الملخص
Background: Atrioventricular nodal reentrant tachycardia (AVNRT) stands as one of the most common forms of paroxysmal supraventricular tachycardia (PSVT), encompassing a wide spectrum of clinical presentations and diagnostic challenges. The aim of this study was to evaluate the assessment of lead aVL (surface ECG) for confirming AVNRT. Methods: This was a prospective observational study and was conducted at the Department of Cardiology and Electrophysiology, National Institute of Cardiovascular Diseases (NICVD), Dhaka, Bangladesh during the period from February 2019 to January 2020. Results: In our study 41 patients (66.1%) had AVNRT and 21 patients (33.9%) had AVRT on the final evaluation. Total 33.9% of patients had aVL notch on ECG. Among patients who had AVNRT, 46.3% had an aVL notch and among patients who had AVRT, 9.5% had an aVL notch on ECG. The difference was statistically significant (p=0.004). Among 21 patients who had aVL notch on ECG, 6 (31.6%) male patients had AVNRT, 13 (64.8%) female patients had AVNRT, 1 (50%) male patients had AVRT and 1 (50%) female patient had AVRT. Conclusions: In conclusion, the interpretation of electrocardiographic criteria, including the aVL notch, plays a pivotal role in confirming the diagnosis of AVNRT and guiding therapeutic interventions.
الملخص
ABSTRACT Background: Triple-negative breast cancer (TNBC) is a subtype of breast cancer (BC) that lacks receptors for targeted therapy. Deeper insight into the molecular mechanisms regulating TNBC metastasis is urgently needed. The epithelial-mesenchymal transition process facilitates the metastasis of neighboring epithelial tumor cells. Protein kinase, membrane-associated tyrosine/threonine 1 (PKMYT1), a member of the Wee family of protein kinases, is upregulated in BC, and its high expression predicts poor prognosis in BC patients. Notch signaling activation is a pathognomonic feature of TNBC. PKMYT1 has been found to induce EMT in non-small cell lung cancer by activating Notch signaling. However, whether PKMYT1 exerts effects on TNBC progression by regulating Notch signaling remains unknown. Objectives: The objective of this study was to investigate whether PKMYT1 exerts effects on TNBC progression by regulating Notch signaling. Methods: Fifty cases of surgically resected BC samples (tumor and adjacent non-tumor tissue samples) were collected from patients diagnosed with BC. We measured the expression of PKMYT1 in clinical samples with real-time quantitative polymerase chain reaction (RT-qPCR). For in vitro analysis, RT-qPCR and Western blotting were conducted to evaluate PKMYT1 expression in TNBC cells. Then, the viability, migration, and invasion of TNBC cells were detected by cell counting kit-8 assays, wound healing assays, and Transwell assays. The EMT event was examined by evaluating the levels of EMT-associated proteins. For in vivo analysis, xenograft models in nude mice were established to explore PKMYT1 roles. E-cadherin and Ki67 expression in xenograft models were estimated by immunohistochemistry staining. Hematoxylin and eosin staining was performed to assess tumor metastasis. The underlying mechanisms by which PKMYT1 affected the malignant phenotypes of TNBC cells were explored by Western blotting measuring the pathway-associated proteins. Results: PKMYT1 was upregulated in BC tissues and cells, and its knockdown prevented cell proliferation, migration, invasion, and EMT event in TNBC. Mechanistically, Notch signaling was inactivated by PKMYT1 depletion, and Notch activation abolished the PKMYT1 silencing-induced inhibition in the malignant phenotypes of TNBC cells. For in vivo analysis, PKMYT1 knockdown inhibited tumorigenesis and metastasis of TNBC. Conclusion: PKMYT1 promotes EMT, proliferation, migration, and invasion of TNBC cells and facilitates tumor growth and metastasis by activating Notch signaling.
