Your browser doesn't support javascript.
loading
تبين: 20 | 50 | 100
النتائج 1 - 20 de 819
المحددات
1.
Basic & Clinical Medicine ; (12): 114-118, 2024.
مقالة ي صينى | WPRIM | ID: wpr-1018581

الملخص

Hypoxia-inducible factor-1α(HIF-1α)is a nuclear transcription factor.Under high glucose and hypoxia conditions,the expression of HIF-1α is elevated,result in the increased expression of its downstream target genes VEGF,HO-1 and BNIP3,which affect angiogenesis,extra cellular matrix deposition,iron metabolism,and mito-phagy,participating in the occurrence and development of diabetic kidney disease(DKD).In addition,HIF-1α promotes inflammation and renal fibrosis by affecting the production of cytokines in DKD.

2.
Basic & Clinical Medicine ; (12): 225-230, 2024.
مقالة ي صينى | WPRIM | ID: wpr-1018599

الملخص

Objective To investigate the correlation between serum leptin level and body mass index(BMI)in in-fants with cyanosis congenital heart disease,and the relationship between leptin and Ob gene receptor(Ob-R)and hypoxia-inducible factor 1α(HIF-1α)in myocardium.Methods A total of 52 children under 6 months of age with congenital heart disease who underwent surgical treatment in the Department of Congenital Heart Surgery,Fuwai Hospital from January 2019 to October 2020 were included in this study.According to the arterial partial pressure of oxygen(PaO2)of 90 mmHg,they were divided into cyanotic group(n=30)and acyanotic group(n=22).Their height and weight were collected to calculate BMI.The serum leptin level was measured by ELISA.The ex-pressions of HIF-1α and Ob-R in myocardial tissue were detected by RT-PCR and Western blot.In animal mod-el,SD rats were divided into normoxia group and hypoxia intervention group,which were subjected to continuous hypoxia(10% O2)for 4 weeks.The hypoxia intervention group received intraperitoneal injection of HIF-1α in-hibitor digoxin(2 mg/kg)daily from the 14 th to 21st day of hypoxia,respectively.The body weight of rats was recorded,and the expressions of HIF-1α and Ob-R were detected by RT-qPCR and Western blot.Results Com-pared with the acyanosis group,the cyanosis group had a significantly lower BMI(P<0.05)and a lower leptin/BMI ratio(leptin/BMI)(P<0.05).Spearman correlation analysis confirmed that serum leptin in the circulatory system was positively correlated with BMI(P<0.05).In the cyanosis group,the expression of Ob-R increased with the upregulation of HIF-1α,showing a positive correlation.In animal model,with the down-regulation of HIF-1α expression in digoxin injection,the Ob-R level was significantly lower than that in the control group(P<0.05),the trend of weight loss was significantly inhibited(P<0.05).The right ventricular hypertrophy in-dex was significantly lower than that in the control group(P<0.05).Conclusions HIF-1α regulates the expres-sion of Ob-R in myocardial tissue,and the mechanism of its association with leptin and Ob-R may help to find new therapeutic target for improving the prognosis of infants with congenital heart disease.

3.
مقالة ي صينى | WPRIM | ID: wpr-1019183

الملخص

Objective To observe the effect of Shenfu injection on lung injury caused by hemor-rhagic shock(HS)in rats and explore the related potential mechanism.Methods Thirty-six SPF healthy male SD rats,aged 16-17 weeks,weighing 400-600 g,were randomly divided into three groups:sham op-eration group(group SH),HS group(group HS),and Shenfu injection group(group SF),12 rats in each group.In group SH,only the right femoral vein and femoral artery were separated after anesthesia,and ve-nous catheterization was not performed.HS model was established in groups SF and HS.In group HS,liquid resuscitation was performed through an intravenous catheter,and the resuscitation fluid consisted of the auto-blood lost and the compound sodium chloride injection equivalent to 1.5 times the blood loss and 10 ml/kg normal saline.In group SF,the resuscitation fluid consisted of the lost autoblood and the compound sodium chloride injection equivalent to 1.5 times the blood loss and Shenfu injection 10 ml/kg.The whole perfusion time was about 60 minutes.Six rats in the three groups were randomly anesthetized 24 and 48 hours after op-eration.The wet/dry weight ratio(W/D)of lung tissues was detected.The concentrations of interleukin-6(IL-6),IL-17,IL-10,and transforming growth factor-β(TGF-β)were detected by ELISA,the mRNA ex-pression of retinoic acid-related orphan nuclear receptor γt(RORγt),transcription factor forkhead box pro-tein 3(Foxp3),and hypoxia-inducible factor-1α(HIF-1α)in lung tissues were detected by PCR.The pro-tein contents of RORγt,Foxp3,HIF-1α,aquaporin 1(AQP1),and AQP5 in lung tissue were detected by Western blot.Pathological changesunder HE staining light microscope and lung injury scores were observed.Results Compared with 24 hours after operation,W/D,the concentrations of IL-6 and IL-17,mRNA ex-pression and protein content of RORγt and HIF-1α,and lung injury score were significantly decreased(P<0.05),the concentrations of IL-10,and TGF-β,Foxp3 mRNA expression and protein content,and AQP1 protein content were significantly increased in group SF 48 hours after operation(P<0.05).Compared with group SH,W/D,the concentrations of IL-6,IL-17,IL-10,and TGF-β,mRNA expression and protein content of RORγt,Foxp 3,and HIF-1α,and lung injury score were significantly increased(P<0.05),AQP1 and AQP5 protein contents were significantly decreased in groups HS and SF 24 and 48 hours after operation(P<0.05),and alveolar structure was damaged under light microscope and alveolar interstitium was filled with a large amount of edematous fluid,during which a large number of inflammatory cells infiltra-ted.Compared with group HS,W/D,the concentrations of IL-6 and IL-17,mRNA expression and protein content of RORγt and HIF-1α,and lung injury score were significantly decreased(P<0.05),the concen-trations of IL-10 and TGF-β,Foxp3 mRNA expression and protein content,AQP1 and AQP5 protein con-tents were significantly increased in group SF 24 and 48 hours after surgery(P<0.05),and the alveolar structure was improved under light microscope,and edema was reduced,and the number of inflammatory cells was reduced.Conclusion Shenfu injection can regulate the balance between pro-inflammatory factors IL-6 and IL-17,and anti-inflammatory factors IL-10 and TGF-β,increase the protein content of AQP1 and AQP5 in lung tissue,and decrease the W/D and injury score in lung tissue,thus alleviating lung injury in HS rats.The mechanism may be related to the regulation of HIF-1α-RORγt/Foxp3 balance.

