Your browser doesn't support javascript.
loading
تبين: 20 | 50 | 100
النتائج 1 - 20 de 3.975
المحددات
1.
Braz. j. med. biol. res ; 57: e13645, fev.2024. graf
مقالة ي الانجليزية | LILACS-Express | LILACS | ID: biblio-1557321

الملخص

Colorectal cancer is one of the most common malignant cancers. Pseudogenes have been identified as oncogenes or tumor suppressor genes in the development of various cancers. However, the function of pseudogene CSPG4P12 in colorectal cancer remains unclear. Therefore, the aim of this study was to investigate the potential role of CSPG4P12 in colorectal cancer and explore the possible underlying mechanism. The difference of CSPG4P12 expression between colorectal cancer tissues and adjacent normal tissues was analyzed using the online Gene Expression Profiling Interactive Analysis 2 (GEPIA2) database. Cell viability and colony formation assays were conducted to evaluate cell viability. Transwell and wound healing assays were performed to assess cell migration and invasion capacities. Western blot was used to measure the expression levels of epithelial-mesenchymal transition-related proteins. Colorectal cancer tissues had lower CSPG4P12 expression than adjacent normal tissues. The overexpression of CSPG4P12 inhibited cell proliferation, invasion, and migration in colorectal cancer cells. Overexpressed CSPG4P12 promoted the expression of E-cadherin, whereas it inhibited the expression of vimentin, N-cadherin, and MMP9. These findings suggested that CSPG4P12 inhibits colorectal cancer development and may serve as a new potential target for colorectal cancer.

2.
مقالة ي صينى | WPRIM | ID: wpr-1003405

الملخص

ObjectiveTo investigate the effect of Yishen Tongluo prescription (YSTLP) on apoptosis of renal tubular epithelial cells and explore the mechanism based on endoplasmic reticulum stress pathway of protein kinase R-like endoplasmic reticulum kinase (PERK)/activating transcription factor 4 (ATF4)/transcription factor C/EBP homologous protein (CHOP). MethodThe db/db mice were randomly divided into model group, valsartan group (10 mg·kg-1), and low, middle, high-dose YSTLP groups (1, 2.5, 5 g·kg-1). Samples were collected after eight weeks of drug intervention. In addition, db/m mice in the same litter served as the control group. Human renal tubular epithelial cells (HK-2) were cultured in vitro and divided into the control group, advanced glycated end-product (AGE) group, and AGE + low, middle, and high-dose YSTLP groups (100, 200, 400 mg·L-1). TdT-mediated dUTP nick end labeling (TUNEL) staining was used to detect the apoptosis rate of HK-2 cells. Methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay was conducted to detect the viability of HK-2 cells. Calcium fluorescence probe staining and luciferase reporter gene method were adopted to detect the luciferase activity of folded protein response element (UPRE) and endoplasmic reticulum stress. Immunohistochemical (IHC) analysis was carried out to measure the protein expressions of phosphorylated PKR (p-PERK), CHOP, and ATF4. Real-time polymerase chain reaction (Real-time PCR) was used to measure the mRNA expression levels of CHOP and X-box binding protein 1 (XBP1) in mouse kidney and HK-2 cells. Western blot was used to detect the protein expression level of p-PERK, PERK, CHOP, ATF4, B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), and cleaved Caspase-3 in mouse kidney and HK-2 cells. ResultIn the cellular assay, HK-2 cell viability was significantly reduced, and the apoptosis rate was elevated in the AGE group compared with the control group (P<0.01). The mRNA and protein expression levels of apoptosis-related factor Bcl-2 were significantly reduced (P<0.01), and those of Bax were significantly increased (P<0.01). The protein expression level of cleaved Caspase-3 was significantly increased (P<0.01). Compared with the AGE group, YSTLP administration treatment resulted in elevated cell viability and reduced apoptosis rate (P<0.01). The mRNA and protein expression levels of Bcl-2 were significantly elevated in a time- and dose-dependent manner (P<0.01), and those of Bax were significantly reduced in a time- and dose-dependent manner. The protein expression level of cleaved Caspase-3 was significantly reduced in a time- and dose-dependent manner (P<0.01). The intracellular Ca2+ imbalance and UPRE luciferase fluorescence intensity were increased in the AGE group compared with the control group (P<0.01). The mRNA levels of endoplasmic reticulum stress-related factors CHOP and XBP1 were significantly increased (P<0.01), and the protein expression levels of p-PERK, CHOP, and ATF4 were significantly increased (P<0.05). Compared with the AGE group, YSTLP effectively improved intracellular Ca2+ imbalance in HK-2 cells and decreased UPRE luciferase fluorescence intensity in a dose-dependent manner (P<0.01). It reduced the mRNA levels of endoplasmic reticulum stress-related factors CHOP and XBP1 (P<0.01) and the protein expression levels of intracellular p-PERK, CHOP, and ATF4 in a dose- and time-dependent manner (P<0.01). In animal experiments, the protein expression level of Bcl-2 was significantly reduced(P<0.01), and that of cleaved Caspase-3 and Bax was significantly increased in the model group compared with the control group (P<0.05). The protein expression level of Bcl-2 was dose-dependently elevated, and that of cleaved Caspase-3 and Bax was dose-dependently decreased in the YSTLP groups compared with the model group (P<0.01). Compared with the control group, the mRNA expression levels of CHOP and XBP1 were significantly elevated in the model group (P<0.05, P<0.01), and the protein expression levels of p-PERK, CHOP, and ATF4 were significantly increased (P<0.05). Compared with the model group, YSTLP significantly decreased the mRNA expression levels of CHOP and XBP1 (P<0.01) and the protein expression levels of p-PERK, CHOP, and ATF4 (P<0.01). ConclusionYSTLP can effectively inhibit endoplasmic reticulum stress and improve apoptosis of renal tubular epithelial cells, and its mechanism may be related to the regulation of the PERK/AFT4/CHOP pathway.

