaluated via Sirius red staining.@*Results@#SEM revealed the formation of ordered and uniform three-dimensional mesh structures on the surfaces of the NM-1 and NM-2 groups, with grid diameters of approximately 30 nm for the NM-1 group and approximately 150 nm for the NM-2 group. Compared with that of the NC group, the water contact angles of the NM-1 group and NM-2 groups were significantly lower (P<0.000 1). Cell proliferation in the NM-1 group was significantly greater than that in the NC group (P<0.01). Moreover, there was no significant difference in the water contact angles or cell proliferation between the NM-1 group and the NM-2 group. SEM revealed that HGFs were adhered well to the surfaces of all samples, while the HGFs in the NM-1 and NM-2 groups showed more extended areas, longer morphologies, and more developed pseudopodia than did those in the NC group after 24 h. qRT-PCR revealed that the expression levels of the adhesion-related genes COL1A1, COL3A1, FN1, FAK and VCL in the NM-1 group were significantly greater than those in the NC and NM-2 groups (P<0.01). The expression of vinculin protein in the NM-1 group was the highest, and the number of focal adhesions was greatest in the NM-1 group (P<0.01). The results of Sirius red staining showed that the NM-1 group had the highest secretion and syntheses of collagen fibers (P<0.000 1).@*Conclusion@#The three-dimensional nanomechanical structure of Ti6Al4V modified by electrochemical dealloying promoted the adhesion, proliferation, collagen fiber secretion and syntheses of HGFs, and electrochemical dealloying of Ti6Al4V with a grid diameter of approximately 30 nm obviously promoted HGF formation.

4.
مقالة ي صينى | WPRIM | ID: wpr-1017245

الملخص

Objective To investigate the correlation between Yes-associated protein(YAP)nuclear expression and tumor size with prognosis of patients with epithelial ovarian cancer(EOC)and to study the role of YAP in EOC.Methods 120 patients with EOC were selected as the experimental group,including 38 patients with early stage(Ⅰ+Ⅱ)EOC and 8 2 patients with advanced stage(Ⅲ+Ⅳ)EOC.3 0 normal ovarian tissues obtained from patients with uterine leiomyoma were enrolled as the control group.Immunohistochemical(IHC)assay was em-ployed to determine YAP expression and sub-location.The relationship between YAP expression and the pathologi-cal parameters of the 120 patients with EOC was analyzed,so as to the prognosis of these patients.EOC cells(C13K and OV2008)were cultured with varying initial cell volumes.Ki67 expression and cell proliferation were tested by immunofluorescence and cloning assay respectively.YAP expression at mRNA and protein levels were de-tected by q-PCR and Western blot respectively when the cell conference of EOC cells reached to low(60%)and high(90%)cell density.Results The YAP nuclear expression was significantly higher in the EOC group com-pared to the control group(P<0.05).The average diameter of stage Ⅰ+Ⅱ EOC was larger than that of stage Ⅲ+Ⅳ EOC(P<0.01).The high nuclear expression of YAP was positively associated with pathological grade,clinical stage and the level of Ca125>1 000 IU/ml,while negatively correlated with tumor size(all P<0.05).Survival analyses showed that smaller tumor size(<10 cm)and higher YAP nuclear expression were negatively as-sociated with the 3-year overall survival rate of EOC patients(P<0.01).C13K and OV2008 cells cultured in the low density group exhibited a high number of clone formation,high Ki67 and YAP expression(P<0.01).The down-regulation of YAP expression could decrease the cell viability of EOC cells in the low-and high-density groups(P<0.05).Conclusion Higher level of YAP nuclear expression and smaller tumour size are inversely associated with the clinical prognosis of patients with EOC.Inhibiting YAP nuclear expression leads to a decrease in the prolif-eration capacity of EOC cells.

