Your browser doesn't support javascript.
loading
تبين: 20 | 50 | 100
النتائج 1 - 20 de 452
المحددات
1.
مقالة ي الانجليزية | WPRIM | ID: wpr-1011008

الملخص

Oleanolic acid (OA), a pentacyclic triterpenoid, exhibits a broad spectrum of biological activities, including antitumor, antiviral, antibacterial, anti-inflammatory, hepatoprotective, hypoglycemic, and hypolipidemic effects. Since its initial isolation and identification, numerous studies have reported on the structural modifications and pharmacological activities of OA and its derivatives. Despite this, there has been a dearth of comprehensive reviews in the past two decades, leading to challenges in subsequent research on OA. Based on the main biological activities of OA, this paper comprehensively summarized the modification strategies and structure-activity relationships (SARs) of OA and its derivatives to provide valuable reference for future investigations into OA.


الموضوعات
Oleanolic Acid , Structure-Activity Relationship , Anti-Inflammatory Agents/pharmacology , Triterpenes , Anti-Bacterial Agents/pharmacology
2.
مقالة ي صينى | WPRIM | ID: wpr-1020549

الملخص

Recent studies show that graphene and its derivatives have good physical and chemical properties and biocompatibility,and can promote cell proliferation and stem cell differentiation.The process of pulp regeneration involves the proliferation and differen-tiation of seed cells,suggesting that graphene and its derivatives have the potential applications perspective in pulp regeneration.How-ever,it has not been reported whether the physical and chemical properties of graphene and its derivatives are suitable for pulp cavity or root canal environment and its effect on pulp regeneration seed cells.This article reviews the physical and chemical properties,cyto-logical effects and the application of graphene and its derivatives in tissue engineering,and provides a basis for its application in dental pulp regeneration.

3.
China Pharmacy ; (12): 536-541, 2024.
مقالة ي صينى | WPRIM | ID: wpr-1012569

الملخص

OBJECTIVE To explore the neuroprotective effect and possible mechanism of celastrol (Cel) and its derivatives (Cel-1, Cel-2) in terms of neuroinflammation and oxidative damage. METHODS Neuroinflammation model of microglial BV2 cells was induced by 1 μg/mL lipopolysaccharide (LPS); oxidative damage model of human neuroblastoma SH-SY5Y cells was induced by 200 μmol/L hydrogen peroxide (H2O2). The toxicity of different concentrations of Cel, Cel-1 and Cel-2 (0.625-20 μmol/L) to the two types of cells was investigated. The levels of nitric oxide (NO), tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and IL-6 in BV2 cells induced by LPS at safe concentrations (0.039-0.625 μmol/L) were all detected. The survival rate of SH-SY5Y cells induced by H2O2 was also determined. The expression levels of phosphoinositide 3-kinase (PI3K), p-PI3K, protein kinase B (Akt), p-Akt, cystatinase 3 (caspase-3), B-cell lymphoma 2 (Bcl-2) and Bcl-2-related X protein (Bax) in SH- SY5Y cells induced by H2O2 at 0.156, 0.313, 0.625 μmol/L of active compound 2 were all detected. RESULTS In the concentration gradient range between 0.039 and 0.625 μmol/L, the results of neuroinflammation model experiments showed that Cel, Cel-1 and Cel-2 could reduce the contents of NO, TNF-α, IL-1β, and IL-6 in culture medium of BV2 cells (P<0.05 or P< 0.01); their IC50 values for neuroinflammation were (0.25±0.04), (0.61±0.14) and (0.11±0.02) μmol/L respectively. Meanwhile, all of them could reverse the phenomenon of decreased cell survival rate after H2O2 treatment in the oxidative damage experiments at a certain concentration (P< 0.05 or P<0.01), with neuroprotective EC50 values of (0.43± XJC2023009) 0.08), (0.45±0.04) and (0.28±0.03) μmol/L, respectively.Induced by H2O2, the phosphorylation of PI3K and Akt protein, protein expressions of Bcl-2 and Bcl-2/Bax ratio were all increased significantly (P<0.05 or P<0.01), while the protein expressions of caspase-3 and Bax were decreased significantly (P<0.05 or P<0.01). CONCLUSIONS Cel, Cel-1, and Cel-2 all have significant neuroprotective activities at certain concentrations, and Cel-2 shows the most significant protective effect. The mechanism of action of Cel-2 may be related to regulating the PI3K/Akt and caspase-3/Bcl-2/Bax signaling pathways, reducing the inflammatory response, oxidative stress damage and inhibiting neuronal apoptosis.