4.
مقالة ي صينى | WPRIM | ID: wpr-1019947

الملخص

Objective To investigate the relationship between the expression of long non-coding RNA(LncRNA)small nucleolar RNA host gene 11(SNHG11)and hypoxia inducible factor(HIF)-1α and angiogenesis mimicry(VM)in ovarian cancer.Methods A total of 116 ovarian cancer patients admitted to Tangshan Maternal and Child Health Care Hospital from October 2019 to January 2023 were regarded as the research subjects.Based on whether VM had formed,ovarian cancer patients were grouped into VM group(n=51)and non VM group(n=65).Another 50 partients who underwent health examinations during the same period were regarded as the control group.Real-time fluorescence quantitative PCR(qPCR)was applied to detect the expression levels of LncRNA SNHG11 and HIF-1α in serum of ovarian cancer patients and control groups.Spearman correlation was applied to detect the relationship between LncRNA SNHG11,HIF-1α,and VM formation.The diagnostic value of LncRNA SNHG11,HIF-1α,and their combined detection in the formation of VM in ovarian cancer patients was analyzed using the receiver operating characteristic(ROC)curve.Results Compared with the control group,the levels of serum LncRNA SNHG11(3.01±0.88,2.21±0.68 vs 1.12±0.35)and HIF-1α(2.16±0.67,1.60±0.44 vs 1.01±0.31)in ovarian cancer patients with VM group and non VM group were increased(t=12.136,9.006;19.890,16.591,all P>0.05),the levels of serum LncRNA SNHG11 and HIF-1αin the VM group were obviously higher than those in the non VM group(t=8.957,8.595),and the differences were statistically significant(all P<0.05).The expression of LncRNA SNHG11,HIF-1α,and the formation of VM were not related to age and tissue type(t=1.036,0.976,0.218;1.254,1.390,0.368,all P>0.05),but were related to tumor size,FIGO staging,lymph node metastasis,and pathological grading(t=5.351,5.186,13.264;5.465,5.227,10.898;6.063,6.016,5.374;4.030,5.871,5.509,all P<0.05).Spearman correlation analysis showed that there were obvious positive correlations between LncRNA SNHG11,HIF-1α,and VM generation(r=0.560,0.494,all P<0.05).ROC curve results showed that the areas under the curve(AUCs)of serum LncRNA SNHG11 and HIF-1α for diagnosing VM formation in ovarian cancer patients were 0.860 and 0.824,respectively,with sensitivity of 80.4%and 75.6%,specificity of 58.9%and 51.9%,respectively.The AUC of VM formation in ovarian cancer patients diagnosed by the combination of the two was 0.941,with sensitivity and specificity were 92.2%and 79.9%,respectively.Conclusion The abnormal expressions of LncRNA SNHG11 and HIF-1α were closely related to the formation of VM in ovarian cancer patients,and both may serve as potential biological indicators for judging VM.

5.
مقالة ي صينى | WPRIM | ID: wpr-1021689

الملخص

BACKGROUND:Aside from iron chelating,deferoxamine is also considered as an effective hypoxia mimetic agent and hypoxia inducible factor-1α stabilizer.Deferoxamine has played a favorable effect on bone regeneration in both basic and clinical research recently.Deferoxamine solutions or deferoxamine loaded bio-scaffolds have been locally applied in bone tissue engineering,and their promotion of bone repair involves various functional properties and molecular mechanisms which have not been entirely clarified.Moreover,their advances in research of bone regeneration lack comprehensive summary as well. OBJECTIVE:To review the functional properties,relative merits and advances in basic research and clinical practice of deferoxamine applied in bone regeneration,attempting to provide references and strategies for further studies. METHODS:Relevant articles were searched with the key words of"deferoxamine OR desferrioxamine OR desferal OR DFO,""bone tissue engineering OR bone regeneration OR bone remodeling OR bone repair OR bone healing OR osteogenesis,""angiogenesis OR vascularized bone regeneration OR angiogenic-osteogenic coupling"in English and Chinese by using PubMed,WanFang and CNKI databases.Eventually,88 articles were selected for review. RESULTS AND CONCLUSION:Deferoxamine can recruit stem cells and regulate their function,activate relevant signaling pathways to advance hypoxia adaptation of the cells,exert anti-inflammatory and antioxidant properties to improve local inflammatory environment,and promote bone regeneration by coupling osteogenesis and angiogenesis as well as inhibiting bone resorption.Compared with growth factors or peptides loaded in conventional bone tissue engineering,deferoxamine has its unique advantages as a small molecule drug,while it also has toxic reactions and application limitations.Therefore,it is necessary to optimize its loading form and dosagey.The unique angiogenic-osteogenic coupling ability of deferoxamine can be used in different types of bone injuries including fractures,osteonecrosis,distraction osteogenesis,bone grafting,oral related osteogenesis,and bone defects.Due to the enhancement of angiogenesis,this ability enables deferoxamine to better adapt and solve the difficulties in bone repair caused by the complex and variable clinical situations and individual differences.However,it is also necessary to compare and optimize the application methods and safe dosage of deferoxamine to expand its application scope and enhance its clinical value.