الملخص
ObjectiveTo explore the effect of Buzhong Yiqitang on the immune imbalance of helper T cell 17 (Th17)/regulatory T cell (Treg) and Notch1 signaling pathway in mice with autoimmune thyroiditis (AIT). MethodA total of 60 8-week-old NOD.H-2h4 mice were randomly divided into the normal group, model group, western medicine group (selenium yeast tablet, 32.5 mg·kg-1), and low-dose (4.78 g·kg-1·d-1), middle-dose (9.56 g·kg-1·d-1), and high-dose (19 g·kg-1·d-1) Buzhong Yiqitang groups, with 10 mice in each group. The normal group was fed with distilled water, and the other groups were fed with water containing 0.05% sodium iodide for eight weeks. After the animal model of AIT was formed spontaneously, the mice were killed under anesthesia after intragastric administration for eight weeks. Serum anti-thyroglobulin antibodies (TGAb), thyroid-stimulating hormone (TSH), free triiodothyronine (FT3), and free thyroid hormone (FT4) were detected by enzyme-linked immunosorbent assay (ELISA), and thyroid tissue changes were observed by hematoxylin-eosin (HE) staining. The mRNA and protein expressions of retinoid-related orphan receptor-γt (RORγt), interleukin (IL)-17, forkhead box P3 (FoxP3), IL-10, Notch1, and hair division-related enhancer 1 (Hes1) in thyroid tissue were detected by Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot, respectively. ResultCompared with the normal group, the thyroid structure of the model group was severely damaged, and lymphocytes were infiltrated obviously. The levels of serum TGAb, FT3, and FT4 contents were significantly increased, and TSH content was significantly decreased (P<0.01). The mRNA and protein expression levels of RORγt, IL-17, Notch1, and Hes1 were significantly increased, while those of FoxP3 and IL10 were significantly decreased in the model group (P<0.01). Compared with the model group, thyroid structural damage and lymphocyte infiltration were improved in the treatment groups, and serum TGAb, FT3, and FT4 contents were significantly decreased. TSH content was increased, and mRNA and protein expression levels of RORγt, IL-17, Notch1, and Hes1 were decreased. mRNA and protein expression levels of FoxP3 and IL-10 were increased to different degrees (P<0.05, P<0.01), and the middle-dose Buzhong Yiqitang group had the most significant intervention effect. ConclusionBuzhong Yiqitang can alleviate the thyroid structural damage in AIT mice, and its mechanism may be related to improving the abnormal differentiation of Th17/Treg immune cells and inhibiting the activation of the Notch1 signaling pathway.
الملخص
ObjectiveTo investigate the mechanism of Xuefu Zhuyu capsules against atherosclerosis via regulating polarization of macrophages based on Notch1/jagged canonical Notch ligand 1(Jagged1)/Hes family BHLH transcription factor 1(Hes1) signaling pathway. MethodThe mouse models with atherosclerosis were prepared by feeding the mice with an ApoE-/- high-fat diet for four weeks, and they were randomly divided into the model group, Xuefu Zhuyu capsule group, and atorvastatin group. C57BL/6 mice were fed as a normal group. The Xuefu Zhuyu capsule group was intragastrically given Xuefu Zhuyu capsules (0.728 g·kg-1·d-1), and the atorvastatin group was intragastrically given atorvastatin tablet (6.07 mg·kg-1·d-1). The normal group and the model group were given equal volume of the deionized water by intragastric administration, and the intervention lasted for 12 weeks. Aortic plaque morphology was observed by hematoxylin-eosin (HE) staining, and aortic plaque area and lipid deposition were observed by oil red O staining. The positive expression levels of CD86 and CD206 in aortic tissue were detected by immunohistochemistry, and serum levels of tumor necrosis factor (TNF)-α, interleukin(IL)-1β, transforming growth factor (TGF)-β1, and IL-10 were detected by enzyme-linked immunosorbent assay (ELISA). The relative mRNA expressions of inducible nitric oxide synthase (iNOS), arginase-1 (Arg-1), Notch1, Jagged1, and Hes1 in aortic tissue were detected by real-time fluorescence quantitative polymerase chain reaction (Real-time PCR). The relative protein expression of iNOS, Arg-1, Notch1, Jagged1, and Hes1 in aortic tissue was detected by Western blot. ResultCompared with the normal group, the model group had significant aortic plaque and lipid deposition, and the expression levels of pro-inflammatory cytokines TNF-α and IL-1β were increased (P<0.01). The expression level of anti-inflammatory cytokine TGF-β1 showed a downward trend, but the difference was not statistically significant. The mRNA and protein expressions of iNOS were increased (P<0.01). The protein expression of Arg-1 was decreased (P<0.01), and the mRNA expression of related pathway molecule Jagged1, as well as the protein expressions of Notch1, Jagged1, and Hes1 were increased in the model group (P<0.05, P<0.01). Compared with those in the model group, the plaque area and lipid deposition had a decreasing trend in the Xuefu Zhuyu capsule group, and the expressions of TNF-α and IL-1β showed a downward trend. The expression of TGF-β1 was increased (P<0.05), and the expression of macrophage marker CD86 was decreased. The mRNA and protein expressions of iNOS were decreased (P<0.01). The mRNA and protein expressions of Arg-1 were increased (P<0.05, P<0.01). Furthermore, the mRNA and protein expressions of Notch1, Jagged1, and Hes1 were decreased (P<0.01). ConclusionXuefu Zhuyu capsules can reduce aortic plaque area and lipid deposition in mice with atherosclerosis, alleviate inflammation, inhibit M1 macrophages, and promote the expression of M2 macrophages, and the mechanism may be related to the regulation of Notch1/Jagged1/Hes1 signaling pathway.