3.
مقالة ي صينى | WPRIM | ID: wpr-1003423

الملخص

Psoraleae Fructus (PF) is a non-toxic Chinese herbal medicine, while the liver injury caused by PF has aroused wide concern in recent years. At present, animal experiments and in vitro studies have been carried out to explore the mechanism, targets, and toxic components of PF in inducing liver injury, which, however, have differences compared with the actual conditions in clinical practice, and there are still some potential hepatotoxic components and targets of PF that have not been discovered. With the continuous progress in systems biology, establishing the drug-induced liver injury model and the liver injury prediction model based on network toxicology can reduce the cost of animal experiments, improve the toxicity prediction efficiency, and provide new tools for predicting toxic components and targets. To systematically explain the characteristics of liver injury in the application of PF and explore the potential hepatotoxic components and targets of PF, we reviewed the related articles published by China National Knowledge Infrastructure (CNKI), Wanfang Data, VIP, and PubMed from 1962 to 2021 and analyzed the characteristics and influencing factors of liver injury caused by PF in the patients. Furthermore, we summarized the chemical components of PF and the components entering blood. By reviewing the mechanism, targets, and components of PF in inducing liver injury that were discovered by in vivo and in vitro experiments, we summarized the known compounds in PF that may cause liver injury. Finally, the current methods for building the prediction model of PF-induced liver injury were summarized, and the predicted toxic components and targets were introduced. The possible factors of PF in causing liver injury were explained from three aspects: clinical characteristics, preclinical studies, and computer-assisted network prediction, which provide a reference for predicting the risk of PF-induced liver injury.

4.
مقالة ي صينى | WPRIM | ID: wpr-1003428

الملخص

Liver failure (LF), as a clinical syndrome of severe hepatocyte damage and liver dysfunction, has become a major obstacle to human health due to the triple superposition of high mortality, high morbidity, and high medical resource depletion. It is of great significance to further study the core factors of the disease and supplementary treatment methods to improve the survival rate of patients with LF. The pathogenesis of LF is complex, and mitochondrion is one of the sensitive organelles in hepatocytes and the central link of intracellular energy metabolism. A large number of studies have shown that the structure and function of mitochondria in hepatocytes are changed in LF, and the abnormal structure and function of mitochondria play an important role in the process of LF disease. Among them, multiple factors such as mitochondrial respiratory chain disorder, mitochondrial DNA damage, mitochondrial permeability transition pore opening, mitochondrial quality control imbalance, and mitochondrial oxidative stress are intertwined, forming a complex and unified whole network, which becomes the key node affecting the progression of LF. In recent years, researchers have begun to study drugs that can regulate the function of liver mitochondria to prevent and treat LF. With the deepening of research, traditional Chinese medicine has made breakthroughs in the prevention and treatment of LF. Many studies have confirmed that traditional Chinese medicine can play a role in the prevention and treatment of LF by protecting mitochondrial function, which can be summarized as reducing liver cell damage, inhibiting liver cell death, and promoting liver cell regeneration, so as to effectively compensate for liver function and promote the recovery of liver parenchyma quality and function. This article summarized the structure and function of mitochondria, the relationship between LF and mitochondria, and the research on the intervention of mitochondrial function in the field of traditional Chinese medicine to prevent and treat LF, so as to provide certain ideas and references for the clinical treatment of LF with traditional Chinese medicine.