4.
مقالة ي صينى | WPRIM | ID: wpr-1021604

الملخص

BACKGROUND:Graphene is the thinnest,strongest,and toughest type of two-dimensional new crystal material,demonstrating significant advantages in biomedical applications.Angiogenesis and vascularization of bone are key factors in tissue repair and regeneration,and are effective ways to address vascular and osteogenic issues. OBJECTIVE:To review the characteristics and mechanisms of graphene and its derivatives in promoting angiogenesis activity and vascularizing bone,in order to provide a reference for their clinical application in vascular tissue repair and regeneration. METHODS:Using a computer to search for relevant literature included in PubMed,ScienceDirect,CNKI,and Wanfang databases,the Chinese search terms were"grapheme","angiogenesis,vascularization","vascularized bone",and"endothelial cells",while the English search terms were"graphene""angiogenesis OR vascularization""vascularized bone""endothelial cells".After excluding literature unrelated to the topic of the article,according to the inclusion and exclusion criteria,62 articles were ultimately included for result analysis. RESULTS AND CONCLUSION:(1)At present,graphene oxide has been studied more and is the most widely used in graphene and its derivatives.(2)Graphene and its derivatives are suitable for heart,bone,nerve,and wound healing related diseases.(3)Graphene and its derivatives have excellent physical and chemical properties and biological properties,but they have potential cytotoxicity.We should pay attention to its biological safety in application.(4)The application of graphene and its derivatives requires further research to demonstrate the optimal size and concentration and measures to reduce toxicity.(5)On the cellular level,graphene and its derivatives can promote angiogenic activity by tip endothelial cell phenotype,mesenchymal stem cell adhesion and proliferation, and vascular smooth muscle cell growth.(6)On the molecular level,graphene and its derivatives can increase the expression of vascular endothelial growth factor,basic fibroblast growth factor,hepatocyte growth factor and activate reactive oxygen species/nitric oxide synthase/nitric oxide signaling pathway,lysophosphatilate R6/Hippo-YAP pathway,stromal cell-derived factor-1/vascular endothelial growth factor and ZEB 1/Notch1 pathway.(7)Grapheme oxide and graphene oxide-copper phosphorylated extracellular regulatory protein kinase and activated hypoxia-inducible factor-1,thereby promoting the up-regulation of vascular endothelial growth factor and bone morphogenetic protein-2 expression,and promoting angiogenesis and vascularized bone.(8)In summary,graphene and its derivatives,especially graphene oxide,have great application prospects in the repair and regeneration of vascularized tissues due to their excellent biological properties,good angiogenesis and vascularized bone ability.

5.
Acta Universitatis Medicinalis Anhui ; (6): 331-335,343, 2024.
مقالة ي صينى | WPRIM | ID: wpr-1017250

الملخص

Objective To investigate the effects of indirubatin derivative E804 on proliferation and migration of non-small cell lung cancer(NSCLC)A549 cells,and to elucidate the possible mechanism of Nrf2-HO-1/GPX4 pathway.Methods Lung cancer A549 cells were used as the cell model.The proliferation and migration of differ-ent specific inhibitors(Nec-1,CQ,Z-VAD,DFO,Fer-1 and Lip-1)in 0,10 μmol/L E804 and 10 μmol/L E804+groups were observed by MTT and cell scratch assay.The contents of reactive oxygen species(ROS)were de-tected by DCFH-DA fluorescence probe method,the contents of Fe2+were detected by colorimetric method,the contents of reduced glutathione(GSH)were detected by spectrophotometry,and the contents of malondialdehyde(MDA)were detected by micromethod.The expression levels of SLC7A11,Transferrin,GPX4,SLC40A1,Nrf2 and HO-1 were detected by Western blot in cells of 0,2.5,5 and 10 μmol/L E804 groups.Results Compared with the control group(0 μmol/L E804),2.5,5 and 10 μmol/L E804 significantly increased intracellular ROS,Fe2+and MDA levels,and decreased intracellular GSH content(P<0.01).Meanwhile,the expression levels of SLC7A11,GPX4,SLC40A1,Nrf2 and HO-1 significantly decreased(P<0.01),and the expression level of Transferrin increased(P<0.05).Compared with the 10 μmol/L E804 group alone,the apoptosis inhibitor(Z-VAD)group and the ferroptosis inhibitor(DFO,Fer-1 and Lip-1)group could significantly reverse the inhibition of proliferation and migration of A549 cells by 10 μmol/L E804(P<0.01).Conclution E804 can induce ferrop-tosis and inhibit the proliferation and migration of A549 cells,which may be related to the inhibition of Nrf2-HO-1/GPX4 pathway.