الملخص
Heart failure is a clinical syndrome caused by various causes of myocardial damage and cardi-ac function decrease that cannot meet the body's metabolic needs.The proinflammatory cytokines play an im-portant role in the process of occurrence and development of heart failure.The Notch1/Jagged1 signaling path-way is related to the proinflammatory cytokines,inflammatory responses and immune responses.This paper discusses the involvement of the Notch1/Jagged1 signaling pathway in the development and development of chronic heart failure by modulating immune inflammation.
الملخص
Objective To investigate the impacts of wogonin(WG)on Th17/Treg cell balance in autoimmune hep-atitis(AIH)rats.Methods A total of 10 rats were randomly selected as the control group.The remaining rats were injected with concanavalin A(ConA,12.5 mg/kg)solution via tail vein to construct AIH model rat,which were ran-domly divided into AIH group,L-WG group(10 mg/kg),M-WG group(20 mg/kg),H-WG group(30 mg/kg),H-WG+VPA group(30 mg/kg WG+300 mg/kg Notch signal pathway activator VPA),10 rats in each group and administered once a day for 10 days.Serum inflammatory factors and liver function indexes were detected by ELISA;HE staining was used to observe the pathological morphology of liver tissue;the level of spleen Th17/Treg cells was detected by flow cytometry;Western blot was used to detect the expression of spleen retinoid acid related orphan receptor γ t(RORγt),fork head box protein P3(Foxp3)and liver Notch signal pathway proteins.Results The liver tissue structure of control group was normal and the staining was clear;In AIH group,the cells of liver tis-sue showed edema,the increase of cell volume led to the compression and narrowing of liver sinuses,and a large number of inflammatory cell infiltration and a small amount of necrosis occurred.The contents of alanine aminotrans-ferase(ALT),aspartate aminotransferase(AST),interleukin(IL)-17 and IL-23,level of Th17 cells,Th17/Treg,the expression of RORγt,Notch,hes family bHLH transcription factor 1 gene(HES1)and hes related family bHLH transcription factor with YRPW motif 1(HEY1)protein in AIH group were greatly higher than those in control group(P<0.05),the contents of IL-10 and TNF-β,level of Treg cells,and level of Foxp3 protein were greatly lower(P<0.05);Compared with AIH group,the liver injury in L-WG group,M-WG group and H-WG group was im-proved,the contents of ALT,AST,IL-17 and IL-23,level of Th17 cells,Th17/Treg,the expression of RORγt,Notch,HES1 and HEY1 protein were greatly lower(P<0.05),the contents of IL-10 and TNF-β,level of Treg cells,and level of Foxp3 protein were greatly higher(P<0.05);VPA reversed the improvement effect of H-WG on AIH rats.Conclusions WG could promote Th17/Treg cell balance in AIH rats by down-regulating Notch signal pathway.
الملخص
Objective To investigate the role of homologous genes absent from the wings of drosophila melanogaster(Notch)signaling pathway in the imbalance of helper T cells 1(Th1)and helper T cells 2(Th2)and the intervention mechanism of Qizhi Zhoufei Granule in chronic obstructive pulmonary disease(COPD).Methods Ten of seventy Wistar rats were selected as the blank control group,and the other rats were established by cigarette smoking combined(CS)with tracheal infusion of lipopolysaccharide(LPS).The COPD model was established by randomly selecting 3 rats in the control group and the model group to verify the success of the model.At the end of modeling,gavage administration was performed.The rats in the model group were randomly divided into model control group,positive control group(67.5 μg·kg-1)and Qizhi Zhoufei Granule high,medium and low treatment group(3.24,1.62,0.81 g·kg-1).Each group was treated with normal saline,dexamethasone acetate suspension and Qizhi Zhoufei Granule suspension at high,medium and low doses.The rats in the blank control group were given the same volume of normal saline as the model control group.After modeling with 28 days and treatment with 28 days,peak inspiratory flow(PIF)and peak expiratory flow(PEF)were detected by the animal lung function test system.Rats were killed to extract lungs,spleen,serum and bronchoalveolar lavage fluid(BALF),hematoxylin-eosin(HE)staining was used to evaluate the pathological changes of lung tissues.The level of tumor necrosis factor-α(TNF-α)in serum and BALF was determined by enzyme-linked immunosorbent assay(ELISA).Flow cytometry was used to detect Th1/Th2 cells in spleen.Immunohistochemistry(IHC)and western blot were used to detect Notch1,Hes1 and Hey1 protein levels in lung tissues.Real-time fluorescence quantitative polymerase chain reaction(Real-Time PCR)was used to detect Notch1,Hes1 and Hey1 gene expression levels in lung tissues.Result Compared with the blank control group,the lung function of the model control group was significantly decreased(P<0.05),inflammatory cell infiltration and bronchial structure destruction occurred in the lung tissue,TNF-α content in serum and BALF increased significantly(P<0.05),the percentage of spleen Th1 cells was significantly decreased(P<0.05),and the percentage of Th2 cells was significantly increased(P<0.05),the protein and mRNA expressions of Notch1,Hes1 and Hey1 in lung tissues were significantly increased(P<0.05),the differences were statistically significant;Compared with the model control group,the lung function of rats in each administration group was significantly increased(P<0.05),the pathological injury of lung tissue was alleviated,TNF-α content in serum and BALF decreased significantly(P<0.05),the percentage of spleen Th1 cells was significantly increased(P<0.05),the percentage of Th2 cells was significantly decreased(P<0.05),the lung tissue of Notch1,Hes1,Hey1 protein and mRNA expression were significantly decreased(P<0.05),the differences were statistically significant.Conclusion Qizhi Zhoufei Granule regulate Th1/Th2 balance by inhibiting Notch signaling pathway,thereby improving pulmonary function and pathological injury,and affecting immune function in COPD rats.