6.
مقالة ي صينى | WPRIM | ID: wpr-1021847

الملخص

BACKGROUND:Temporomandibular joint osteoarthritis can cause severe pain,which significantly affects the patient's quality of life and psychological health.Studies have found that medical ozone can effectively alleviate pain due to temporomandibular joint osteoarthritis,but its analgesic effect and mechanism are still unclear. OBJECTIVE:To explore the effects of medical ozone on pain relief in temporomandibular joint osteoarthritis and the potential mechanisms. METHODS:Twenty-four Sprague-Dawley rats were randomly divided into four groups(n=6 per group):control group,model group,air group,and medical ozone group.A sodium iodate-induced rat model of temporomandibular joint osteoarthritis was established in all groups except for the control group.After 1 week of modeling,rats in the air group and medical ozone group were injected with clean air and medical ozone,respectively,in the temporomandibular joint.The injection frequency for the air group and medical ozone group was once a week for three times in total.The von Frey mechanized pain measurement technique was used to assess the mechanical pain threshold of the temporomandibular joint in rats before and 28 days after modeling.ELISA was utilized to detect interleukin-1β in both serum and temporomandibular joint fluid at 28 days after modeling.Histopathologic changes of the temporomandibular joint were evaluated through hematoxylin-eosin staining.Additionally,the expression levels of hypoxia-inducible factor 1α and cyclooxygenase 2 in the temporomandibular joint were analyzed using immunohistochemistry. RESULTS AND CONCLUSION:Compared with the control group,the mechanical pain thresholds of the temporomandibular joint in the model group were decreased at 1,3,7,14,21,and 28 days after modeling(P<0.01);and compared with the model and air groups,the mechanical pain thresholds of the temporomandibular joint in the medical ozone group were increased at 28 days after modeling(P<0.01).Compared with the control group,the level of interleukin 1β in the serum and joint fluid of rats in the model group was elevated(P<0.01);compared with the model and air groups,the level of interleukin 1β in the serum and joint fluid of rats in the medical ozone group was decreased(P<0.01).Hematoxylin-eosin staining results showed derangement and degeneration of the cartilage structure in the model group and the air group,while the derangement of the cartilage structure in the medical ozone group was less than that in the model group and the air group.Immunohistochemical staining showed that the expression of hypoxia-inducible factor 1α and cyclooxygenase 2 in the temporomandibular joints of rats in the model group was elevated compared with that in the control group(P<0.01);the expression of hypoxia-inducible factor 1α and cyclooxygenase 2 in the temporomandibular joints of rats in the medical ozone group was decreased compared with that in the model group and the air group(P<0.01,P<0.05).These findings suggest that medical ozone can alleviate the pain caused by osteoarthritis of the temporomandibular joints in Sprague-Dawley rats by reducing the expression of hypoxia-inducible factor 1α,interleukin 1β,and cyclooxygenase 2.

7.
مقالة ي صينى | WPRIM | ID: wpr-1021936

الملخص

BACKGROUND:Heterotopic ossification is a dynamic growth process.Diverse heterotopic ossification subtypes have diverse etiologies or induction factors,but they exhibit a similar clinical process in the intermediate and later phases of the disease.Acquired heterotopic ossification produced by trauma and other circumstances has a high incidence. OBJECTIVE:To summarize the molecular biological mechanisms linked to the occurrence and progression of acquired heterotopic ossification in recent years. METHODS:The keywords"molecular biology,heterotopic ossification,mechanisms"were searched in CNKI,Wanfang,PubMed,Embase,Web of Science,and Google Scholar databases for articles published from January 2016 to August 2022.Supplementary searches were conducted based on the obtained articles.After the collected literature was screened,131 articles were finally included and summarized. RESULTS AND CONCLUSION:(1)The occurrence and development of acquired heterotopic ossification is a dynamic process with certain concealment,making diagnosis and treatment of the disease difficult.(2)By reviewing relevant literature,it was found that acquired heterotopic ossification involves signaling pathways such as bone morphogenetic protein,transforming growth factor-β,Hedgehog,Wnt,and mTOR,as well as core factors such as Runx-2,vascular endothelial growth factor,hypoxia-inducing factor,fibroblast growth factor,and Sox9.The core mechanism may be the interaction between different signaling pathways,affecting the body's osteoblast precursor cells,osteoblast microenvironment,and related cytokines,thereby affecting the body's bone metabolism and leading to the occurrence of acquired heterotopic ossification.(3)In the future,it is possible to take the heterotopic ossification-related single-cell osteogenic homeostasis as the research direction,take the osteoblast precursor cells-osteogenic microenvironment-signaling pathways and cytokines as the research elements,explore the characteristics of each element under different temporal and spatial conditions,compare the similarities and differences of the osteogenic homeostasis of different types and individuals,observe the regulatory mechanism of the molecular signaling network of heterotopic ossification from a holistic perspective.It is beneficial to the exploration of new methods for the future clinical prevention and treatment of heterotopic ossification.(4)Meanwhile,the treatment methods represented by traditional Chinese medicine and targeted therapy have become research hotspots in recent years.How to link traditional Chinese medicine with the osteogenic homeostasis in the body and combine it with targeted therapy is also one of the future research directions.(5)At present,the research on acquired heterotopic ossification is still limited to basic experimental research and the clinical prevention and treatment methods still have defects such as uncertain efficacy and obvious side effects.The safety and effectiveness of relevant targeted prevention and treatment drugs in clinical application still need to be verified.Future research should focus on clinical prevention and treatment based on basic experimental research combined with the mechanism of occurrence and development.