6.
Chinese Journal of Analytical Chemistry ; (12): 267-276,中插19-中插27, 2024.
مقالة ي صينى | WPRIM | ID: wpr-1017651

الملخص

"MS/MS spectrum to structure"plays a critical role in the confirmative identification of complicated matrices and is currently regarded as an extremely challenging endeavor.MS/MS information provides vital clues to structural identification.In this study,a strategy was proposed to facilitate unambiguous identification through matching MS3 with MS2 spectra.Initially,MS3 spectra of the featured ions(c-and y-type ions)generated by the decomposition of ester functional group in esters and the MS2 spectrum of the structural unit([M-H]-)were all captured on the Qtrap-MS platform equipped with two tandem-in-space collision cells,including the second quadrupole cell(q2)and linear ion trap(LIT)chambers(actually the third quadrupole unit).Subsequently,the MS/MS spectrum matching between MS3 spectra of the ester compound and MS2 spectra of the structural unit(s)were achieved.As a result,the findings corresponding to MS3 and MS2 spectra matching were summarized.Finally,based on HR-MS/MS information of total salvianolic acid derivatives(TSA),36 kinds of compounds were preliminarily identified through matching with literature information and database retrieval.The applicability of MS3 and MS2 spectra matching strategy was further justified by the confirmative identification of phenolic acid compounds(Rosmarinic acid and salvianolic acid B)in TSA.Above all,MS3 and MS2 spectra matching strategy was quite meaningful towards advancing"MS/MS spectrum to structure"analysis through recognizing and identifying featured fragment ions,and also provided inspiration and new insights for the structural characterization.

7.
Cancer Research and Clinic ; (6): 184-190, 2024.
مقالة ي صينى | WPRIM | ID: wpr-1030433

الملخص

Objective:To investigate the level of the transporter RNA (tRNA) derivative tRF-5026a in the serum of breast cancer patients and its value for the diagnosis of breast cancer, and to investigate its effect on the biological functions of breast cancer cells in vitro and the possible mechanisms.Methods:Sixty female breast cancer patients (breast cancer group) hospitalized in Jiangsu Cancer Hospital from January 2016 to February 2019 and 20 healthy women undergoing physical examination during the same period (healthy control group) were retrospectively selected. The relative expression of serum tRF-5026a in the study subjects was detected by real-time quantitative polymerase chain reaction (RT-qPCR). The receiver operating characteristic (ROC) curve of serum tRF-5026a level for the diagnosis of breast cancer was drawn with pathological diagnosis as the gold standard. tRF-5026a mimics (tRF-5026a group) and negative control sequences (negative control group) were transiently transfected into MCF-7 and BT549 cells by lipofectamine method; CCK-8 assay and 5-ethynyl-2-deoxyuridine (EdU) assay were used to detect the ability of cell proliferation in cells of each group; cell apoptosis in cells of each group was detected by flow cytometry; the abilities of cell invasion and migration in cells of each group were detected by Transwell assay; the expressions of epithelial mesenchymal transition-related proteins in cells of each group were detected by Western blotting.Results:The relative expressions of tRF-5026a [ M ( Q1, Q3)] in serum of healthy control group and breast cancer group were 16.58 (6.37, 26.31) and 3.46 (0.32, 9.01), with a statistically significant difference ( Z = -4.27, P < 0.001). ROC curve analysis showed that the area under the curve (AUC) for diagnosis of breast cancer by the relative expression of serum tRF-5026a was 0.820 (95% CI: 0.722-0.918), with an optimal cut-off value of 9.082, and the corresponding sensitivity and specificity were 75.0 % and 76.7%, respectively. The apoptosis rates of MCF-7 cells in the tRF-5026a group and the corresponding negative control group were (16.52±0.51)% and (12.28±1.75)%, and the BT549 cells were (13.27±2.18)% and (8.86±0.29)%, the differences were not statistically significant (both P > 0.05). MCF-7 and BT549 cells in the tRF-5026a group had lower proliferative, invasive and migratory abilities than cells in the corresponding negative control group (all P < 0.05). MCF-7 and BT549 cells in the tRF-5026a group had lower protein expressions of N-cadherin, matrix metalloproteinase (MMP)-9 and MMP-3 than cells in the corresponding negative control group. Conclusions:tRF-5026a has low level in the serum of breast cancer patients and it may be an indicator for breast cancer diagnosis. tRF-5026a can inhibit the proliferation, invasion and migration of breast cancer MCF-7 and BT549 cells in vitro, which may be related to the regulation of epithelial mesenchymal transition.