5.
مقالة ي صينى | WPRIM | ID: wpr-1017315

الملخص

Objective:To discuss the expression of programmed cell death-ligand 1(PD-L1)in the oral squamous cell carcinoma(OSCC)cells and its effect on biological behavior of the OSCC CAL27 cells,and to clarify the possible mechanism.Methods:Western blotting method was used to detect the expression levels of PD-L1 protein in the oral epithelial HOK cells and OSCC CAL27,TCA8113,and SCC15 cells;immunofluorescence staining method was used to detect the expression and localization of PD-L1 protein in the CAL27 cells.The CAL27 cells were divided into control group(transfected with si-NC)and si-PD-L1 group(transfected with si-PD-L1).Western blotting method was used to detect the interference efficiency of the cells in two groups;CCK-8 assay was used to detect the proliferative activities of the cells in two groups at different time points;plate clone formation assay was used to detect the numbers of clone formation of the cells in two groups;cell scratch healing assay was used to detect the scratch healing rates of the cells in two groups;Transwell chamber assay was used to detect the numbers of migration and invasion cells in two groups.Results:The expression level of PD-L1 protein in the OSCC cells was higher than that in the HOK cells(P<0.05 or P<0.01);PD-L1 expressed in the cytoplasm and nucleus of the CAL27 cells.The CCK-8 assay and plate clone formation assay results showed that compared with control group,the proliferative activities of the CAL27 cells in si-PD-L1 group at different time points were significantly decreased(P<0.05 or P<0.01),and the numbers of clone formation were significantly decreased(P<0.01).The cell scratch healing assay results showed that compared with control group,the scratch healing rates of the cells in si-PD-L1 group were significantly decreased(P<0.05 or P<0.01).The Transwell chamber assay results showed that compared with control group,the numbers of migration and invasion cells in si-PD-L1 group were significantly decreased(P<0.01).Conclusion:The expression of PD-L1 in the OSCC cells is higher than that in normal oral epithelial cells,and knocking down PD-L1 expression can inhibit the proliferation,clone formation,migration and invasion capabilities of the OSCC cells.

6.
مقالة ي صينى | WPRIM | ID: wpr-1017328

الملخص

Objective:To discuss the effect of apolipoprotein C1(APOC1)expression on the proliferation and apoptosis of the hepatocellular carcinoma cells,and to preliminarily clarify the related molecular mechanism.Methods:The expression level of APOC1 mRNA in hepatocellular carcinoma tissue and its relationship with the prognosis of the patient were analyzed by The Cancer Genome Atlas(TCGA)Database;real-time fluorescence quantitative PCR(RT-qPCR)method was used to detect the expression levels of APOC1 mRNA in different hepatocellular carcinoma cells;the human liver cancer HepG2 cells with low APOC1 expression were selected as the subjects.The HepG2 cells were transfected with pcDNA3.1-APOC1 plasmid to over-express APOC1(APOC1 over-expression group),and the HepG2 cells transfected with empty vector pcDNA3.1 were regarded as control group.MTS assay and 5-ethynyl-2'-deoxyuridine(EdU)staining were used to detect the proliferative activities and proliferation rates of the cells in two groups;Transwell chamber assay was used to detect the numbers of migration cells in two groups;flow cytometry and TUNEL assay were used to detect the percentages of the cells at different cell cycles and apoptotic rates in two groups;Western blotting method was used to detect the expression levels of extracellular regulated protein kinase(ERK),phosphorylated ERK(p-ERK),protein kinase B(AKT),phosphorylated AKT(p-AKT),B-cell lymphoma-2(Bcl-2),and cleaved cysteinyl aspartate specific proteinase-3(cleaved caspase-3)proteins in the cells in two groups.Results:The TCGA Database results showed that the expression level of APOC1 mRNA in hepatocellular carcinoma tissue was lower than that in normal liver tissue(P<0.05),and the patients with low expression of APOC1 mRNA had poor prognosis.The RT-qPCR results showed that the expression level of APOC1 mRNA in the HepG2 cells was the lowest,and the HepG2 cells were chosen for the subsequent research.Compared with control group,the proliferative activity and proliferation rate of the cells in APOC1 over-expression group were decreased(P<0.05 or P<0.01),the number of migration cells was decreased(P<0.01),and the percentage of the cells at S phase and the apoptotic rate were significantly increased(P<0.01).Compared with control group,the expression levels of p-ERK,p-AKT,and Bcl-2 proteins in the cells in APOC1 over-expression group were significantly decreased(P<0.05),and the expression level of cleaved caspase-3 protein was increased(P<0.01).Conclusion:High expression of APOC1 can inhibit the proliferation of the human liver cancer HepG2 cells and induce the apoptosis,and its mechanism may be related to inhibition of the expressions of p-ERK,p-AKT,Bcl-2 proteins and promotion of the expression of cleaved caspase-3 protein.