5.
مقالة ي صينى | WPRIM | ID: wpr-1003429

الملخص

Neuroinflammation is a common pathological feature of neurodegenerative diseases (NDs). Microglia (MG), a resident macrophage in the brain with a unique developmental origin, is the core driver of neuroinflammation. It can participate in the occurrence and development of NDs through different polarization states and play a key role in regulating neurogenesis and synapse shaping and maintaining homeostasis. MG can be divided into M1 pro-inflammatory phenotype and M2 anti-inflammatory phenotype according to its function. The inflammatory mediators released by the M1 phenotype can lead to nerve degeneration and myelin sheath damage, while the activation of the M2 phenotype is required to inhibit the inflammatory response and promote tissue repair. With the advantages of multi-pathway, multi-target, and bidirectional regulation, traditional Chinese medicine can regulate the polarization balance of MG and has dual effects on NDs such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. The active components of traditional Chinese medicine and its compound can inhibit the activation of MG by regulating phosphatidylinositol-3-kinases/protein kinase B(PI3K/Akt), NOD-like receptor thermal protein domain associated protein 3(NLRP3), signal transducer and activator of transcription factor1(STAT1), nuclear transcription factor kappa B(NF-κB), and other pathways, promote the polarization of M1 phenotype to M2 phenotype, reduce the expression of interleukin(IL)-6, tumor necrosis factor-α(TNF-α), and other pro-inflammatory factors, and increase the secretion of IL-10, arginase-1(Arg-1), and other anti-inflammatory factors. It can also reduce β-amyloid deposition and tau protein expression in Alzheimer's disease, alleviate dopaminergic neuronal damage in Parkinson's disease, and relieve demyelination, inflammatory cell infiltration, and related clinical symptoms of multiple sclerosis. The bidirectional regulation of the M1/M2 polarization balance of MG by traditional Chinese medicine is a potential strategy for the treatment of NDs. This paper focused on the targets of the regulation of MG polarization balance by traditional Chinese medicine monomer and its compound in the treatment of NDs, so as to further study and summarize the existing research results and provide ideas and basis for the future treatment of NDs.

6.
International Eye Science ; (12): 72-76, 2024.
مقالة ي صينى | WPRIM | ID: wpr-1003509

الملخص

Retinal vein occlusion(RVO), the second most prevalent retinal vascular disease, has complex pathophysiological mechanism. Except for mechanical pressure on blood vessel, inflammation and endothelin have been confirmed to be involved in the pathogenesis of RVO. However, its specific mechanism remains unclear. Hypertension, diabetes and dyslipidemia have been previously shown to be the most common risk factors in elder population, while recent studies found that coagulation and hemorheological abnormalities are more common in people under 50 years old. Ocular risk factors including glaucoma, high corrected intraocular pressure and retinal vessels abnormality, have gained more and more attention. These factors probably exert a synergistic effect when present simultaneously in the same patient. Therefore, early identification and intervention of those factors could lower the incidence of RVO. This article aims to review recent research and summarize existing mechanism and theories, giving some new research ideas for potential therapy targets and providing references for identification and management of risk factors.

7.
مقالة ي صينى | WPRIM | ID: wpr-1003788

الملخص

Qinghao Biejiatang, first recorded in the Detailed Analysis of Warm Diseases (《温病条辨》) written by WU Jutong in the Qing Dynasty, is composed of Artemisiae Annuae Herba, Trionycis Carapax, Rehmanniae Radix, Anemarrhenae Rhizoma, and Moutan Cortex. With the effects of nourishing Yin and relieving heat, this prescription is often used to treat the syndrome of Yin deficiency and internal heat. The deficiency of healthy Qi, invasion of pathogenic toxins, loss of lung Yin, and generation of deficiency-heat are pathogenesis of lung cancer, pneumonia and other lung diseases, the treatment of which usually follows the principles of nourishing Yin, reinforcing healthy Qi, clearing lung, and eliminating heat. With the effects basically in accordance with the treatment principles of lung diseases, Qinghao Biejiatang is widely used in the treatment of lung diseases such as lung cancer-associated fever, hemoptysis or combined with bone metastasis, tuberculosis, community-acquired pneumonia, and pneumonia caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2). Basic experiments have shown that Qinghao Biejiatang may exert the therapeutic effects by reducing inflammation, maintaining immune balance, regulating intestinal flora, hormone secretion, lipid metabolism, and inhibiting tumor and oxidative damage. In addition, the main active ingredients of this prescription include artemisinin, luteolin, sitosterol, stigmasterol, polysaccharides, catalpol, paeoniflorin, quercetin, paeonol, gallic acid, timosaponin, and mangiferin, which have anti-tumor, anti-oxidant, anti-virus, inflammation-regulating, and immunomodulatory activities. The paper reviewed the clinical and basic studies of Qinghao Biejiatang in the treatment of lung diseases, aming to provide a theoretical basis for the clinical application.