8.
مقالة ي صينى | WPRIM | ID: wpr-1030962

الملخص

This article reviews relevant literature on the prevention and treatment of cancer with hesperidin published in the past 10 years by searching electronic databases such as China National Knowledge Infrastructure(CNKI), Wanfang, and PubMed, and summarizes the research progress on the anticancer mechanism of hesperidin. Hesperidin has a wide range of pharmacological effects, including anti-inflammatory, antioxidant, antibacterial, antiviral, anticancer, immune-regulatory, anti-radiation, neuroprotective and cardiovascular protective properties and so on. Its anticancer mechanisms mainly include inhibiting cancer cell proliferation, promoting apoptosis, reducing angiogenesis, inhibiting invasion and migration of cancer cells, regulating immunity and autophagy, and exerting antioxidant and anti-inflammatory effects. As a broad-spectrum anticancer drug, hesperidin manifests chemo-preventive and therapeutic effects across various cancers, contingent upon its multifaceted anticancer mechanisms. Furthermore, this article summarizes the synergistic effects of hesperidin in combination with cisplatin, doxorubicin, cyclophosphamide and paclitaxel. It elucidates that hesperidin can enhance the cytotoxicity of these anticancer drugs against cancer cells while mitigating drug resistance and adverse side effects. Nonetheless, the clinical use is somewhat constrained due to its poor water solubility and limited bioavailability. Therefore, this article also outlines the current strategies for enhancing hesperidin's bioavailability, including structural modification, combination with other chemical substances, and utilization of nano drug carriers.The discovery of derivatives of hesperidin not only preserves the anticancer efficacy of hesperidin, but also effectively overcomes the shortcomings of poor water solubility and low bioavailability of hesperidin, effectively predicting the good application prospects of hesperidin and its derivatives.

9.
Braz. j. biol ; 842024.
مقالة ي الانجليزية | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469393

الملخص

Abstract Due to the severe side effects revealed by most of the currently used antidiabetic medicines, search for finding new and safe drugs to manage diabetes is continued. Naphthoquinones possessing strong antioxidant properties have been employed as candidates for diabetes therapy. Present study is aimed at finding the antioxidant and hypoglycaemic potential of some novel derivatives of 2-phenylamino-1,4-naphthoquinones (PAN) including chloro, nitro, methyl and bromo (5a-d) derivatives synthesized by single pot experiment. Product crystals were purified by TLC and characterized by FT-IR. The antioxidant potential of the compounds was assayed through DPPH radical scavenging and reducing power activities noted as UV-vis. absorbance. The DPPH assay has showed the powerful antioxidant activity of nitro and bromo derivatives, while the nitro derivative showed the significant reduction potential towards FRAP assay. Hypoglycaemic potential of the compounds was studied in rat animal model. All synthesized compounds revealed better hypoglycaemic activity; however, the chloro-derivative exhibited the more potent hypoglycaemic activity showing about 43% reduction in the mean blood glucose levels of the treated animals. As the bioreduction of naphthoquinones may be influenced by changing its redox properties, it has been noticed that the e-donating resonance effect (+R) of chloro group has shown the significant effects on biological activity through stabalization of its imine form which limits the potential of generation of free radicals during bioreduction of quinones and thus has been proposed as the reason of its hypoglycaemic activity. Future studies employing the properties of e-donating groups of PAN may optimize the drug-receptor interaction for better drug designing and drug development strategies against diabetes and also for the clinical trials.


Resumo Em razão dos graves efeitos colaterais causados pela maioria dos medicamentos antidiabéticos atualmente utilizados, continua a busca por novos medicamentos seguros para o controle do diabetes. As naftoquinonas, que possuem fortes propriedades antioxidantes, têm sido empregadas como candidatas à terapia do diabetes. O presente estudo visa encontrar o potencial antioxidante e hipoglicemiante de alguns novos derivados de 2-fenilamino-1,4-naftoquinonas (PAN), incluindo derivados de cloro, nitro, metil e bromo (5a-d) sintetizados por experimento em pote único. Os cristais do produto foram purificados por TLC e caracterizados por FT-IR. O potencial antioxidante dos compostos foi testado por meio de atividades de sequestro de radicais DPPH e redução de energia observada como absorção no UV-vis. O ensaio DPPH mostrou a poderosa atividade antioxidante dos derivados nitro e bromo, enquanto o derivado nitro mostrou o potencial de redução significativo para o ensaio FRAP. O potencial hipoglicêmico dos compostos foi estudado em modelo animal de rato. Todos os compostos sintetizados revelaram melhor atividade hipoglicemiante; no entanto, o derivado cloro apresentou atividade hipoglicêmica mais potente, com redução de 43% nos níveis médios de glicose no sangue dos animais tratados. Como a biorredução de naftoquinonas pode ser influenciada pela alteração de suas propriedades redox, notou-se que o efeito da doação eletrônica por ressonância (+R) do grupo cloro tem sido significativo na atividade biológica por meio da estabilização de sua forma imina, que limita o potencial de geração de radicais livres durante a biorredução de quinonas, e, portanto, tem sido proposto como a razão de sua atividade hipoglicemiante. Estudos futuros empregando as propriedades de grupos de doação eletrônica de PAN podem otimizar a interação droga-receptor para melhor planejamento de medicamentos e estratégias de desenvolvimento de medicamentos contra o diabetes e também para os ensaios clínicos.