الملخص
Objective To explore the impacts of long non-coding RNA(LncRNA)GNAS antisense RNA1(GNAS-AS1)on the proliferation and migration of gastric cancer(GC)cells by regulating the miR-449a/Notch1 axis.Method Tumor tissue and adjacent tissue samples were collected from 30 patients diagnosed with GC at Sichuan Provincial People's Hospital from September 2013 to September 2017;GC cells AGS were randomly divided into Control group,si-NC group,si-GNAS-AS1 group,si-GNAS-AS1+inhibitor NC group,and si-GNAS-AS1+miR-449a inhibitor group.Real-time fluorescence quantitative PCR method was applied to detect the expres-sion of GNAS-AS1,miR-449a,and Notch1 mRNA;MTT experiments and plate cloning experiments were applied to detect the proliferation;wound healing test was applied to detect cell migration;Transwell experiment was applied to detect cell invasion.Western Blot was applied to detect the expression of Notch1,E-cadherin,Vimentin,and N-cadherin proteins.Double Luciferase reporter gene experiment was applied to verify the relationship between GNAS-AS1 and miR-449a,between miR-449a and Notch1,respectively.Results Compared with adjacent tissues,the expression of GNAS-AS1 and Notch1 mRNA in tumor tissue was increased,the expression of miR-449a was reduced(P<0.05).Compared with the Control group and si-NC group,the expression of GNAS-AS1,OD490 value,number of clones formed,scratch healing rate,number of cell invasions,and the expression of Notch1,Vimentin,and N-cadherin proteins in AGS cells in the si-GNAS-AS1 group reduced,the expression of miR-449a and E-cadherin protein increased(P<0.05).Compared with the si-GNAS-AS1 group and the si-GNAS-AS1+inhibitor NC group,the OD490 value,scratch healing rate,number of cell invasions,Notch1,Vimentin,and N-cadherin expression in the si-GNAS-AS1+miR-449a inhibitor group increased,the expression of miR-449a and E-cadherin protein reduced(P<0.05).GNAS-AS1 targeted and negatively regulated miR-449a expression,while miR-449a targeted and negatively regulated Notch1 expression.Conclusion Silencing GNAS-AS1 may inhibit the expression of Notch1 protein by up-regulating miR-449a,thereby inhibiting the proliferation,migration,and invasion pro-cesses of GC cells.
الملخص
Objective To detecting the expression of nicastrin,N1ICD and hes1 proteins in normal liver tissues and liver cancer tissues of C57BL/6 mice.Methods Twelve 6-week-old male C57BL/6 mice were ran-domly equally divided into the control group and model group.In the model group,the in situ liver cancer model was established with injection of Hepa1-6 cells into the liver,and the control group was treated with injection of the same amount of normal saline.Liver cancer was verified by HE staining.The expression of nicastrin,N1ICD and hes1 proteins in the normal and cancerous liver tissues was detected by IHC and Western blot.Results IHC results showed that nicastrin,N1ICD and hes1 proteins were localized in the hepatic sinusoidal endothelial cells in the normal hepatocytes,but not expressed in the hepatocytes.The model group showed higher expression of nicas-trin protein but lower expression of N1ICD and hes1 protein in the cancer cells compared with the control group.Conclusion NCSTN gene may play a carcinogenic role in mouse hepatocellular carcinoma,while notch1 and hes1 may play a carcinostasis role in the carcinoma.