7.
مقالة ي صينى | WPRIM | ID: wpr-1017604

الملخص

OBJECTIVE The expression of cancerous inhibitor of protein phosphatase 2A(CIP2A)in hypopharyngeal carcinoma FaDu cells(FaDu cells)was reduced by shRNA to understand its role in the occurrence and development of hypopharyngeal carcinoma.METHODS Specific shRNA sequence was designed,lentivirus was packaged and transfected into hypopharyngeal carcinoma FaDu cells,and CIP2A expression was specifically knocked down.The expression of CIP2A was detected by RT-PCR and Western blot.RESULTS 1.After shRNA knocked down CIP2A in FaDu cells,the CIP2A mRNA expression in the experimental group(CIP2A knocked down group)was significantly lower than that in the blank group,and the CIP2A protein expression in the experimental group was also significantly lower than that in the blank group.2.Cell cloning and CCK8 experiments showed that the cell proliferation ability of the experimental group was significantly decreased compared with that of the blank group(t=50.86,P<0.01;t=12.406,P<0.001);The results of cell scratch test showed that the transverse migration ability of the experimental group was significantly decreased compared with the blank group,and the longitudinal migration ability of the experimental group was significantly decreased compared with the blank group by Transwell test(t=40.038,P<0.01;t=12.247,P<0.001).CONCLUSION After knockdown CIP2A expression in hypopharyngeal carcinoma FaDu cells,the proliferation and migration ability of hypopharyngeal cancer cells decreased,suggesting that CIP2A is involved in regulating the biological behavior of hypopharyngeal cancer cells and can be used as a potential anticancer target.

8.
مقالة ي صينى | WPRIM | ID: wpr-1018094

الملخص

Objective:To investigate the expression of long non-coding RNA(lncRNA) ZFP36-AS1 in bladder cancer and the effect of ZFP36-AS1/miR-221 axis on the proliferation and immune escape of bladder cancer cells.Methods:The expression difference of ZFP36-AS1 in bladder cancer tissues was analyzed by cBioPortal database. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was used to analyze the expression difference of ZFP36-AS1 in bladder cancer cell lines (J82, RT-4, MGH-U3, 5637). MGH-U3 cells were randomly divided into negative control (NC) group and ZFP36-AS1 group, which were transfected with pcDNA3.1-NC plasmid and pcDNA3.1-ZFP36-AS1 plasmid, respectively. Colony formation assay and flow cytometry were used to analyze the proliferation activity and cell cycle of MGH-U3 cells, respectively. T lymphocytes were co-cultured with MGH-U3 cells in each group, and the levels of interleukin-10 (IL-10), γ-interferon (IFN-γ), and interleukin-4 (IL-4) in the supernatants of each group were detected by enzyme-linked immunosorbent assay (ELISA). The dual-luciferase reporter gene assay verified the targeting relationship between ZFP36-AS1 and miR-221. The effect of ZFP36-AS1 on the expression of miR-221 in MGH-U3 cells was detected by RT-qPCR. Western blotting was used to detect the effect of ZFP36-AS1/miR-221 axis on the protein expression of CDK3, Cyclin C, CDK5, Cyclin D1 and Cyclin D3 in MGH-U3 cells.Results:Compared with normal bladder tissue, ZFP36-AS1 was abnormally low-expressed in bladder cancer tissue ( P<0.01). Compared with SV-HUC-1 cells, ZFP36-AS1 was abnormally low-expressed in bladder cancer cell lines (J82, RT-4, MGH-U3, 5637) ( P<0.01), and the expression was lowest in MGH-U3 cells ( P<0.01). The number of MGH-U3 cell colonies formed in the NC group and the ZFP36-AS1 group were (220.80±34.65) and (77.84±19.11), respectively, and the number of MGH-U3 cell colonies formed in the ZFP36-AS1 group was significantly down-regulated, the difference was statistically significant ( P<0.01). The proportions of G 0/G 1 phase cells in NC group and ZFP36-AS1 group were (48.04±2.89)% and (72.89±3.46)%, respectively, and the proportion of S phase cells were (35.38±2.98)% and (20.62±2.56)%, respectively. The proportion of G 2/M stage cells was (16.59±1.46)% and (6.48±1.50)%, respectively. The proportion of cells in G 0/G 1 phase were up-regulated in ZFP36-AS1 group ( P<0.01), and the proportion of cells in S phase and G 2/M phase were both down-regulated ( P<0.01). Compared with the NC group, the levels of IL-4 and IFN-γ in the ZFP36-AS1 group were significantly up-regulated ( P<0.01), and the level of IL-10 was significantly down-regulated ( P<0.01). ZFP36-AS1 can target miR-221 ( P<0.01). The relative expression of miR-221 in the NC group and the ZFP36-AS1 group was 6.84±1.35 and 1.00±0.21, respectively. Compared with the NC group, overexpression of ZFP36-AS1 could significantly inhibit the expression of miR-221 ( P<0.01). Compared with the NC group, the expressions of CDK3, Cyclin C, CDK5, Cyclin D1, and Cyclin D3 in the ZFP36-AS1 group were significantly decreased. Conclusion:ZFP36-AS1 is abnormally low-expressed in bladder cancer, and it reduces the proliferation activity of bladder cancer cells and inhibits their immune escape by inhibiting the expression of miR-221.