8.
مقالة ي صينى | WPRIM | ID: wpr-1003789

الملخص

Fibrosis can occur in diverse tissue and organs and is the common outcome as multiple chronic diseases progress. It is characterized by over-activation of fibroblasts and excessive deposition of extracellular matrix. Targeting transforming growth factor-β (TGF-β), a classical signaling molecule in fibrosis, is currently a routine strategy for drug therapy of this disease. The use of traditional Chinese medicine (TCM) in the treatment of fibrotic diseases has been supported by mature theories. The theories emphasize that the internally-accumulated pathogens and mixed deficiency-excess underlie the shared pathology of fibrotic diseases. Qi stagnation, blood stasis, phlegm turbidity, and mass accumulation are key pathological factors. "Yin suppression by Yang" is the core thought for treatment with TCM of the disease. Pharmacological investigations reveal the scientific nature of TCM in treating fibrotic diseases, namely multilevelled and multitargeted. In other words, it refers to networked regulation of signaling activities of fibrosis-related molecules such as TGF-β/Drosophila protein homolog (Smad), phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), Hedgehog, Wnt/β-catenin, and inflammatory cytokines, so as to inhibit fibroblast function and provide a promising insight into novel anti-fibrotic drug. This paper summarized the conventional understanding of fibrotic disease treatment with TCM and its mechanism of action by reviewing ancient literature and modern research reports, which offers an idea for follow-up research in this field.

9.
مقالة ي صينى | WPRIM | ID: wpr-1003791

الملخص

A sesquiterpene natural substance called artemisinin was discovered in Artemisia annua. One of its derivatives, artesunate (ART), has the properties of economy, immediate effect, low toxicity, and good tolerance. Since it has a quick and powerful killing effect on plasmodium in the erythrocyte phase and can quickly handle clinical seizure and symptoms, it is currently mostly utilized to treat cerebral malaria and other severe instances of malaria. In addition, it has antitumor, antivirus, anti-hepatic fibrosis, anti-inflammatory, antibacterial, hepatocyte protection, immunological modulation, and other pharmacological properties and can inhibit cell proliferation, induce cell apoptosis, and reduce the incidence of sepsis. In many countries, artemisinin-based combination therapies (ACTs), such as artemether-benflumetol, artesunate-amodiaquine, and artemether-lumefantrine, are the first-line treatments for malaria. Recent research on artesunate by Chinese and international scholars has revealed that compared with monotherapy, artesunate combination therapy offers more benefits in terms of improving pharmacological effects, shortening the duration of medicine, and minimizing adverse effects. Through systematic retrieval of Web of Science Core Collection and integration through CiteSpace (6.2.1) software, this article reviewed the mechanism of artesunate combined with other medications with regard to antimalarial, antitumor, antibacterial, and antiviral features in the previous five years, so as to provide some theoretical basis for rational development and utilization of ART and new drug research and development.

10.
مقالة ي صينى | WPRIM | ID: wpr-1005266

الملخص

ObjectiveMetabolomics was used to reveal the mechanism of Aconiti Lateralis Radix Praeparata(ALRP) in attenuating toxicity by processing from the aspects of amino acid metabolism, oxidative stress and energy metabolism by analyzing multiple metabolic pathways. MethodTwenty-four rats were randomly divided into control group, raw group and processed group, 8 rats in each group. The raw and processed group were given with 0.64 g·kg-1 of raw ALRP and processed ALRP respectively every day, the control group was given with an equal amount of normal saline once a day. After continuous administration for 7 days, the urine, serum and heart tissue of rats were collected. Pathological examination of the heart was carried out using hematoxylin-eosin(HE) staining, and the activities of lactate dehydrogenase(LDH) and creatine kinase-MB(CK-MB) in serum and cardiac tissues were detected by microplate assay and immunoinhibition assay. The effects of ALRP on rat heart before and after processing were compared and analyzed. Ultra performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was used to perform urine metabolomics analysis, and multivariate statistical analysis was used to screen for differential metabolites related to ALRP in attenuating toxicity by processing, and pathway enrichment analysis was carried out to explore the processing mechanism. ResultHE staining showed that no obvious pathological changes were observed in the heart tissue of the control group, while obvious infiltration of inflammatory cells such as plasma cells and granulocytes was observed in the heart tissue of the raw group, indicating that the raw ALRP had strong cardiotoxicity. There was no significant difference in HE staining of heart tissue between the processed group and the control group, indicating that the toxicity of ALRP was significantly reduced after processing. Compared with the control group, the activities of LDH and CK-MB were significantly increased in serum and heart tissue of the raw group, and those were significantly decreased in serum and heart tissue of the processed group, suggesting that the myocardial toxicity of processed ALRP was reduced. A total of 108 endogenous differential metabolites associated with the raw ALRP were screened using multivariate statistical analysis in positive and negative modes, of which 51 differential metabolites were back-regulated by the processed ALRP. Biological analysis of the key regulatory pathways and associated network changes showed that the pathways related to toxicity of ALRP mainly included tryptophan metabolism, arginine and proline metabolism, phenylalanine metabolism, aminoacyl-tRNA biosynthesis, alanine, aspartate and glutamate metabolism, etc. The metabolic pathways related to the attenuation of processed ALRP mainly included aminoacyl-tRNA biosynthesis, tryptophan metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism and caffeine metabolism. ConclusionThe processing technology of ALRP in Guilingji can significantly attenuate the cardiotoxicity of raw products, the mechanism mainly involves amino acid metabolism, oxidative stress and energy metabolism, which can provide experimental bases for the research related to the mechanism of toxicity reduction of ALRP by processing and its clinical safety applications.