8.
Chinese Journal of Neonatology ; (6): 168-176, 2024.
مقالة ي صينى | WPRIM | ID: wpr-1022556

الملخص

Methods:A total of 160 Wistar neonatal rats were assigned into normoxia group, HPH group, normoxia+PDGF-BB group, HPH+PDGF-BB group and HPH+PDGF-BB inhibitor (STI571) group using random number table method (32 rats in each group), each group was further assigned into 4 subgroups on d3, d7, d14 and d21 (8 rats in each subgroup). HPH model was established using nitrogen-oxygen mixture with an oxygen concentration of 10%±0.5%. PDGF-BB groups were injected with adenovirus encoding PDGF-BB in the tail vein. HPH+STI571 group was given STI571 intragastrically. On d3, d7, d14 and d21 after modeling, mean right ventricular systolic pressure (RVSP) was examined. Morphological changes of small pulmonary arteries were observed using HE staining and indicators of pulmonary vascular remodeling calculated. Immunohistochemistry was used to determine the protein levels of PDGF-BB, HIF-1α and proliferation-associated protein nuclear protein Ki67 in the pulmonary vasculature of each group. RT-qPCR was used to determine the mRNA levels of PDGF-BB, HIF-1α and Ki67 in lung tissue.Results:At all time points, RVSP was higher in the HPH group than the normoxia group ( P<0.05), higher in the HPH+PDGF-BB group than the HPH group ( P<0.05), and lower in the HPH+STI571 group than both the HPH+PDGF-BB group and the HPH group ( P<0.05). On d3 after modeling, pulmonary vascular remodeling occurred in the HPH+PDGF-BB group; on d7, pulmonary vascular remodeling occurred in the PDGF-BB group and the HPH group. Pulmonary vascular remodeling appeared later and to a lesser extent in the HPH+STI571 group than the other hypoxic groups. On d3, d7 and d21 after modeling, protein and mRNA levels of PDGF-BB, HIF-1α and Ki67 in the HPH+PDGF-BB group were higher than the other groups ( P<0.05). The protein and mRNA expression levels of PDGF-BB, HIF-1α and Ki67 in the HPH+STI571 group were lower than the HPH+PDGF-BB group and the HPH group at all timepoints ( P<0.05). Conclusions:PDGF-BB up-regulates HIF-1α expression, participates in PASMC proliferation, exacerbates pulmonary vascular remodeling and increases pulmonary artery pressure in neonatal rats with HPH.Obiective:To study the roles of platelet-derived growth factor-BB (PDGF-BB) in hypoxic pulmonary hypertension (HPH) and the mechanisms of regulating hypoxia-inducible factor-1α (HIF-1α) expression, promoting the proliferation of pulmonary arterial smooth muscle cells (PASMC) and participating in the remodeling of pulmonary vessels.

9.
Herald of Medicine ; (12): 550-560, 2024.
مقالة ي صينى | WPRIM | ID: wpr-1023747

الملخص

Objective To explore and verify the protective and therapeutic effects and possible mechanisms of Zukamu granules on hypoxia alone and hypoxia+Su5416-induced hypoxic pulmonary hypertension(HPH)in mice.Methods Multiple databases and related literature were used to collect the active ingredients data in Zukamu granules and the HPH-related targets were predicted and obtained.The network construction and enrichment analysis were performed.The HPH mouse models were es-tablished by two-week hypoxia and four-week hypoxia+Su5416 induction,and the relevant indicators and the main pharmacodyna-mic indexes such as right ventricular pressure were tested.Masson staining was used to observe the pathological changes in lung tissues,and Western blotting was used to detect the expression levels of bax,bcl-2,PI3K,p-PI3K,eNOS,and HIF-1α in lung tis-sues.Results A total of 167 active ingredients of Zukamu granules were screened,with 179 intersecting targets with HPH,in-cluding targets like PIK3CA and HIF-1.The validation experimental results showed that Zukamu granules could significantly re-duce right ventricular systolic pressure and right ventricular hypertrophy in HPH mice,and down-regulate the expression of bcl-2 and HIF-1α and up-regulate the expression of bax,PI3K,p-PI3K and eNOS in mice lung tissues.Conclusion Zukamu gran-ules may act against HPH by modulating bax/bcl and PI3K-eNOS/HIF-1α signaling pathways.

10.
Journal of Chinese Physician ; (12): 70-75, 2024.
مقالة ي صينى | WPRIM | ID: wpr-1026064

الملخص

Objective:To explore the effects of apigenin on apoptosis and hypoxia inducible factor-1α (HIF-1α)/nuclear factor κB (NF-κB) signaling pathway in renal cancer A498 cells.Methods:Human renal cell carcinoma A498 cells were cultured in vitro and divided into different concentrations of apigenin (10, 20, 40 μmol/L) groups, apigenin (40 μmol/L)+ HIF-1α agonist dimethylenediaminoacetic acid (DMOG) group, HIF-1α inhibitor rifiximab (YC-1) group, and control group. Cell proliferation was detected using cell counting kit-8 (CCK-8) assay and plate clone formation assay, apoptosis was detected using Hoechst 33258 staining and flow cytometry, and expression of apoptotic proteins and HIF-1/NF-B pathway proteins was detected using Western blot assay.Results:Celery extract significantly inhibited the proliferation of A498 cells, and the inhibitory effect was concentration dependent ( P<0.001). Compared with the control group, the apoptosis rates of A498 cells in the 10, 20, and 40 μmol/L apigenin groups and YC-1 groups were significantly increased [(4.35±1.04)% vs (10.06±1.13)%, (18.52±2.58)%, (32.17±2.63)%, (26.94±2.41)%], as well as the expression levels of B lymphocyte tumor 2 related protein (Bax) and Cleaved Caspase-3 protein, while the expression levels of B lymphocyte tumor 2 (Bcl-2) were significantly reduced (all P<0.001). Compared with the control group, the HIF-1α protein expression levels (0.85±0.08 vs 0.63±0.06, 0.31±0.03, 0.16±0.02) and p-NF-κB p65/NF-κB p65 ratio (0.82±0.08 vs 0.51±0.05, 0.30±0.03, 0.13±0.01) of A498 cells in the 10, 20, and 40 μmol/L apigenin groups were significantly reduced (all P<0.001). Compared with the apigenin group, the apoptosis rate of A498 cells in the apigenin+ DMOG group was significantly reduced [(32.17±2.63)% vs (14.85±1.62)%], and the expression levels of Bax and Cleared Caspase-3 proteins were significantly reduced, while the expression levels of Bcl-2 proteins were significantly increased (all P<0.001). Conclusions:Apigenin may promote apoptosis in renal cancer A498 cells by inhibiting the activation of the HIF-1α/NF-κB signaling pathway.