9.
International Journal of Surgery ; (12): 138-144, 2024.
مقالة ي صينى | WPRIM | ID: wpr-1018104

الملخص

Monopolar spindle 1, also known as threonine and tyrosine kinase (TTK), is a key component of spindle assembly checkpoint (SAC). It is considered to be a monitoring mechanism to ensure mitotic fidelity and genomic stability. TTK is overexpressed in a variety of malignant tumors, and patients with low expression of TTK tend to have a longer survival time, suggesting that it may be used as a biomarker for diagnosis and prognosis. Abnormal expression of TTK often impairs the function of SAC, resulting in irregular mitosis, increased aneuploidy and mitotic disaster, thus promoting the occurrence of tumors. Current studies have shown that TTK inhibitors can inhibit the proliferation of tumor cells and increase the sensitivity of tumor cells to therapy in combination with chemotherapy or radiotherapy to achieve sensitization and attenuated effects. This article will review the research and application of TTK and its inhibitors in malignant tumors.

10.
مقالة ي صينى | WPRIM | ID: wpr-1018186

الملخص

Objective:To study the effects and potential mechanisms of the combination of dihydroartemisinin and carfilzomib on the activity, proliferation, and apoptosis of multiple myeloma ARD cell lines.Methods:In vitro cultivation of multiple myeloma ARD cells involved treating the cells with dihydroartemisinin at concentrations of 0, 5, 10, 20, 40, and 80 μg/ml, and with carfilzomib at concentrations of 0, 5, 10, 20, 40, and 80 nmol/L. The ARD cells were divided into a control group (no treatment) , a dihydroartemisinin group (2 μg/ml) , a carfizomib group (8 nmol/L) , and a combination group (dihydroartemisinin 2 μg/ml + carfizomib 8 nmol/L) . Cell activity and proliferation were assessed by MTT assay and EdU-488 assay; cell apoptosis was evaluated using live cell/dead cell dual staining and flow cytometry. The expression levels of apoptosis-related proteins were examined using Western blotting analysis. Results:The cell survival rates of ARD cells treated with 0, 5, 10, 20, 40, and 80 μg/ml dihydroartemisinin were (100.00±2.18) %, (50.22±3.09) %, (37.39±2.34) %, (30.42±1.79) %, (23.80±1.12) %, and (18.04±0.79) %, respectively, and there was a statistically significant difference ( F=653.30, P<0.001) . With the increase of drug concentration, ARD cell activity decreased gradually (all P<0.05) . The cell survival rates of ARD cells treated with 0, 5, 10, 20, 40, and 80 nmol/L carfilzomib were (100.00±1.12) %, (83.98±2.95) %, (67.27±2.10) %, (58.24±2.02) %, (46.34±1.14) %, and (37.47±1.36) %, respectively, and there was a statistically significant difference ( F=227.40, P<0.001) . With the increase of drug concentration, ARD cell activity decreased gradually (all P<0.05) . The cell survival rates for the control group, dihydroartemisinin group, carfilzomib group, and combination group were (100.00±2.67) %, (67.23±0.57) %, (76.23±2.83) %, and (27.06±1.09) %, respectively, and there was a statistically significant difference ( F=655.60, P<0.001) . There were statistically significant differences in the dihydroartemisinin group, carfilzomib group, and combination group compared with control group (all P<0.001) . There were statistically significant differences in the dihydroartemisinin group and carfilzomib group compared with combined group (both P<0.001) . The EdU-488 experiment showed that the EdU-positive rates of ARD cells in the control group, dihydroartemisinin group, carfilzomib group, and combination group were (100.00±8.17) %, (68.07±6.14) %, (85.04±2.78) %, and (19.62±3.83) %, respectively, and there was a statistically significant difference ( F=115.20, P<0.001) . There were statistically significant differences in the dihydroartemisinin group, carfilzomib group, and combination group compared with control group ( P<0.001; P=0.047; P<0.001) . There were statistically significant differences in the dihydroartemisinin group and carfilzomib group compared with combined group (both P<0.001) . The live cell/dead cell dual staining experiment showed, under bright-field observation, the cell morphology was intact in the control group. In all the drug groups, the cell morphology became irregular, reduced in size with condensed cytoplasmic, and apoptotic vesicles with irregular morphology were seen around the cells, among which the most obvious changes were seen in the combination group. Under fluorescence observation, the cells in the control group only displayed green fluorescence. In all drug-treated groups, cells with red fluorescence were observed, with the combination group having the highest percentage of cells with red fluorescence among the total cell population. The apoptosis rates for the control group, dihydroartemisinin group, carfilzomib group, and combination group were (9.06±2.95) %, (29.50±1.34) %, (20.77±3.00) %, and (58.23±5.13) %, respectively, and there was a statistically significant difference ( F=115.80, P<0.001) . There were statistically significant differences in the dihydroartemisinin group, carfilzomib group, and combination group compared with control group ( P<0.001; P=0.012; P<0.001) . There were statistically significant differences in the dihydroartemisinin group and carfilzomib group compared with combined group (both P<0.001) . There were statistically significant differences in the relative expression levels of P53, Cleaved-Caspase-3, Bcl-2, and Bax proteins among the control group, dihydroartemisinin group, carfilzomib group, and combination group ( F=21.76, P<0.001; F=42.87, P<0.001; F=44.27, P<0.001; F=163.50, P<0.001) . There were statistically significant differences in the dihydroartemisinin group, carfilzomib group, and combination group compared with control group (all P<0.05) . There were statistically significant differences in the dihydroartemisinin group and carfilzomib group compared with combined group (both P<0.05) . Conclusion:The combination of dihydroartemisinin and carfilzomib can synergistically inhibit the activity and proliferation of multiple myeloma ARD cells, and promote apoptosis, and the underlying mechanism may be associated with the mitochondrial apoptosis pathway.