الملخص
BACKGROUND:The effect of electroacupuncture on the proliferation and differentiation of hippocampal oligodendrocytes in model mice with Alzheimer's disease remains poorly understood while demyelinating reaction related to oligodendrocytes is a common pathological reaction of Alzheimer's disease. OBJECTIVE:To investigate the effects and mechanism of electroacupuncture stimulation of"Baihui"(GV 20),"Fengfu"(GV 16)and bilateral"Shenshu"(BL 23)in Alzheimer's disease model mice on the proliferation and differentiation of endogenous neural stem cells to neurons and oligodendrocytes. METHODS:Forty 6-week-old SPF APP/PS1 transgenic male Alzheimer's disease model mice were randomly divided into electroacupuncture group(n=20)and Alzheimer's disease model group(n=20).Healthy male C57BL/6J mice of the same age were used as normal controls(n=20).The mice in the electroacupuncture group received electroacupuncture at"Baihui"(GV 20),"Fengfu"(GV 16)and bilateral"Shenshu"(BL 23)for 16 weeks(20 minutes/day and one day off a week).After electroacupuncture,Morris water maze was used to detect the changes of learning and memory function.Immunohistochemistry was utilized to detect hippocampal dentate gyrus β-amyloid senile plaques.The expression of BrdU/NeuN and BrdU/GALC in the hippocampal dentate gyrus was detected by immunofluorescence double labeling.Western blot assay was used to detect the expression levels of neuron specific protein Nestin and oligodendrocyte specific protein GALC in the hippocampus.mRNA and protein levels of Notch1 and Hes1 in the hippocampus were detected by real-time fluorescence quantitative PCR and western blot assay. RESULTS AND CONCLUSION:(1)Compared with the normal control group,the ability of learning and memory in the Alzheimer's disease model group decreased significantly;hippocampal dentate gyrus β-amyloid senile plaques increased significantly(P<0.01);the expression of GALC and Nestin in the hippocampus decreased significantly(P<0.01,P<0.05).(2)Compared with the Alzheimer's disease model group,the learning and memory ability of the electroacupuncture group was significantly increased;β-amyloid senile plaque in the hippocampal dentate gyrus decreased significantly(P<0.01).BrdU/NeuN double labeled positive cells in the hippocampal dentate gyrus and Nestin protein expression in the hippocampus increased significantly(P<0.01,P<0.05);GALC expression in hippocampus increased significantly(P<0.01).The mRNA and protein levels of Notch1 in the hippocampus were significantly increased(P<0.05,P<0.01).The mRNA and protein levels of Hes1 in the hippocampus decreased significantly(P<0.05).(3)These findings indicate that electroacupuncture at"Baihui"(GV 20),"Fengfu"(GV 16)and bilateral"Shenshu"(BL 23)of the Alzheimer's disease model infant mice can promote the proliferation and differentiation of endogenous neural stem cells to neurons and oligodendrocytes,which may be regulated through the Notch1/Hes1 pathway.
الملخص
BACKGROUND:Type 2 diabetes is often accompanied by renal dysfunction.Increasing studies have shown that exercise can alleviate metabolic disorders and renal dysfunction in diabetic patients.However,the specific mechanism underlying the renal protective effect of exercise in patients with type 2 diabetes is rarely reported. OBJECTIVE:To investigate whether aerobic exercise can improve renal function in type 2 diabetic rats by inhibiting transforming growth factor β1/Notch1 pathway. METHODS:Male Sprague-Dawley rats were randomly divided into normal control group and diabetes model group.After successful modeling,they were randomly divided into diabetes control group and diabetes exercise group.Rats in the diabetes exercise group were subjected to an 8-week aerobic exercise.Samples were collected after exercise,and the relevant indexes of glucose and lipid metabolism and renal function were detected by automatic biochemical analyzer and ELISA.The microscopic structure of renal cortex was observed by electron microscope.ELISA and RT-PCR were used to detect the expression of related proteins and genes in rat kidney tissue. RESULTS AND CONCLUSION:Compared with the normal control group,fasting blood glucose,total cholesterol,and triglyceride levels and insulin resistance index were significantly increased in the diabetic control group(P<0.05).Aerobic exercise could significantly reduce fasting blood glucose and triglyceride levels(P<0.05).Compared with the normal control group,the diabetic control group had significantly increased contents of urinary microalbumin,serum urea nitrogen and serum creatinine(P<0.01),thickened renal basement membrane,mesangial matrix hyperplasia,accompanied by a certain degree of foot process fusion,and obvious lesion of the kidney.Aerobic exercise could significantly down-regulate the overexpressions of urinary microalbumin,serum urea nitrogen and serum creatinine in type 2 diabetic rats(P<0.01),and significantly improve the pathological changes of the kidney in diabetic rats.Compared with the normal control group,the protein and gene expression levels of transforming growth factor β1,Notch1,Jagged1 and Hes1 in rat kidney tissue were significantly increased in the diabetic control group(P<0.01).Aerobic exercise had a highly significant inhibitory effect on the overexpression of transforming growth factor β1,Notch1 and Jagged1 proteins and genes(P<0.01)and also significantly inhibited the overexpression of Hes1 protein(P<0.05).In conclusion,aerobic exercise can protect renal function and delay the pathological progression of the kidney in diabetic rats,which may be achieved by inhibiting the overexpression of transforming growth factor β1/Notch1 signaling pathway.