11.
Journal of Chinese Physician ; (12): 146-150, 2024.
مقالة ي صينى | WPRIM | ID: wpr-1026072

الملخص

Dental pulp stem cells (DPSC) are pluripotent stem cells with high differentiation potential isolated from dental pulp. Using DPSC for vascular regeneration may be a good option. Hypoxia inducible factor-1α (HIF-1α) is an upstream gene of vascular endothelial growth factor (VEGF), and the small ubiquitin like protease 1 (SENP1) can reverse the small ubiquitin like (SUMO) modification of HIF-1α. Through the regulation of SENP1/HIF-1α, good vascular regeneration characteristics have been demonstrated in many in vitro and in vivo experiments. The SENP1/HIF-1α signaling axis has varying degrees of promoting and inhibiting effects on many solid tumors. Although there is relatively little literature on the role of the SENP1/HIF-1α signaling axis in dental pulp stem cells, it can be determined that SENP1/HIF-1α plays an important role in the angiogenesis of dental pulp stem cells. This article will elucidate the SENP1/HIF-1α signaling pathway and its mechanism of promoting vascular differentiation of DPSC.

12.
مقالة ي صينى | WPRIM | ID: wpr-1036231

الملخص

ObjectiveTo observe the effects of Jianpi Bushen Huoxue prescription (JPBSHX) on rat brain microvascular endothelial cells (RBMECs) based on hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) signaling pathway, aiming to provide a theoretical basis for the treatment of ischemic stroke. MethodTwelve 8-week-old male SPF-grade SD rats were selected. Eight of them were randomly chosen and given 3.25 g·mL-1 JPBSHX solution by gavage at a dose of 10 mL·kg-1 for 5 consecutive days to prepare the medicated serum, which was then preserved for later use. The remaining four rats were given the same volume of normal saline. Follow-up operations were the same as those of the above eight rats. Normal rat serum was collected and stored for later use. RBMECs were revived, cultured, passaged, and randomly divided into five groups: normal group (20% normal rat serum+80% high glucose DMEM), model group (hypoxia-reoxygenation injury) (20% normal rat serum+80% glucose-free DMEM), medicated serum group (20% JPBSHX-medicated serum+80% glucose-free DMEM), medicated serum+HIF-1α inhibitor group (20% JPBSHX-medicated serum+HIF-1α inhibitor 1 mg +80% glucose-free DMEM), and medicated serum+VEGF inhibitor group (20% JPBSHX-medicated serum +VEGF inhibitor 1 mg+80% glucose-free DMEM). The relative protein expression levels of Claudin-1 and Claudin-5 in RBMECs, the expression levels of HIF-1α and VEGF in RBMEC culture supernatants, the repair ability of RBMECs, and the number of nodes, microvessels, and their lengths after 72 h of culture were observed in each group. ResultAfter 24 h of reoxygenation, the scratch healing rate in the model group was significantly lower than in the normal group (P<0.01). Compared with the result in the model group, the scratch healing rates significantly improved in the medicated serum group, medicated serum+HIF-1α inhibitor group, and medicated serum+VEGF inhibitor group (P<0.05). However, the healing rates in the medicated serum+HIF-1α inhibitor group and medicated serum+VEGF inhibitor group were significantly lower than that in the medicated serum group (P<0.05). The number of nodes, microvessels, and total length of microvessels in the model group were significantly lower than those in the normal group (P<0.01). These indicators significantly improved in the medicated serum group, medicated serum+HIF-1α inhibitor group, and medicated serum+VEGF inhibitor group compared with those in the model group (P<0.05), but were significantly lower in the medicated serum+HIF-1α inhibitor group and medicated serum+VEGF inhibitor group compared with those in medicated serum group (P<0.05). The relative expression levels of Claudin-1 and Claudin-5 proteins were significantly lower in the model group than in the normal group (P<0.01). These levels were significantly higher in medicated serum group, medicated serum+HIF-1α inhibitor group, and medicated serum+VEGF inhibitor group than those in the model group (P<0.05), but were significantly lower in the medicated serum+HIF-1α inhibitor group and medicated serum+VEGF inhibitor group than those in the medicated serum group (P<0.05). The expression levels of HIF-1α and VEGF in the RBMEC culture supernatants were significantly lower in the model group than those in the normal group (P<0.01). These levels were significantly higher in the medicated serum group, medicated serum+HIF-1α inhibitor group, and medicated serum+VEGF inhibitor group than those in the model group (P<0.05), but were significantly lower in the medicated serum+HIF-1α inhibitor group and medicated serum+VEGF inhibitor group than those in the medicated serum group (P<0.05). ConclusionJPBSHX can promote the proliferation, migration, and angiogenesis, such as tubule formation, of RBMECs damaged by hypoxia-reoxygenation injury, and this effect may be achieved through the regulation of the HIF-1α/VEGF signaling pathway.