11.
مقالة ي صينى | WPRIM | ID: wpr-1018290

الملخص

Objective:To explore the effects of Jianpi Bushen Jiedu Prescription on the proliferation and migration of hepatocellular carcinoma cells; To discuss its possible mechanism.Methods:Using human highly metastatic liver cancer cell line (HCCLM3) as the research object, they were randomly divided into control group and TCM group (100, 200, 400, 800, 1 600, 3 200 μg/ml Jianpi Bushen Jiedu Prescription) and Western medicine group (2.5, 5, 10, 20, 40 μmol/L sorafenib) using a random number table method. Cell viability was detected using cell counting reagent (CCK-8) method; HCCLM3 cells were divided into control group and TCM (Jianpi Bushen Jiedu Prescription 800 μg/ml) group and combined group (Jianpi Bushen Jiedu Prescription 800 μg/ml +sorafenib 20 μmol/L). Western blot method was used to detect the protein expressions of kinase/signaling transducer and transcriptional activator (JAK2/STAT3) pathway related proteins (p-JAK2, JAK2, p-STAT3, STAT3) in each group.Results:Compared with the control group, viability and mobility of HCCLM cell in TCM group and Western medicine group decreased ( P<0.01 or P<0.05); compared with the control group, the protein expressions of P-JAK2, JAK2, P-STAT3 and STAT3 in the TCM group and the combined group decreased ( P<0.05), and the JAK2 protein expression in the combined group was lower than that in the TCM group ( P<0.05). Conclusion:Jianpi Bushen Jiedu Prescription can inhibit the proliferation and migration of HCC cells by regulating JAK2/STAT3 pathway.

12.
مقالة ي صينى | WPRIM | ID: wpr-1018420

الملخص

In this article,the mechanism of Shanxian Granule in inhibiting liver cancer,lung cancer,sarcoma,melanoma and other tumors was reviewed,with a view to providing a theoretical basis for the clinical research of Shanxian Granules in the treatment of malignant tumors.Shanxian Granule are the pure Chinese medicine preparation for counteracting malignant tumor developed by the Oncology Research Team of Shaanxi University of Chinese Medicine on the basis of the theory of traditional Chinese medicine syndrome differentiation and treatment combined with decades of clinical experience as well as the achievements of modern pharmacological research.Shanxian Granule are mainly composed of Crataegi Fructus,Agrimoniae Herba,Panacis Quinquefolii Radix,Curcumae Rhizoma,Testudinis Carapax et Plastrum,Trionycis Carapax,Corydalis Rhizoma,and Polyporus,and have the actions of benefiting qi and nourishing yin,supporting healthy-qi and cultivating the essence,activating blood and removing stasis,and eliminating swelling and counteracting cancer.The compatibility of Shanxian Granule embodies the principle of supporting healthy-qi but avoiding maintaining pathogens,and eliminating pathogens but avoiding injuring healthy-qi.The granules can effectively inhibit the growth and metastasis of liver cancer,lung cancer,sarcoma,melanoma and other tumors both in vivo and in vitro,alleviate the clinical symptoms of tumor patients,and improve their prognosis.The anti-tumor mechanism of Shanxian Granules is related to the enhancement of body immune function,inhibition of tumor cell proliferation,enhancement of tumor cell apoptosis,inhibition of tumor cell invasion and metastasis as well as the tumor angiogenesis.