الملخص
BACKGROUND:It was found that the ligands and receptors of Notch are both cell membrane surface proteins,which are important proteins to mediate intercellular communication,and the Notch signaling pathway plays a crucial regulatory role in the proliferation and differentiation of mesenchymal stem cells. OBJECTIVE:To review the regulatory mechanism of the Notch signaling pathway on the proliferation and differentiation of mesenchymal stem cells,summarize and clarify the research advance in how the Notch signaling pathway regulates the proliferation and differentiation of mesenchymal stem cells,and provide theoretical support for the future use of stem cells to treat various related diseases. METHODS:By using the computer,the first author searched the relevant studies involving Notch signaling pathway regulation of mesenchymal stem cell proliferation and differentiation on CNKI,Wanfang,VIP,PubMed,Web of Science,and Nature databases with Chinese search terms"mesenchymal stem cells,Notch,Notch signaling pathway,proliferation,differentiation"and the English search terms"mesenchymal stem cells,MSC,Notch,Notch signaling pathway,proliferation,differentiation".Part of the literature was searched in combination with the literature tracing method.Finally,87 articles were included in the review analysis. RESULTS AND CONCLUSION:(1)Notch signaling pathway is a conserved signaling pathway in multicellular organisms,which plays an important role in regulating cell differentiation,proliferation,apoptosis,and the cell cycle by mediating communication between neighboring cells through receptor-ligand binding.(2)Mesenchymal stem cells are a class of adult stem cells with self-proliferative and multi-directional differentiation potential,which can be regulated by external signaling pathways to affect their proliferation and differentiation.Notch signaling pathway,as one of them,when Notch ligands are activated,the Notch proteins will undergo two protein hydrolysis cleavages to release Notch intracellular structural domain NICD,which then enters the nucleus and thus promotes the transcription of target genes to regulate the proliferation and differentiation of mesenchymal stem cells from different sources,such as bone marrow,adipose,and umbilical cord.However,the specific mechanisms that regulate the proliferation and differentiation of mesenchymal stem cells from different tissue sources of the same species are different.(3)The Notch signaling pathway can regulate the differentiation of mesenchymal stem cells into different target cells,but due to different target cells,the expression levels of receptors or ligands in the Notch signaling pathway vary.(4)Clinical targeting of the Notch signaling pathway to promote mesenchymal stem cells for the treatment of various refractory diseases,such as aplastic anemia,severe joint injuries,ischemic strokes,and myocardial infarctions,has a promising application.(5)By exploring the Notch signaling pathway via regulating the expression levels of its receptors and ligands in bone marrow mesenchymal stem cells from rat,mouse,and human,it can be found that the Notch signaling pathway expression levels in the proliferation and differentiation of mesenchymal stem cells from different species origins are also different.(6)The role of mesenchymal stem cells in tissue engineering has been gradually highlighted due to their advantages of safety,low immune rejection,and wide therapeutic prospects.The Notch signaling pathway regulates the proliferation and differentiation of mesenchymal stem cells with a wide range of influencing factors,and subsequent studies should further optimize the influencing factor variables and explore the standardized studies of regulating the proliferation and differentiation of mesenchymal stem cells.
الملخص
BACKGROUND:β-amyloid protein and Tau protein have adverse effects on the cognitive function of Alzheimer's disease patients,and Notch1 and Caspase-3 can regulate the expression of β-amyloid protein and Tau protein.It is not clear whether Notch1 and Caspase-3 mediate the process of aerobic exercise to improve the cognitive ability of Alzheimer's disease patients.At present,there is a lack of studies on the effect of long-term aerobic exercise on the expression of Notch1 and Caspase-3 in the hippocampus of Alzheimer's disease mice. OBJECTIVE:To observe the expression of Notch1 and Caspase-3 in the hippocampus of Alzheimer's disease mice undergoing long-term aerobic exercise and to investigate the effects of Notch1 and Caspase-3 in Alzheimer's disease mice. METHODS:Wild type and APP/PS1 double-transgenic Alzheimer's disease mice aged 3 months were randomly divided into four groups:wild control group,wild exercise group,Alzheimer's disease control group and Alzheimer's disease exercise group,with 20 mice in each group.Mice in the control groups were not subjected to exercise,while those in the exercise groups received aerobic exercise intervention for 5 months.After the exercise intervention,Morris water maze was used to detect the spatial learning and memory ability of mice.Real-time PCR,immunofluorescence and western blot were used to detect the expressions of Aβ1-42,Tau,Notch1 and Caspase-3 in the hippocampal tissues of mice in each group. RESULTS AND CONCLUSION:The spatial learning and memory ability of Alzheimer's mice was significantly worse than that of wild-type mice(P<0.05).The spatial learning and memory ability of mice in the exercise groups were significantly better than that in the corresponding control groups(P<0.05).The expressions of Aβ1-42,Tau,Notch1 and Caspase-3 in the hippocampus were significantly higher in the Alzheimer's disease control group than the wild control group(P<0.05)and were significantly lower in the Alzheimer's disease exercise group than the Alzheimer's disease control group(P<0.05).To conclude,long-term aerobic exercise can improve the spatial learning and memory ability of Alzheimer's disease mice,which may be related to the decreased expression of Notch1,Caspase-3,Aβ1-42 and Tau protein in the hippocampus of Alzheimer's disease mice.