10.
Braz. j. biol ; 84: e254234, 2024. tab, graf, ilus
مقالة ي الانجليزية | LILACS, VETINDEX | ID: biblio-1364499

الملخص

Due to the severe side effects revealed by most of the currently used antidiabetic medicines, search for finding new and safe drugs to manage diabetes is continued. Naphthoquinones possessing strong antioxidant properties have been employed as candidates for diabetes therapy. Present study is aimed at finding the antioxidant and hypoglycaemic potential of some novel derivatives of 2-phenylamino-1,4-naphthoquinones (PAN) including chloro, nitro, methyl and bromo (5a-d) derivatives synthesized by single pot experiment. Product crystals were purified by TLC and characterized by FT-IR. The antioxidant potential of the compounds was assayed through DPPH radical scavenging and reducing power activities noted as UV-vis. absorbance. The DPPH assay has showed the powerful antioxidant activity of nitro and bromo derivatives, while the nitro derivative showed the significant reduction potential towards FRAP assay. Hypoglycaemic potential of the compounds was studied in rat animal model. All synthesized compounds revealed better hypoglycaemic activity; however, the chloro-derivative exhibited the more potent hypoglycaemic activity showing about 43% reduction in the mean blood glucose levels of the treated animals. As the bioreduction of naphthoquinones may be influenced by changing its redox properties, it has been noticed that the e-donating resonance effect (+R) of 'chloro' group has shown the significant effects on biological activity through stabalization of its imine form which limits the potential of generation of free radicals during bioreduction of quinones and thus has been proposed as the reason of its hypoglycaemic activity. Future studies employing the properties of e-donating groups of PAN may optimize the drug-receptor interaction for better drug designing and drug development strategies against diabetes and also for the clinical trials.


Em razão dos graves efeitos colaterais causados pela maioria dos medicamentos antidiabéticos atualmente utilizados, continua a busca por novos medicamentos seguros para o controle do diabetes. As naftoquinonas, que possuem fortes propriedades antioxidantes, têm sido empregadas como candidatas à terapia do diabetes. O presente estudo visa encontrar o potencial antioxidante e hipoglicemiante de alguns novos derivados de 2-fenilamino-1,4-naftoquinonas (PAN), incluindo derivados de cloro, nitro, metil e bromo (5a-d) sintetizados por experimento em pote único. Os cristais do produto foram purificados por TLC e caracterizados por FT-IR. O potencial antioxidante dos compostos foi testado por meio de atividades de sequestro de radicais DPPH e redução de energia observada como absorção no UV-vis. O ensaio DPPH mostrou a poderosa atividade antioxidante dos derivados nitro e bromo, enquanto o derivado nitro mostrou o potencial de redução significativo para o ensaio FRAP. O potencial hipoglicêmico dos compostos foi estudado em modelo animal de rato. Todos os compostos sintetizados revelaram melhor atividade hipoglicemiante; no entanto, o derivado cloro apresentou atividade hipoglicêmica mais potente, com redução de 43% nos níveis médios de glicose no sangue dos animais tratados. Como a biorredução de naftoquinonas pode ser influenciada pela alteração de suas propriedades redox, notou-se que o efeito da doação eletrônica por ressonância (+R) do grupo "cloro" tem sido significativo na atividade biológica por meio da estabilização de sua forma imina, que limita o potencial de geração de radicais livres durante a biorredução de quinonas, e, portanto, tem sido proposto como a razão de sua atividade hipoglicemiante. Estudos futuros empregando as propriedades de grupos de doação eletrônica de PAN podem otimizar a interação droga-receptor para melhor planejamento de medicamentos e estratégias de desenvolvimento de medicamentos contra o diabetes e também para os ensaios clínicos.