13.
Basic & Clinical Medicine ; (12): 57-62, 2024.
مقالة ي صينى | WPRIM | ID: wpr-1018572

الملخص

Objective To investigate the expression of N6 methyladenine(m6A)demethylase human fat mass and obesity-associated(FTO)protein in nasopharyngeal carcinoma(NPC),and the effect of over-expression of FTO on the proliferation of nasopharyngeal carcinoma in vitro and in vivo.Methods Immunohistochemistry method was used to detect the expression of FTO protein in nasopharyngeal carcinoma tissues and para-cancerous tissues;The dominant expression cell line of FTO was screened,the over-expression FTO cell line was constructed.The cell pro-liferation was examined by soft-agar method.A mouse tumor model was developed for measurement of tumor growth.ResultsThe expression of FTO in nasopharyngeal carcinoma tissues was lower than that in adjacent tissues.Low ex-pression of FTO promoted proliferation of NPC cells,while over-expression of FTO reversed this effect.Conclusions FTO inhibits proliferation of nasopharyngeal carcinoma and this result may provide an experimental technology in searching therapeutic targets of chemotherapy for nasopharyngeal carcinoma.

14.
Basic & Clinical Medicine ; (12): 288-294, 2024.
مقالة ي صينى | WPRIM | ID: wpr-1018611

الملخص

Objective To explore the effect of open reading frame 66(C12ORF66)located at chromosome 12 on the viability of MYCN amplified NB cell lines.Methods DDatasets GSE16476 and GSE49710 in R2 database were analyzed for expression level of C12ORF66 in MYCN amplified and MYCN non-amplified NB cells and its potential correlation with the prognosis of pediatric patients.C12ORF66 mRNA expression level in normal tissue immortalized cell lines,MYCN amplified and MYCN non-amplified cell lines were detected by RT-qRCR.Transient or stable knockdown of C12ORF66 cell lines were constructed to compare the difference in real time cellular analysis(RTCA),colony formation,Ki67 positive cells between the control group and the C12ORF66 knockdown group.Results By analyzing R2 datasets,C12ORF66 level in MYCN amplified samples was significantly higher than that in MYCN non-amplified samples,and the expression of C12ORF66 was negatively correlated with the prognosis of pediatric patients(P<0.05).C12ORF66 highly expressed in MYCN-amplified BE(2)-C and SK-N-BE(2)cell lines than in MYCN non-amplified CHLA-255 and SH-SY5Y cell lines(P<0.001).Transient or stable knockdown of C12ORF66 resulted in significant slow down of proliferation of MYCN amplified NB cells(P<0.001),the colony formation ability was significantly reduced(P<0.001),and the proportion of Ki67 positive cells was significantly decreased(P<0.05).Conclusions C12ORF66 was highly expressed in MYCN amplified clinical NB samples and cell lines which is believed to be correlated with poor prognosis of pediatric patients.C12ORF66 knockdown signifi-cantly inhibits cell viability of NB cells.

15.
Basic & Clinical Medicine ; (12): 447-453, 2024.
مقالة ي صينى | WPRIM | ID: wpr-1018637

الملخص

Objective To explore the clinical significance of long non-coding RNA(lncRNA)VIM-AS5 expres-sion in human breast cancer tissues and its regulatory mechanism involved in cancer cell proliferation and mi-gration.Methods The Lnc2Cancer 3.0 database was used to analyze the expression of VIM-AS5 in breast cancer tissues and its correlation with the clinical stage and survival time of breast cancer patients.RT-qPCR was used to detect the expression of VIM-AS5 in breast cancer cell lines BT-549,MDA-MB-435,MDA-MB-231 and CAL-51.Plasmid with VIM-AS5 overexpression and negative control were all transfected into CAL-51 cells through liposome recorded as VIM-AS5 group and NC group,respectively.The proliferation and migration of CAL-51 cells were detected by colony formation assay and scratch healing method,respectively.Dual-lucif-erase reporter gene experiment verified the targeting relationship between VIM-AS5 and miR-500a.RT-qPCR was used to detect the expression of miR-500a in CAL-51 cells.Western blot was used to detect the expression of JAK/STAT3 pathway in CAL-51 cells.Results The expression of VIM-AS5 in breast cancer tissues was significantly lower than that in adjacent tissues(P<0.01).VIM-AS5 expression was negatively correlated with the clinical stage of breast cancer patients(P<0.01).The survival time of breast cancer patients with low VIM-AS5 expression was significantly shorter than that of breast cancer patients with high VIM-AS5 ex-pression(P<0.01).Compared with mammary epithelial cell line MCF-10 A cells,VIM-AS5 expression was significantly reduced in breast cancer cells(P<0.01).The counting number of colony formed in the VIM-AS5 group was significantly lower than that in the NC group(P<0.01).The cell migration rate in the VIM-AS5 group was significantly lower than that in the NC group(P<0.01).Dual-luciferase reporter gene experiment confirmed that miR-500a was the target gene of VIM-AS5(P<0.01).VIM-AS5 can negatively regulate the expression of miR-500a(P<0.01).Compared with the NC group,the expression of JAK/STAT3 pathway proteins JAK,p-STAT3,c-Myc,Bcl-2,and CDK3 in CAL-51 cells of the VIM-AS5 group were significantly decreased.Conclusions VIM-AS5 is low-expressed in breast cancer cells,and up-regulation of VIM-AS5 may inhibit the proliferation and migration of breast cancer cells CAL-51 by targeting at miR-500a/JAK/STAT3 pathway.