الملخص
BACKGROUND:Abnormal Notch1 signaling pathway is mostly found in the brain of Alzheimer's disease patients,but the role of these signaling pathways in the pathogenesis of Alzheimer's disease has not been fully clarified.Long-term aerobic exercise can alter the expression of Notch1 by affecting the methylation rate of factors related to the Notch1 signaling pathway.However,it is not clear whether aerobic exercise affects hippocampal nerve cell proliferation and histopathological features of Alzheimer's disease mice through the Notch1 signaling pathway. OBJECTIVE:To observe the effects of aerobic exercise on the proliferation and histopathological features of hippocampal nerve cells in Alzheimer's disease mice after DAPT inhibited the Notch1 signaling pathway. METHODS:APP/PS1 double transgenic Alzheimer's disease mice aged 3 months were randomly divided into four groups:control group,exercise control group,inhibitor group,and exercise inhibitor group,with 20 mice in each group.The control group was fed naturally,and the exercise group received aerobic exercise intervention.Both natural feeding and exercise intervention lasted for 20 weeks.The mice were injected with solvent or Notch1 inhibitor at week 18.After 20 weeks,the brain tissue was collected,and Aβ1-42,Tau,Ki67,and Notch1 expression levels were detected by real-time PCR,immunofluorescence,and western blot assay. RESULTS AND CONCLUSION:Compared with the control group,the expressions of Ki67 and Notch1 in the dentate gyrus region of the hippocampus were significantly decreased in the inhibitor group(P<0.05),but there were no significant differences in Aβ1-42 and Tau.The expression of Ki67 in the dentate gyrus region of the hippocampus in the exercise control group was significantly higher than that in the control group,while the expressions of Aβ1-42,Tau,and Notch1 were significantly lower than those in the control group(P<0.05).The expressions of Aβ1-42,Tau,Ki67,and Notch1 in the dentate gyrus region of the hippocampus of the exercise inhibitor group were not significantly different from those of the inhibitor group.In conclusion,the Notch1 signaling pathway may mediate exercise to improve the proliferation and histopathological features of hippocampal nerve cells in Alzheimer's disease mice.
الملخص
BACKGROUND:Astrocytes play an important role in the pathology of central nervous system diseases.The phenotypic and functional changes in astrocytes suggest that it may be an effective therapeutic target for central nervous system diseases.Our previous studies have confirmed that astragaloside can inhibit the lipopolysaccharide-induced astrocyte inflammatory response.Whether astragaloside can regulate the phenotype and function of astrocytes through Notch-1 and its downstream signaling pathway remains unclear. OBJECTIVE:To explore the effect of astragaloside on astrocyte activation and inflammatory response induced by inflammation and its possible mechanism. METHODS:Cerebral cortex astrocytes derived from neonatal C57BL/6 mouse were cultured in vitro.CCK-8 assay was used to determine the optimum concentration of astragaloside and Notch active inhibitor DAPT.The astrocytes were divided into five groups:PBS group,lipopolysaccharide group,lipopolysaccharide + astragaloside group,lipopolysaccharide + DAPT group and lipopolysaccharide + DAPT + astragaloside group.The secretion level of inflammatory factors was detected by ELISA,and the level of nitric oxide was detected by Griess method.The astrocytes and splenic mononuclear cells were co-cultured in Transwell chamber to observe the migration of CD4T cells.The expression of astrocyte activation marker GFAP,A1 marker C3 and A2 marker S100A10 as well as Notch 1 and Jag-1 was detected by immunofluorescence staining.The expressions of CFB,C3,S100A10,PTX3,Notch-1,Jag-1,and Hes were detected by western blot assay. RESULTS AND CONCLUSION:(1)According to the results of CCK8 assay,the final concentration of astragaloside was selected as 25 μmol/L and the final concentration of DAPT was 50 μmol/L for follow-up experiments.(2)Compared with PBS group,interleukin-6,interleukin-12 and nitric oxide secretion levels in the lipopolysaccharide group were significantly increased(P<0.05,P<0.05,P<0.01).Compared with the lipopolysaccharide group,interleukin-6(all P<0.05),interleukin-12(P>0.05,P<0.05,P<0.05)and nitric oxide(P<0.05,P<0.01,P<0.01)secretion significantly reduced in the lipopolysaccharide + astragaloside group,lipopolysaccharide +DAPT group,lipopolysaccharide + DAPT + astragaloside group.