11.
مقالة ي صينى | WPRIM | ID: wpr-1005273

الملخص

Chronic obstructive pulmonary disease (COPD) is one of the most common chronic diseases of the respiratory system in the clinic. The disease has a long course and is difficult to cure, which seriously threatens human health. Airway mucus hypersecretion (AMH) is an independent risk factor for COPD and has a significant impact on the development and prognosis of the disease. The review finds that the abnormal proliferation of goblet cells and the excessive secretion of mucin are the direct causes of AMH. The pathogenesis of AMH may be closely related to the inhalation of heterogeneous particles, airway inflammation, the imbalance of mucin/water salt ratio, and the regulation of related signaling pathways. Traditional Chinese medicine (TCM) believes that AMH of COPD belongs to the category of lung distension with phlegm-fluid retention syndrome, and the disease is mainly treated from phlegm on the basis of lung distension. This article summarizes the relevant research in the field of TCM in recent years and finds that the single TCM that effectively intervened AMH of COPD is mainly phlegm-resolving TCM, and the main active ingredients of TCM are flavonoids, terpenoids, phenols, and alkaloids. The main TCM compounds are mainly designed to remove heat-phlegm, warmly resolve cold-phlegm, dry dampness to eliminate phlegm, invigorate Qi, promote blood circulation and dispel phlegm, and invigorate lung, spleen, and kidney. Its mechanism of action may be direct inhibition or indirect inhibition of airway epithelial goblet cell metaplasia and mucin expression by inhibiting airway inflammation, regulating aquaporins to correct the imbalance of mucin/water salt ratio, and regulating signaling pathways, so as to reduce mucus oversecretion in COPD. However, there are still some problems. For example, the research mainly focuses on TCM compounds instead of the single TCM or its effective components. The research on the mechanism of action is not thorough enough, and the research results are not interoperable. The clinical transformation rate of basic research is insufficient. This article systematically reviews the research status of AMH in the treatment of COPD with TCM and puts forward some thoughts on the existing problems, so as to provide a reference for clinical rational medication and in-depth research.

12.
مقالة ي صينى | WPRIM | ID: wpr-1005278

الملخص

Ulcerative colitis (UC) is a chronic inflammatory bowel disease with complex etiology. The pathogenesis of this disease, due to a combination of factors, is complex and has not yet been elucidated. Among them, intestinal mucosal barrier damage is the basic pathological change of UC. As a non-destructive response of cells, autophagy regulates intestinal mucosal immunity, inflammation, oxidative stress, and bacterial homeostasis through degradation and reabsorption to actively repair damaged intestinal mucosal barrier, exerting a key role in the occurrence and development of UC. The disease is mainly treated clinically with aminosalicylic acid preparations, glucocorticoids, and immunosuppressants. Western medicine treatment of the disease has a fast onset of effect, and the short-term efficacy is definite, but the long-term application is easy to be accompanied by more adverse reactions. Moreover, some drugs are expensive, bringing great physical and mental pain and economic burden to patients. Therefore, it is urgent to explore new therapies with stable efficacy and mild adverse effects. In recent years, a large number of studies have shown that Chinese medicine can regulate autophagy of the intestinal mucosa with multiple targets and effects and repair the intestinal mucosal barrier function, thereby inhibiting the development of UC. Many experiments have shown that the active ingredient or monomers and compound formulas of Chinese medicine can improve the immunity of the intestinal mucosa, inflammation, oxidative stress, and flora by regulating the level of autophagy to maintain the normal function of the intestinal mucosal barrier to effectively intervene in UC, providing a new measure for the prevention and treatment of UC. However, there is a lack of systematic review of Chinese medicine in regulating the level of autophagy in the intestinal mucosa for the prevention and treatment of UC. Therefore, based on the current research on UC, autophagy process, and Chinese medicine treatment, this article reviewed the relationship of autophagy and its key target proteins with UC to clarify the key role of autophagy in UC production and systematically summarized Chinese medicines targeting the regulation of autophagy to treat UC in recent years to provide new ideas for the treatment and drug development of UC.