16.
Basic & Clinical Medicine ; (12): 483-488, 2024.
مقالة ي صينى | WPRIM | ID: wpr-1018642

الملخص

Objective To investigate the effects of honokiol on proliferation and apoptosis of human adipose-derived mesenchymal stem cells(hADSCs),and to investigate the effect of the drug on the tumor microenvironment.Methods hADSCs were incubated with different concentrations of honokiol,the proliferation of hADSCs was detec-ted by MTS and Trypan blue staining,and cell apoptosis was assessed by annexin V/PI double staining.In the meantime,expression of mRNA and protein related to cell proliferation and apoptosis were detected by qPCR and Western blot,respectively.The expression of total MEK,phosphorylated MEK,total ERK and phosphorylated ERK proteins in the MEK-ERK1/2 signaling pathway were detected by Western blot.Results The effect of honokiol on inhibiting proliferation and promoting apoptosis of hADSCs was significantly enhanced with the increase of concen-tration.The expressions of proliferation-related genes CCND1,MKI67 and PCNA were down-regulated.The expres-sions of pro-apoptotic genes BAX and TP53 was up-regulated,and the expressions of anti-apoptotic gene BCL2 was down-regulated.Honokiol inhibited MEK and ERK1/2 phosphorylation in a concentration-dependent manner.Conclusions Honokiol inhibits proliferation and promotes apoptosis of hADSCs,and the specific mechanism is po-tentially related to the inhibition of MEK-ERK1/2 pathway.

17.
Basic & Clinical Medicine ; (12): 503-512, 2024.
مقالة ي صينى | WPRIM | ID: wpr-1018645

الملخص

Objective To investigate the effect of Anlotinib on proliferation and apoptosis in non-small cell lung cancer(NSCLC)cells and its molecular mechanism.Methods Non-small cell lung cancer cell lines A549 and H1299 were incubated with Anlotinib,miR-16-5p agonist and/or PD-1 overexpression vector respectively.CCK-8 assay and EDU assay were applied to detect the proliferation.Flow cytometry was performed to detect the cell apop-tosis.The relative expression of miR-16-5 p in A549 and H1299 was detected by real-time quantitative polymerase chain reaction(RT-qPCR).The relative protein expression of PD-1 in A549 and H1299 was detected by Western blot assay.The interaction between miR-16-5p and PD-1 was determined by dual luciferase reporter assay.Finally,A549 cell xenograft model was established to assess the effect of Anlotinib on tumor growth in vivo.Results Anlotinib significantly increased miR-16-5p expression and decreased PD-1 expression in A549 cells and H1299 cells,inhibited cell proliferation and promoted apoptosis in a dose-dependent manner(P<0.05).The highly-expressed miR-16-5p inhibited proliferation and promoted cell apoptosis(P<0.05).Also,miR-16-5p targeted at PD-1 and negatively regulated PD-1 expression.Knockdown of PD-1 inhibited proliferation and pro-moted cell apoptosis(P<0.05).PD-1 over-expression reversed the Anlotinib-mediated pro-proliferation and anti-apoptosis of miR-16-5p in A549 cells and H1299 cells(P<0.05).Anlotinib significantly reduced tumor growth in vivo(P<0.05).Conclusions Anlotinib may inhibit cell proliferation,anti-apoptosis,and reduce tumor growth for NSCLC,which is involved in miR-16-5p/PD-1 axis.