الموضوعات
Rats , Models, Animal , Diabetes Mellitus , Drug Development , Hypoglycemic Agents , Antioxidants
11.
Rev. invest. clín ; 75(3): 93-104, May.-Jun. 2023. tab, graf
مقالة ي الانجليزية | LILACS-Express | LILACS | ID: biblio-1515314

الملخص

ABSTRACT Synthetic opioids have played a significant role in the current opioid crisis in the United States (U.S.) and Canada and are a matter of concern worldwide. New psychoactive opioids (NPOs) are classified in the internationally recognized new psychoactive substances (NPSs) category. This group comprises compounds that may have been synthesized decades ago but appeared only recently in the illicit drug market. Such is the case of fentanyl, fentanyl analogs, and non-fentanyl opioids. Most NPOs have effects similar to morphine, including euphoria and analgesia, and can produce fatal respiratory depression. Here, we present an overview of the systemic and molecular effects of main NPOs, their classification, and their pharmacological properties. We first review the fentanyl group of NPOs, including the four compounds of clinical use (fentanyl, alfentanil, sufentanil, and remifentanil) and the veterinary drug carfentanil. We also provide essential information on non-medical fentanyl analogs and other synthetic opioids such as brorphine, etonitazene, and MT-45, used as adulterants in commonly misused drugs. This paper also summarizes the scarce literature on the use of NPOs in Mexico. It concludes with a brief review of the challenges to prevention and treatment posed by NPOs and some recommendations to face them.

12.
مقالة ي الأسبانية | LILACS-Express | LILACS | ID: biblio-1550814

الملخص

Después de las enfermedades cardiovasculares, el cáncer, una patología no transmisible, ha sido considerado como la segunda causa de muertes cada año a nivel global y como la barrera más importante para aumentar la esperanza de vida en el siglo 21. Se han alcanzado avances de gran relevancia en su prevención y tratamiento; sin embargo, existe aún un largo camino por recorrer para alcanzar un tratamiento efectivo para cada tipo de cáncer. En este trabajo se describen enfoques de reposicionamiento y síntesis de moléculas híbridas con potencial actividad antineoplásica. Para obtener el al-dehído intermediario clave, se empleó la metodología de oxidación de Dess-Martin, que fue acoplado con las cetonas correspondientes usando LDA; se generó así una mezcla racémica para cada uno de los compuestos híbridos propuestos. La actividad antiproliferativa in vitro de los compuestos finales se evaluó frente a ocho líneas celulares derivadas de tumores sólidos humanos, y cuatro líneas celulares no cancerosas. El compuesto 11d resulto ser el más efectivo y con mayor índice de seguridad. Los resultados sugirieron que estos compuestos podrían bloquear el ciclo celular e inducir la apop-tosis y la muerte en las células CCRF-CEM de forma dependiente de la dosis in vitro.


After cardiovascular diseases, cancer, a non-communicable pathology, has been considered the second cause of death each year globally and as the most important barrier to increasing life expectancy in the 21st century. Advances of great relevance have been made in its prevention and treatment, however, there is still a long way to go to achieve an effective treatment for each type of cancer. This paper describes approaches to reposition and synthesis of hybrid molecules with potential antineoplastic activity. To obtain the key intermediate aldehyde, the Dess-Martin oxidation methodology was used, which was coupled with the corresponding ketones using LDA. The final hybrid compounds were obtained as a racemic mixture. The in vitro antiproli-ferative activity of the final compounds was evaluated against eight cell lines derived from human solid tumors, and four non-cancerous cell lines. The compound 11d turned out to be the most effective and with the highest safety index. The results suggested that these compounds could block the cell cycle and induce apoptosis and death in CCRF-CEM cells in a dose-dependent manner in vitro.


Depois das doenças cardiovasculares, o câncer, uma patologia não transmissível, tem sido considerado como a segunda causa de mortes a cada ano em todo o mundo e como a barreira mais importante para o aumento da expectativa de vida no século 21. Avanços de grande relevância têm sido feitos na sua prevenção e tratamento, no entanto, ainda há um longo caminho a percorrer para alcançar um tratamento eficaz para cada tipo de câncer. Este artigo descreve abordagens para o reposicionamento e síntese de moléculas híbridas com potencial atividade antineoplásica. Para a obtenção do aldeído intermediário chave, foi utilizada a metodologia de oxidação de Dess-Martin, que foi acoplada com as cetonas correspondentes usando LDA. Os compostos híbridos finais foram obtidos como uma mistura racêmica. A atividade antiproliferativa in vitro dos compostos finais foi avaliada contra oito linhagens celulares derivadas de tumores sólidos humanos e quatro linhagens celulares não cancerosas. O composto 11d revelou-se o mais eficaz e com o maior índice de segurança. Os resultados sugeriram que estes compostos poderiam bloquear o ciclo celular e induzir apoptose e morte em células CCRF-CEM de forma dose-de-pendente in vitro.