13.
مقالة ي صينى | WPRIM | ID: wpr-1005279

الملخص

Osteoporosis (OP) is a common bone disease affecting the quality of life and causing huge medical burden to the patients and society. The occurrence of OP is mainly caused by excessive bone resorption and insufficient bone formation, which are directly influenced by external calcium ion balance. Calcium imbalance can impair bone integrity, reduce the calcium supply to the bone, and lower the calcium content in the bone, thus triggering OP. Drugs are the main anti-OP therapy in modern medicine, which, however, may cause adverse reactions and drug dependence. Chinese medicines have good clinical effects and high safety in treating OP, being suitable for long-term use. Recent studies have shown that Chinese medicines can alleviate estrogen deficiency, regulate bone cell and calcium metabolism, which is crucial for the formation and development of OP. The transient receptor potential cation channel superfamily V members 5 and 6 (TRPV5 and TRPV6, respectively) affect bone homeostasis by mediating the transmembrane calcium ion transport in the intestine (TRPV6) and kidney (TRPV5). Therefore, TRPV5/6 is one of the key targets to understand the anti-OP mechanisms of the effective parts of Chinese medicines, which is worthy of further study. This paper summarizes the research results about the anti-OP effects of Chinese medicines in the last two decades, especially the mechanism of regulating calcium metabolism, aiming to provide new ideas for the basic research, clinical application, and drug development of OP treatment.

14.
China Pharmacy ; (12): 1552-1557, 2024.
مقالة ي صينى | WPRIM | ID: wpr-1036541

الملخص

OBJECTIVE To learn the practical experience of medical insurance payment standards adjustment in Japan and South Korea, which will serve as a reference for the improvement of simple renewal mechanism in China. METHODS Retrieving relevant literature from CNKI and related policy documents from official websites of Japan and South Korea, the medical insurance payment standards adjustment practice in Japan and South Korea would be elucidated from 2 perspectives of adjustment criteria and formulas, and then were compared with the current simple renewal mechanism in China to clarify the areas where simple renewal mechanism in China can be optimized and propose several suggestions. RESULTS & CONCLUSIONS In terms of adjustment methods, Japan and South Korea were similar to China. For excessive drugs, the reduction rate of drugs was calculated based on the situation of excess and adjustments were implemented; however, there were differences in the specific adjustment criteria and formulas. Japan and South Korea adopted a linear price reduction approach for drugs with significant oversupply, while China adopted a gradient price reduction approach for drugs with both current and expected oversupply. The results of the comparative analysis show that China has initially established simple renewal mechanisms that are in line with the national conditions and the actual medical insurance situation, and has taken some innovative measures, including considering the current and expected oversupply of drugs and introducing a halving mechanism in the adjustment formula. However, there are also certain shortcomings, such as a relatively single set of indicators for adjusting conditions and a too broad range of gradient price reduction in adjustment formulas, which fail to fully reflect the market-oriented mechanism of “volume for price”. It is recommended that China’s medical insurance department increase consideration of drug fund expenditures, refine the gradient price reduction range of adjustment formulas, increase policy preferences for special category drugs when adding new indications, and further improve the mechanism for simple renewal.

15.
China Modern Doctor ; (36): 63-69, 2024.
مقالة ي صينى | WPRIM | ID: wpr-1038105

الملخص

Objective To verify the mechanism of Buyang Huanwu decoction in the treatment of spinal cord injury based on network pharmacology and molecular docking.Methods The active ingredients and targets of Buyang Huanwu decoction were screened out by TCMSP,SymMap,PubChem and Swiss Target Prediction databases.Spinal cord injury targets were retrieved from OMIM,GeneCards,TTD,and DrugBank databases.Through venny software,the intersection target of Buyang Huanwu decoction and spinal cord injury was obtained.The active ingredient-target network for the treatment of spinal cord injury was constructed with Cytoscape software.Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of common targets were carried out by DAVID,and the binding ability of drugs and targets was analyzed by molecular docking technology.Results A total of 106 active ingredients and 225 targets of Buyang Huanwu decoction,1315 targets of spinal cord injury and 112 targets of drug-disease intersection were obtained.The active ingredients of Buyang Huanwu decoction were quercetin,kaempferol,ellagic acid,luteolin and hederagenin in the treatment of spinal cord injury.Conclusion Buyang Huanwu decoction can achieve the purpose of treating spinal cord injury through various signal pathways.