13.
مقالة ي صينى | WPRIM | ID: wpr-1039618

الملخص

ObjectiveTo investigate the effect of Gualou Xiebai Banxiatang on cardiac function and myocardial histopathological changes in rats with ischemic myocardial injury, and to observe the effect of myocardial microvascular density (MVD), phosphatidylinositol 3-kinase (PI3K), mammalian target of rapamycin (mTOR), hypoxia-inducible factor-1 alpha (HIF-1α), and vascular endothelial growth factor (VEGF) signaling pathways on myocardial microangiogenesis. MethodSeventy male SD rats were randomly selected, with six rats in the normal group. The remaining rats were fed a high-fat diet and injected with isoproterenol hydrochloride (ISO,80 mg·kg-1·d-1, 2 d) to induce a hyperlipidemia-based ischemic heart disease model. After successful modeling, the rats were randomly divided into the model group, high, medium, and low dose groups of Gualou Xiebai Banxiatang, and the metoprolol group. The high, medium, and low dose groups of Gualou Xiebai Banxiatang were given Gualou Xiebai Banxiatang at 10.42, 5.21, 2.61 g·kg-1·d-1, respectively, while the metoprolol group was given metoprolol at 2.6 mg·kg-1·d-1. Both the normal and model groups were given an equivalent volume of physiological saline for 28 days. After the intervention, relevant tests were conducted, and serum was collected to measure heart function-related indicators. Hematoxylin-eosin (HE) and Masson staining were performed on ventricular tissue to observe pathological changes under a light microscope. Immunohistochemistry (IHC) was used to detect the positive expression of platelet endothelial cell adhesion molecule (CD31). Enzyme-linked immunosorbent assay (ELISA) was used to detect the expression of N-terminal pro-brain natriuretic peptide (NT-proBNP) and VEGF. Western blot was used to detect the protein expression levels of PI3K/mTOR/HIF-1α/VEGF. ResultCompared with the normal group, the model group showed significantly increased serum levels of LDH, CK, CK-MB, NT-proBNP, and VEGF (P<0.01), significantly increased collagen volume fraction (CVF) (P<0.01), significantly decreased MVD (P<0.01), and elevated protein expression levels of PI3K, mTOR, HIF-1α, and VEGF (P<0.05, P<0.01). Compared with the model group, the metoprolol group had significantly lower serum levels of LDH, CK, CK-MB, and NT-proBNP (P<0.01), significantly higher VEGF levels (P<0.01), significantly decreased CVF (P<0.01), significantly increased MVD (P<0.01), and significantly increased protein expression levels of PI3K, mTOR, and VEGF (P<0.01), with no statistically significant change in HIF-1α protein expression. Compared with the model group, the high and medium dose groups of Gualou Xiebai Banxiatang had decreased serum levels of LDH, CK, CK-MB, and NT-proBNP (P<0.05, P<0.01), increased VEGF levels (P<0.05, P<0.01), significantly reduced CVF (P<0.01), increased MVD (P<0.05, P<0.01), and significantly increased protein levels of PI3K, mTOR, HIF-1α, and VEGF (P<0.01). In the low dose group of Gualou Xiebai Banxiatang, compared with the model group, serum levels of LDH and NT-proBNP were decreased (P<0.05), VEGF was increased (P<0.05). Moreover, CVF was decreased (P<0.05), and the protein expression levels of PI3K, mTOR, HIF-1α, and VEGF were significantly increased (P<0.01). ConclusionGualou Xiebai Banxiatang can improve cardiac function, reduce myocardial pathological damage, enhance endothelial cell function, promote myocardial microvascular formation, and upregulate the expression of PI3K, mTOR, HIF-1α, and VEGF proteins in myocardial tissue in rats with ischemic myocardial injury.

14.
مقالة ي صينى | WPRIM | ID: wpr-1029531

الملخص

Objective:To investigate the effect of tripartite motif-containing protein 59 (TRIM59) on glucose metabolism in macrophages and its role in regulating hypoxia-inducible factor-1α (HIF-1α)/IL-10 axis in macrophages under inflammatory conditions.Methods:The differentially expressed genes between macrophages with high expression of TRIM59 and control cells transfected with empty TRIM59 plasmid were analyzed by GO and KEGG. The expression of HIF-1α by RAW264.7 macrophages with high expression of TRIM59 was detected at different time points after lipopolysaccharide (LPS) stimulation by RT-qPCR and Western blot. Bone marrow was isolated from TRIM59-cKO and TRIM59 flox/flox mice and induced to differentiate into bone marrow-derived macrophages (BMDMs). These BMDMs were stimulated with LPS and the supernatants of cell culture were collected at 3, 6, 12 and 24 h after stimulation to detect IL-10 level by ELISA. In addition, mouse models of cecal ligation and puncture (CLP) were established, and bronchoalveolar lavage fluid (BALF) samples were collected at the same time points to detect IL-10 level by ELISA. Histopathological changes in lung tissues were observed after HE staining. Results:There was a significant change in glucose metabolism-related genes in macrophages with high expression of TRIM59, and the content of lactic acid increased significantly. Compared with the control group, the expression of HIF-1α at mRNA level in BMDMs from TRIM59-cKO mice decreased after LPS stimulation ( P<0.05); the level of IL-10 increased at 3 h and 24 h in the TRIM59-cKO group, but there was no significant difference in IL-10 level at 6 h or 12 h between the two groups. In the TRIM59-cKO mouse model of CLP, the levels of IL-10 in the BALF samples increased with time, but decreased at 24 h. The level of IL-10 was higher in the TRIM59-cKO mouse model group than that in the control group at each time point ( P<0.05 or P<0.01). Conclusions:TRIM59 can inhibit inflammation and lung injury by decreasing HIF-1α-mediated lactate secretion and IL-10 expression in macrophages. This study provides a new idea for developing novel anti-sepsis drugs based on TRIM59.