13.
مقالة | IMSEAR | ID: sea-218817

الملخص

The purpose of this study is to provide a summary of the various pyrazole moieties' pharmacological actions. Pyrazole is a well-known and essential nitrogen-containing 5-membered heterocyclic compound, and different techniques for synthesis have been developed. Pyrazole, also known chemically as 1, 2-diazole, has become a prominent subject due to its numerous applications. Numerous pyrazole derivatives have been discovered to have a wide range of biological functions, which has fueled study in this area. Pyrazoles and their variants are among the most powerful groups of chemicals, with anti-bacterial, anti-convulsant, analgesic, anti-microbial, anti-inflammatory, anti-diabetic, sedative, anti- rheumatic, anticancer, and anti-tubercular properties. The goal of this study was to compile literary work on pyrazole for its different pharmacological activities, as well as to report on new efforts made on this moiety.

14.
مقالة ي الانجليزية | WPRIM | ID: wpr-1010279

الملخص

Diabetic kidney disease (DKD) is the primary cause of mortality among diabetic patients. With the increasing prevalence of diabetes, it has become a major concern around the world. The therapeutic effect of clinical use of drugs is far from expected, and therapy choices to slow the progression of DKD remain restricted. Therefore, research on new drugs and treatments for DKD has been a hot topic in the medical field. It has been found that rhein has the potential to target the pathogenesis of DKD and has a wide range of pharmacological effects on DKD, such as anti-nephritis, decreasing blood glucose, controlling blood lipids and renal protection. In recent years, the medical value of rhein in the treatment of diabetes, DKD and renal disease has gradually attracted worldwide attention, especially its potential in the treatment of DKD. Currently, DKD can only be treated with medications from a single symptom and are accompanied by adverse effects, while rhein improves DKD with a multi-pathway and multi-target approach. Therefore, this paper reviews the therapeutic effects of rhein on DKD, and proposes solutions to the limitations of rhein itself, in order to provide valuable references for the clinical application of rhein in DKD and the development of new drugs.


الموضوعات
Humans , Diabetic Nephropathies/drug therapy , Kidney/pathology , Anthraquinones/therapeutic use , Diabetes Mellitus
15.
مقالة ي اليابانية | WPRIM | ID: wpr-1007153

الملخص

We reported 2 cases of plantar keratosis (59 years of age, female/39 years of age, male) successfully improved by intake of hot water extract of Coix lacryma-jobi L. var. ma-yuen Stapf with Husks. Both subjects were administered coix seed extract containing food for 20 weeks. The lesions improved gradually after 12 weeks, and almost cured by 20 weeks of administration. Although the food seemed to be effective in these cases, further studies are needed to define the optimal dose and duration.

16.
مقالة ي صينى | WPRIM | ID: wpr-991140

الملخص

On December 22,2021,the United States Food and Drug Administration approved the first main protease inhibitor,i.e.,oral antiviral nirmatrelvir(PF-07321332)/ritonavir(Paxlovid),for the treatment of early severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection.Nirmatrelvir inhibits SARS-CoV-2 infection,but high doses or long-term treatment may cause embryonic developmental toxicity and changes in host gene expression.The chiral structure of nirmatrelvir plays a key role in its antiviral activity.Ritonavir boosts the efficacy of nirmatrelvir by inactivating cytochrome P450 3A4 expression and occupying the plasma protein binding sites.Multidrug resistance protein 1 inhibitors may increase the efficacy of nirmatrelvir.However,Paxlovid has many contraindications.Some patients treated with Paxlovid experience a second round of coronavirus disease 2019(COVID-19)symptoms soon after re-covery.Interestingly,the antiviral activity of nirmatrelvir metabolites,such as compounds 12-18,is similar to or higher than that of nirmatrelvir.Herein,we review the advances and challenges in using nirmatrelvir and its derivatives with the aim of providing knowledge for drug developers and physicians in the fight against COVID-19.