16.
China Modern Doctor ; (36): 64-67, 2024.
مقالة ي صينى | WPRIM | ID: wpr-1038162

الملخص

Objective To investigate the effect of Gexia Zhuyu decoction combined with diosmin on coagulation mechanism in patients with great saphenous varicose vein surgery.Methods A total of 60 patients who received great saphenous varicose vein surgery in Shaoxing Hospital of Traditional Chinese Medicine from January 2019 to April 2022 were selected and divided into control group and observation group according to random number table method,with 30 patients in each group.Control group was treated with diosmin,and observation group was treated with diosmin + Gexia Zhuyu decoction.Coagulation indexes,vascular endothelial function and inflammatory factor levels were compared between two groups.Results After treatment,Krüppel-like factor 2,activated partial thromboplastin time,thrombin time,prothrombin time,nitric oxide,and interleukin(IL)-10 in observation group were significantly higher than those in control group,while plasminogen activator inhibitor type 1,von Willebrand factor,endothelin 1,hypersensitive C-reactive protein,IL-2 and IL-6 were significantly lower than those in control group(P<0.05).Conclusion Gexia Zhuyu decoction combined with diosmin can improve the hypercoagulable state and vascular endothelial function in patients with great saphenous varicose vein surgery,and reduce the level of inflammatory factors in the body,which is worth popularizing.

17.
International Eye Science ; (12): 1266-1269, 2024.
مقالة ي صينى | WPRIM | ID: wpr-1038542

الملخص

Diabetic retinopathy(DR)is one of the most common retinal complications of diabetes could cause irreversible loss of central vision in the working-age population. Current studies showed that systemic risk factors, inflammatory response, and oxidative stress played a central role in the development of DR. Although traditional sequencing methods have provided valuable insights into the pathogenesis of DR, offering crucial guidance for clinical diagnosis and treatment, they still possess certain limitations. In recent years, the emerging single-cell RNA sequencing technology(scRNA-seq)has enabled precise analysis of mRNA transcriptomes at the single-cell level. This technique accurately identifies novel cell subtypes in retinal diseases, detects rare cells, and reveals intercellular heterogeneity. It contributes to elucidating the pathogenesis and development of retinal diseases, and facilitates exploration of gene regulatory relationships associated with these disorders to provide valuable insights for future precision medicine. This article reviews the technology of single-cell sequencing and its application in DR research. It also explores the mechanisms of different types of cells associated with DR, aiming to enhance the utilization of scRNA-seq in DR research and identify potential therapeutic targets to improve clinical diagnosis and treatment of DR.

18.
مقالة ي صينى | WPRIM | ID: wpr-1038719

الملخص

ObjectiveTo explore the effect of Ganoderma leucocontextum ethanol extract (GLE) on silicosis and its potential molecular mechanism using network pharmacology, molecular docking technology and animal experiments. Methods i) The components of GLE were analyzed using ultra-performance liquid chromatography-Q Exactive-mass spectrometry (UPLC-QE-MS) method. The active components, potential molecular pathways and targets of GLE in the intervention of inflammation process of silicosis was explored using network pharmacology and molecular docking technology. ii) Specific pathogen free male C57BL6/J mice were divided into four groups with 10 mice in each group. The mice in the silicosis model group and GLE intervention group were given a dose of 80 μL silica suspension with a mass concentration of 50 g/L once by non-exposed tracheal instillation, and the mice in the blank control group and GLE control group were given an equal volume of sterile 0.9% sodium chloride solution. From the second day after modeling, GLE control group and GLE intervention group were given GLE at a dose of 200 mg/(kg•d) by gavage, while blank control group and silicosis model group were given the same volume of 0.9% sodium chloride solution by gavage, once per day for 35 days. After that, the histopathological changes of lung tissues of mice were observed, the lung mass coefficient, inflammation score and the ratio of collagen deposition area were calculated, and the levels of tumor necrosis factor (TNF) -α, interleukin (IL) -1β and IL-6 in the lung tissues of mice were detected by enzyme-linked immunosorbent assay. Results i) A total of 76 active components of GLE were detected by UPLC-QE-MS. Among them, 36 ingredients met the screening criteria of the five principles of drug-like components. A total of 67 potential targets of the 36 GLE active ingredients to improve the inflammatory response of silicosis were screened based on the network pharmacology theory. The result of Kyoto Encyclopedia of Genes and Genomes enrichment analysis and Gene Ontology functional analysis showed that IL signaling and cytokine signaling of immune cells played a key role in the process of anti-silicosis of GLE. The results of molecular docking showed that the top 10 targets based on the 67 intersection targets were TNF, IL6, B-cell lymphoma 2, cellular tumor antigen p53, Caspase-3 subunit p12, JUN, epidermal growth factor receptor, IL1B, 67 kDa matrix metalloproteinase-9 and prostaglandin G/H synthase 2. The result of protein-protein interaction analysis showed that glycyrrhetinic acid had the strongest affinity with the key targets TNF-α, IL-1β and IL-6, followed by ganoderma acid DM, alismatol C, ganoderma acid β and red sapogenin. ii) The results of histopathological examination showed that the inflammatory response and collagen deposition were alleviated in the lungs of mice with silicosis. The lung mass coefficient, inflammation score, ratio of collagen deposition area and IL-6 expression in lung were lower in mice of the GLE intervention group (all P<0.05), compared with the silicosis model group. However, there was no significant difference in the levels of TNF-α and IL-1β in lung tissues between the two groups (all P>0.05). Conclusion GLE may reduce silica-induced lung inflammation and fibrosis by inhibiting the IL-6 level in lung tissues of mice. Its mechanism is associated with the synergistic action of multi-components, multi-targets and multi-pathways.