15.
China Pharmacy ; (12): 1280-1284, 2024.
مقالة ي صينى | WPRIM | ID: wpr-1030859

الملخص

The use of tyrosine kinase inhibitors (TKI) has been an important advance in the systemic treatment of hepatocellular carcinoma, but their sustained anti-angiogenic therapy leads to increased tumor hypoxia, accelerates the development of a hypoxic microenvironment and promotes the expressions of hypoxia-inducible factors (HIF), thereby inducing drug resistance of tumor patients to TKI. This paper summarizes the mechanism of action of HIF mediating TKI resistance in hepatocellular carcinoma in aspects of metabolic reprogramming, abnormal expressions of cancer and cancer-associated genes, and ferroptosis, and sorts resistance response strategies to provide reference for clinical solutions to TKI resistance issues. As results show, HIF/ glycolysis axis inhibitors (isoflavonoid genistein, simvastatin, etc.) can improve TKI resistance based on metabolic reprogramming mechanism; oncogene-targeted inhibitors combined with TKI (the combination of capsaicin and sorafenib) can improve TKI resistance based on abnormal expression of cancer and cancer-related genes; fatty acid synthase inhibitor (orlistat) can improve TKI resistance based on ferroptosis mechanism.

16.
Digital Chinese Medicine ; (4): 79-89, 2024.
مقالة ي الانجليزية | WPRIM | ID: wpr-1030997

الملخص

Objective @#To explore the mechanism of Wenyang Shengji Ointment (温阳生肌膏, WYSJO) in the treatment of diabetic wounds from the perspective of network pharmacology, and to verify it by animal experiments.@*Methods@#The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and related literature were used to screen active compounds in WYSJO and their corresponding targets. GeneCards, Online Mendelian Inheritance in Man (OMIM), DrugBank, PharmGkb, and Therapeutic Target Database (TTD) databases were employed to identify the targets associated with diabetic wounds. Cytoscape 3.9.0 was used to map the active ingredients in WYSJO, which was the diabetic wound target network. Search Tool for the Retrieval of Interaction Gene/Proteins (STRING) platform was utilized to construct protein-protein interaction (PPI) network. Kyoto Encyclopedia of Genes and Genomes (KEGG) andGene Ontology (GO) enrichment analyses were performed to identify signaling pathways between WYSJO and diabetic wounds. AutoDock 1.5.6 was used for molecular docking of core components in WYSJO to their targets. Eighteen rats were randomly divided into control, model, and WYSJO groups (n = 6). The model and WYSJO groups were used to prepare the model of refractory wounds in diabetes rats. The wound healing was observed on day 0, 5, 9, and 14 after treatment, and the wound tissue morphology was observed by hematoxylin-eosin(HE) staining. The expression levels of core genes were detected by quantitative real-timepolymerase chain reaction (qPCR).@*Result@#A total of 76 active compounds in WYSJO, 206 WYSJO drug targets, 3 797 diabetic wound targets, and 167 diabetic wound associated WYSJO targets were screened out through network pharmacology. With the use of WYSJO-diabetic wound target network, core targets of seven active compounds encompassing quercetin, daidzein, kaempferol, rhamnetin, rhamnocitrin, strictosamide, and diisobutyl phthalate (DIBP) in WYSJO were found. GO enrichment analysis showed that the treatment of diabetes wounds with WYSJO may involve lipopolysaccharide, bacteria-derived molecules, metal ions, foreign stimuli, chemical stress, nutrient level, hypoxia, and oxidative stress in the biological processes. KEGG enrichment analysis showed that the treatment of diabetes wounds with WYSJO may involve advanced glycation end products (AGE-RAGE), p53, interleukin (IL)-17, tumor necrosis factor (TNF),hypoxia inducible factor-1 (HIF-1), apoptosis, lipid, atherosclerosis, etc. The results of animal experiments showed that WYSJO could significantly accelerate the healing process of diabetic wounds (P < 0.05), alleviate inflammatory response, promote the growth of granulation tissues, and down-regulate the expression levels of eight core genes [histone crotonyltransferase p300 (EP300), protoc gene-oncogene c-Jun (JUN), myelocytomatosis (MYC), hypoxia inducible factor 1A (HIF1A), mitogen-activated protein kinase 14 (MAPK14), specificity protein 1 (SP1), tumor protein p53 (TP53), and estrogen receptor 1 (ESR1)] predicted by the network pharmacology (P < 0.05).@*Conclusion@#The mechanism of WYSJO in treating diabetes wounds may be closely related to AGE-RAGE, p53, HIF-1, and other pathways. This study can provide new ideas for the pharmacological research of WYSJO, and provide a basis for its further transformation and application.

17.
مقالة ي صينى | WPRIM | ID: wpr-1031698

الملخص

@#Objective To investigate the expression of miR-31a-5p in myocardial infarction (MI) mice and its potential mechanism. Methods A dataset was downloaded from the gene expression database, and miR-31a-5p and its predicted target gene hypoxia-inducible factor-1α (HIF-1α) were screened using bioinformatics methods. The MI model was established by ligating the left anterior descending branch of the coronary artery in C57BL/6J male mice which were randomly divided into sham and MI groups (n=6 in each group). The in vitro hypoxic cell model was induced by treatment of H9c2 cells with cobalt chloride (CoCl2) and divided into a control group, a model group, a NC group, a miR-31a-5p mimic group and a miR-31a-5p inhibitor group. The degree of myocardial tissue fibrosis was stained by Masson and analyzed. The expression levels of miR-31a-5p and HIF-1α mRNA in mouse myocardial tissues and H9c2 cells were detected by qRT-PCR. Western blotting was used to detect the expression levels of B-cell lymphoma 2 (Bcl-2), cleaved-caspase 3 apoptotic protein in mouse myocardial tissues and HIF-1α and apoptotic protein in H9c2 cells, respectively. The dual luciferase reporter gene assay was used to verify the targeting relationship between miR-31a-5p and HIF-1α. Results Masson staining showed significantly increased fibrosis in MI mice (P<0.000 1); miR-31a-5p, cleaved-caspase 3 were significantly elevated and Bcl-2 was decreased in MI mice and CoCl2 treated H9c2 (P<0.05). The results of dual luciferase reporter assay showed that the relative luciferase activity of miR-31a-5p mimic cotransfected with HIF-1α-3'-UTR WT plasmid was reduced (P<0.000 1); miR-31a-5p mimic decreased HIF-1α expression and increased apoptotic protein levels in CoCl2 induced H9c2 cells (both P<0.05), while miR-31a-5p exerted the opposite effect. Conclusion miR-31a-5p can aggravate apoptosis in myocardial ischemia by targeting HIF-1α.