17.
مقالة ي صينى | WPRIM | ID: wpr-1019715

الملخص

With the wide application of artemisinin and its derivatives,its safety has become particularly important.Previous studies have shown that artemisinin and its derivatives have adverse reactions such as nausea,vomiting and diarrhea in clinical use,but they are all within the controllable range.In animal experiments,it has toxic effects on kidney,liver,heart,nerve,blood,embryo and DNA at a high dose.Toxicity and adverse reactions can be alleviated or eliminated by combining medication or changing the drug administration mode,solvent and preparation type.This article mainly discusses the drug safety,toxicity mechanism and attenuation countermeasures of artemisinin and its derivatives,in order to improve the understanding of the potential toxicity of artemisinin and its derivatives and provide reference for the safe use of the drug in clinic.

18.
China Pharmacy ; (12): 246-250, 2023.
مقالة ي صينى | WPRIM | ID: wpr-959757

الملخص

Artemisinin is a sesquiterpene lactone containing a peroxide group isolated from the plant Artemisia annua. It has antimalarial activity and is effective for the treatment of malaria. With the deepening of research on artemisinin, the pharmacological effects of artemisinin and its derivatives in other systems have gradually become a research hotspot. This article reviews the research progress of artemisinin and its derivatives in the prevention and treatment of cardiovascular diseases. Artemisinin and its derivatives in the prevention and treatment of cardiovascular disease have shown anti-atherosclerosis, lipid- lowering, inhibition of vascular remodeling, reducing vascular pressure, improving ventricular remodeling, anti-arrhythmia, protection of vascular endothelium, prevention and treatment of diabetic cardiovascular complications and protection of myocardial cells and other pharmacological effects. It provides a new treatment strategy for common cardiovascular diseases such as hypertension, arrhythmia, coronary heart disease complications after stent implantation, hyperlipidemia, etc. However, there are few studies on the antiplatelet aggregation and antithrombotic effects of artemisinin and its derivatives, the molecular mechanisms behind many pharmacological effects have not yet been clarified, and there is little clinical application. A large number of basic studies and clinical trials are still needed to answer these questions.

19.
Acta Pharmaceutica Sinica B ; (6): 804-818, 2023.
مقالة ي الانجليزية | WPRIM | ID: wpr-971720

الملخص

Neoadjuvant chemotherapy has become an indispensable weapon against high-risk resectable cancers, which benefits from tumor downstaging. However, the utility of chemotherapeutics alone as a neoadjuvant agent is incapable of generating durable therapeutic benefits to prevent postsurgical tumor metastasis and recurrence. Herein, a tactical nanomissile (TALE), equipped with a guidance system (PD-L1 monoclonal antibody), ammunition (mitoxantrone, Mit), and projectile bodies (tertiary amines modified azobenzene derivatives), is designed as a neoadjuvant chemo-immunotherapy setting, which aims at targeting tumor cells, and fast-releasing Mit owing to the intracellular azoreductase, thereby inducing immunogenic tumor cells death, and forming an in situ tumor vaccine containing damage-associated molecular patterns and multiple tumor antigen epitopes to mobilize the immune system. The formed in situ tumor vaccine can recruit and activate antigen-presenting cells, and ultimately increase the infiltration of CD8+ T cells while reversing the immunosuppression microenvironment. Moreover, this approach provokes a robust systemic immune response and immunological memory, as evidenced by preventing 83.3% of mice from postsurgical metastasis or recurrence in the B16-F10 tumor mouse model. Collectively, our results highlight the potential of TALE as a neoadjuvant chemo-immunotherapy paradigm that can not only debulk tumors but generate a long-term immunosurveillance to maximize the durable benefits of neoadjuvant chemotherapy.

20.
Acta Pharmaceutica Sinica B ; (6): 478-497, 2023.
مقالة ي الانجليزية | WPRIM | ID: wpr-971728

الملخص

Cancer is the second leading cause of mortality globally which remains a continuing threat to human health today. Drug insensitivity and resistance are critical hurdles in cancer treatment; therefore, the development of new entities targeting malignant cells is considered a high priority. Targeted therapy is the cornerstone of precision medicine. The synthesis of benzimidazole has garnered the attention of medicinal chemists and biologists due to its remarkable medicinal and pharmacological properties. Benzimidazole has a heterocyclic pharmacophore, which is an essential scaffold in drug and pharmaceutical development. Multiple studies have demonstrated the bioactivities of benzimidazole and its derivatives as potential anticancer therapeutics, either through targeting specific molecules or non-gene-specific strategies. This review provides an update on the mechanism of actions of various benzimidazole derivatives and the structure‒activity relationship from conventional anticancer to precision healthcare and from bench to clinics.

اختيار الاستشهادات
تفاصيل البحث