19.
مقالة ي صينى | WPRIM | ID: wpr-1039011

الملخص

Protein as the allergens could lead to allergy. In addition, a widespread class of allergens were known as glycans of N-glycoprotein. N-glycoprotein contained oligosaccharide linked by covalent bonds with protein. Recently,studies implicated that allergy was associated with glycans of heterologous N-glycoprotein found in food, inhalants, insect toxins, etc. The N-glycan structure of N-glycoprotein allergen has exerted an influence on the binding between allergens and IgE, while the recognition and presentation of allergens by antigen-presenting cells (APCs) were also affected. Some researches showed thatN-glycan structure of allergen was remodeled by N-glycosidase, such as cFase I, gpcXylase, as binding of allergen and IgE partly decreased. Thus, allergic problems caused by N-glycoproteins could potentially be solved by modifying or altering the structure ofN-glycoprotein allergens, addressing the root of the issue. Mechanism of N-glycans associated allergy could also be elaborated through glycosylation enzymes, alterations of host glycosylation. This article hopes to provide a separate insight for glycoimmunology perspective, and an alternative strategy for clinical prevention or therapy of allergic diseases.

20.
مقالة ي صينى | WPRIM | ID: wpr-1039036

الملخص

Bacterial biofilms gave rise to persistent infections and multi-organ failure, thereby posing a serious threat to human health. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure, high adhesiveness and low drug permeability, and had been found in many human organs or tissues, such as the brain, heart, liver, spleen, lungs, kidneys, gastrointestinal tract, and skeleton. By releasing pro-inflammatory bacterial metabolites including endotoxins, exotoxins and interleukin, biofilms stimulated the body’s immune system to secrete inflammatory factors. These factors triggered local inflammation and chronic infections. Those were the key reason for the failure of traditional clinical drug therapy for infectious diseases.In order to cope with the increasingly severe drug-resistant infections, it was urgent to develop new therapeutic strategies for bacterial-biofilm eradication and anti-bacterial infections. Based on the nanoscale structure and biocompatible activity, nanobiomaterials had the advantages of specific targeting, intelligent delivery, high drug loading and low toxicity, which could realize efficient intervention and precise treatment of drug-resistant bacterial biofilms. This paper highlighted multiple strategies of biofilms eradication based on nanobiomaterials. For example, nanobiomaterials combined with EPS degrading enzymes could be used for targeted hydrolysis of bacterial biofilms, and effectively increased the drug enrichment within biofilms. By loading quorum sensing inhibitors, nanotechnology was also an effective strategy for eradicating bacterial biofilms and recovering the infectious symptoms. Nanobiomaterials could intervene the bacterial metabolism and break the bacterial survival homeostasis by blocking the uptake of nutrients. Moreover, energy-driven micro-nano robotics had shown excellent performance in active delivery and biofilm eradication. Micro-nano robots could penetrate physiological barriers by exogenous or endogenous driving modes such as by biological or chemical methods, ultrasound, and magnetic field, and deliver drugs to the infection sites accurately. Achieving this using conventional drugs was difficult. Overall, the paper described the biological properties and drug-resistant molecular mechanisms of bacterial biofilms, and highlighted therapeutic strategies from different perspectives by nanobiomaterials, such as dispersing bacterial mature biofilms, blocking quorum sensing, inhibiting bacterial metabolism, and energy driving penetration. In addition, we presented the key challenges still faced by nanobiomaterials in combating bacterial biofilm infections. Firstly, the dense structure of EPS caused biofilms spatial heterogeneity and metabolic heterogeneity, which created exacting requirements for the design, construction and preparation process of nanobiomaterials. Secondly, biofilm disruption carried the risk of spread and infection the pathogenic bacteria, which might lead to other infections. Finally, we emphasized the role of nanobiomaterials in the development trends and translational prospects in biofilm treatment.

اختيار الاستشهادات
تفاصيل البحث