18.
مقالة ي صينى | WPRIM | ID: wpr-1031870

الملخص

ObjectiveTo determine the syndrome of a rat model of follicular dysplasia induced by Tripterygium glycosides based on prescriptions and investigate the mechanism of traditional Chinese medicine intervention via the adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/hypoxia-inducible factor-1 (HIF-1)/vascular endothelial growth factor (VEGF) pathway. MethodForty-eight rats with regular estrous cycles were randomly assigned into a normal group (n=8) and a modeling group (n=40). The rats in the modeling group were administrated with Tripterygium glycoside suspension (75 mL·kg-1) by gavage for 30 days. The modeled rats were assigned into model, Siwutang (3.69 g·kg-1), Youguiyin (3.11 g·kg-1), Zuoguiyin (7.29 g·kg-1), and Guishenwan (10.35 g·kg-1) groups, with 8 rats in each group. The drug intervention lasted for 14 days. The changes of estrous cycle were detected by Pap staining, and a stereoscope was used to observe the morphology of the ovarian tissue. Hematoxylin-eosin staining was employed to observe the pathological changes and follicle count in the ovarian tissue. Enzyme-related immunosorbent assay (ELISA) was used to measure the levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol (E2) in the serum. Real-time fluorescence quantitative polymerase chain reaction and Western blot were employed to determine the mRNA and protein levels, respectively, of AMPK, mTOR, HIF-1, and VEGF in the ovarian tissue. ResultCompared with the normal group, the model group had a disordered estrous cycle, reduced secondary and mature follicles, increased atretic follicles, elevated FSH and LH levels, lowered E2 level, up-regulated mRNA and protein levels of AMPK, and down-regulated mRNA and protein levels of mTOR, HIF-1, and VEGF (P<0.01). Compared with the model group, Guishenwan increased secondary and mature follicles, decreased atretic follicles, lowered the FSH and LH levels, elevated the E2 level, down-regulated the mRNA and protein levels of AMPK, and up-regulated the mRNA and protein levels of mTOR, HIF-1, and VEGF (P<0.01). Compared with Guishenwan group, Siwutang, Youguiyin, and Zuoguiyin decreased mature follicles, increased atretic follicles (P<0.01), elevated the LH (P<0.01) and FSH (P<0.05) levels, and lowered the E2 level (P<0.05). In addition, Youguiyin up-regulated the protein level of AMPK (P<0.05) and down-regulated the mRNA levels of mTOR and HIF-1 (P<0.01) as well as the mRNA and protein levels of VEGF (P<0.01). Siwutang down-regulated the mRNA levels of mTOR and HIF-1 as well as the mRNA and protein levels of VEGF (P<0.05). Zuoguiyin down-regulated the mRNA level of mTOR and the protein and mRNA levels of VEGF (P<0.05). ConclusionGuishenwan may improve the ovarian function and promote follicle maturation in a rat model of follicular dysplasia by inhibiting the AMPK/mTOR/HIF-1/VEGF pathway, with the therapeutic effect superior to Zuoguiyin, Youguiyin, and Siwutang. It was hypothesized that this model presented the syndrome of kidney-essence deficiency.

19.
مقالة ي صينى | WPRIM | ID: wpr-1016499

الملخص

@#Hypoxia is the most common tumor microenvironment caused by rapid proliferation of tumor cells, and hypoxia-inducible factor (HIF) is the main transcription factor for tumor cells to adapt to hypoxia. Current research has found that HIF can interact with a variety of mesenchymal cells such as fibroblasts, endothelial cells and immune cells in the tumor microenvironment, leading to the transcription and expression of target genes in response to hypoxia, which ultimately promotes tumor angiogenesis, and induces physiological changes such as migration, invasion, and immune escape of tumor cells. However, the signaling pathways involved in the HIF regulatory mechanism are complex, and the mechanism of HIF in the tumor microenvironment need to be further investigated, also most HIF inhibitors are still in the preclinical research stage. This paper reviews the research progress on the effects of HIF on tumor mesenchymal stromal cells to provide a theoretical basis for the diagnosis, prevention and treatment of tumors targeting HIF.

20.
Chinese Herbal Medicines ; (4): 56-69, 2024.
مقالة ي الانجليزية | WPRIM | ID: wpr-1010747

الملخص

As a common clinical disease, fracture is often accompanied by pain, swelling, bleeding as well as other symptoms and has a high disability rate, even threatening life, seriously endangering patients' physical and psychological health and quality of life. Medical practitioners take many strategies for the treatment of fracture healing, including Traditional Chinese Medicine (TCM). In the early stage of fracture healing, the local fracture is often in a state of hypoxia, accompanied by the expression of hypoxia inducible factor-1α (HIF-1α), which is beneficial to wound healing. Through literature mining, we thought that hypoxia, HIF-1α and downstream factors affected the mechanism of fracture healing, as well as dominated this process. Therefore, we reviewed the local characteristics and related signaling pathways involved in the fracture healing process and summarized the intervention of TCM on these mechanisms, in order to inspirit the new strategy for fracture healing, as well as elaborate on the possible principles of TCM in treating fractures based on the HIF molecular mechanism.

اختيار الاستشهادات
تفاصيل البحث