18.
مقالة ي صينى | WPRIM | ID: wpr-1019557

الملخص

Objective·To observe the effects of gingipain extract on the biological characteristics of oral squamous cell carcinoma cell HN6.Methods·The HN6 cell line was selected,cultivated,and divided into different groups based on the protein concentration of gingipain extract from Porphyromonas gingivalis:control group,3.125 μg/mL group,6.25 μg/mL group,12.5 μg/mL group,25 μg/mL group,50 μg/mL group,and 100 μg/mL group.After 24 and 48 h of cultivation,CCK-8 assay was used to detect the effects of gingipain extract on HN6 cell proliferation activity.Subsequent experiments were divided into control group,25 μg/mL group and 50 μg/mL group.Flow cytometry was used to examine the effects of gingipain extract on cell cycle.Scratch assay and Transwell assay were performed to evaluate cell migration and invasion ability.Real-time PCR(RT-PCR)and Western blotting were used to measure the expression of E-cadherin and N-cadherin proteins and genes in cells.Results·Stimulated with gingipain extract for 24 h,the HN6 cells showed significantly increased proliferation activity in the 25 μg/mL(P=0.025),50 μg/mL(P=0.000),and 100 μg/mL(P=0.049)groups compared to the control group.After 48 h,proliferation activity was significantly higher in the 6.25 μg/mL(P=0.024),12.5 μg/mL(P=0.006),25 μg/mL(P=0.000),50 μg/mL(P=0.000),and 100 μg/mL(P=0.000)groups compared to the control group.Cell cycle analysis revealed that,after 24 h of gingipain stimulation,the proportion of HN6 cells in the G1 phase decreased,while the proportion in the S+G2 phase significantly increased compared to the control group(25 μg/mL group:P=0.024;50 μg/mL group:P=0.001).Compared to the control group,the scratch assay demonstrated a significant increase in the percentage of scratch closure as the concentration of gingipain extract increased(P=0.001).Compared to the control group,the Transwell invasion assay showed a significant increase in the number of cells passing through the bottom of the chamber as the concentration of gingipain extract increased.RT-PCR and Western blotting results indicated that as the concentration of gingipain extract increased,the expression levels of N-cadherin mRNA and protein in HN6 cells significantly increased,while the expression levels of E-cadherin mRNA and protein significantly decreased compared to the control group.Conclusion·Gingipain extract could promote proliferation,migration,and invasion of oral squamous cell carcinoma HN6 cells.

19.
مقالة ي صينى | WPRIM | ID: wpr-1019575

الملخص

Objective To investigate the expression and clinical relevance of heterogeneous nuclear ribonucleoproteins F(HNRNPF)in prostate cancer and its effect on the proliferation,migration and invasion of prostate cancer cells.Methods The expression and immune infiltration characteristics of HNRNPF in prostate cancer and its correlation with the clinicopathological characteristics of prostate cancer patients were analyzed using TCGA database and GEO database.The HNRNPF gene was silenced by RNA interference in prostate cancer cell PC-3 and DU145,then the changes in cell proliferation ability was detected by CCK-8,EdU and colony formation assays,and the changes in cell migration and invasion abilities were detected by Transwell and wound-healing assays.Results The expression of HNRNPF was significantly increased in prostate cancer compared with normal prostate tissue and significantly associated with T stage,Gleason score,prostate specific antigen and the infiltration level of multiple immune cells of prostate cancer patients.The prostate cancer patients with high expression of HNRNPF had shorter overall survival and disease-specific survival.HNRNPF silencing decreased the proliferation,migration,and invasion abilities of prostate cancer cells PC-3 and DU145.Conclusion HNRNPF is a gene that is highly expressed in prostate cancer,has significant clinical relevance,and can promote the proliferation,migration,and invasion of prostate cancer cells.

20.
مقالة ي صينى | WPRIM | ID: wpr-1020564

الملخص

Objective:To investigate the effects of gambogenic acid(GNA)on the proliferation and apoptosis of CAL27 cell xenograft tumor in nude mice.Methods:18 SPF nude mice were randomly divided into 3 groups(n=6).All nude mice were inoculated with CAL27 cells at logarithmic growth stage to establish subcutaneous transplanted tumor models.The mice in low and high dose GNA groups were treated with GNA of 8.0 mg/kg iv.and 16.0 mg/kg iv.every other day,respectively,and those in the control group was given the same amount of normal saline.The tumor growth curve was plotted during drug administration.2 weeks later,the nude mice were sacrificed,the tumor tissue was removed and the tumor inhibition rate was evaluated by the tumor size measurements.TUNEL as-say was used to detect the apoptosis of transplanted tumor cells in the groups.The expression levels of AKT,Bcl-2 and PI3K proteins in tumor tissue were detected by immunohistochemistry(IHC).The toxicity and side effects of GNA on normal tissues were detected by HE staining.Results:The transplanted tumors in low and high dose GNA groups grew slowly,and the tumor weight and volume were significantly lower than those in the control group(P<0.05),the tumor inhibition ratio of low and high dose groups was 57.58%and 83.68%respectively.TUNEL results showed that the apoptosis index of GNA low and high dose groups was higher that of control group(P<0.05).IHC results showed that the expression of AKT,Bcl-2 and PI3K in the tumor tissues of nude mice in low and high dose GNA groups was lower than that in the control group(P<0.05).HE results showed that GNA had not effect on normal tissues and or-gans(P<0.05);Conclusion:GNA may induce CAL27 cell apoptosis by regulating the expression of AKT,Bcl-2 and PI3K,and in-hibites the development of human tongue squamous cell carcinoma with little effect on normal tissues and organs.

اختيار الاستشهادات
تفاصيل البحث