(3)Compared with the PBS group,the expression of GFAP that is the marker of activated astrocytes and the migration of CD4 T cells were significantly increased in the lipopolysaccharide group(P<0.01).Compared with the lipopolysaccharide group,astrocyte activation was significantly inhibited and CD4 T cell migration was significantly reduced in the lipopolysaccharide + astragaloside,lipopolysaccharide +DAPT,lipopolysaccharide + DAPT + astragaloside group(P<0.05,P<0.05,P<0.01).(4)Compared with the PBS group,the expressions of A1 markers C3 and CFB in the lipopolysaccharide group were increased(P<0.01,P<0.05),and the expressions of A2 markers S100A10 and PTX3 were decreased(P<0.01,P<0.05).Compared with the lipopolysaccharide group,C3(all P<0.01)and CFB(both P<0.05)were significantly reduced and S100A10(all P<0.01)and PTX3(P<0.05,P<0.05 and P>0.05)were increased in the lipopolysaccharide + astragaloside,lipopolysaccharide +DAPT,lipopolysaccharide + DAPT + astragaloside group.(5)Compared with the PBS group,the expressions of Jag-1,Notch-1 and Hes in the lipopolysaccharide group were significantly increased(all P<0.01).Compared with the lipopolysaccharide group,the expressions of Jag-1(all P<0.01),Notch-1(all P<0.01)and Hes(P<0.05,P<0.01 and P<0.01)were significantly reduced in the lipopolysaccharide + astragaloside,lipopolysaccharide +DAPT,lipopolysaccharide + DAPT + astragaloside group.(6)The results indicate that astragaloside can promote the transformation of astrocytes from A1 to A2 by regulating Notch-1 signaling pathway,reduce the secretion of inflammatory factors and the migration of CD4 T cells,and thus inhibit astrocyte activation and inflammatory response.
الملخص
BACKGROUND:Alzheimer's disease is a degenerative neurological disorder characterized primarily by cognitive impairment.Acupuncture is a kind of traditional Chinese medicine therapy for treating Alzheimer's disease,but its mechanism is not yet clear. OBJECTIVE:To observe the effects of electroacupuncture with"Zhi San Zhen"on the Notch signaling pathway,β-amyloid protein(Aβ)and synaptic plasticity in 5xFAD mice. METHODS:Sixteen male,6-month-old 5xFAD mice,SPF-grade,were randomly divided into the electroacupuncture with"Zhi San Zhen"group(electroacupuncture group)and the model group,with eight mice in each group.Eight SPF-grade,male,6-month-old C57BL/6 mice were used as the wild control(wild)group.The electroacupuncture group received electroacupuncture with"Zhi San Zhen"intervention,5 times a week for 4 consecutive weeks.The model group and the wild group did not receive electroacupuncture intervention.The Morris water maze was used to preliminarily assess their learning and memory abilities.Thioflavin S staining was performed to detect Aβ plaque deposition.Western blot and real-time quantitative polymerase chain reaction(RT-qPCR)were used to measure the expression levels of transmembrane receptor protein Notch-1,Notch 1 intracellular domain(NICD),hairy and enhancer of split 1(Hes 1),hairy and enhancer of split 5(Hes 5),synaptophysin(SYN),postsynaptic density protein-95(PSD-95),and Aβ. RESULTS AND CONCLUSION:Compared with the model group,the wild group and the electroacupuncture group showed shortened escape latency,increased platform crossing times,and longer target quadrant dwell time(P<0.05).Compared with the wild group,the model group had significantly increased deposition of Aβ plaques,while electroacupuncture with"Zhi San Zhen"inhibited the deposition of Aβ plaques in the hippocampus of 5xFAD mice(P<0.05).Compared with the wild group,the model group had decreased mRNA levels of SYN,PSD-95,Notch 1,NICD,Hes 1,and Hes 5 in the hippocampal tissue of mice,and increased mRNA levels of Aβ(P<0.05).Electroacupuncture with"Zhi San Zhen"increased the mRNA levels of SYN,PSD-95,Notch 1,NICD,Hes 1,and Hes 5 in the hippocampal tissue,and decreased the mRNA level of Aβ(P<0.05).Compared with the Wild group,the model group had decreased protein expression levels of SYN,PSD-95,Notch 1,NICD,Hes 1,and Hes 5 in the hippocampal tissue of mice,and increased protein expression levels of Aβ(P<0.05).Electroacupuncture with"Zhi San Zhen"upregulated the protein expression levels of SYN,PSD-95,Notch 1,NICD,Hes 1,and Hes 5,and inhibited the protein expression of Aβ(P<0.05).To conclude,electroacupuncture with"Zhi San Zhen"can improve the learning and memory abilities of 5xFAD mice,possibly by inhibiting the deposition of Aβ protein and activating the Notch signaling pathway in the hippocampus to enhance synaptic plasticity.
الملخص
BACKGROUND:Previous studies have shown that puerarin can inhibit the differentiation of osteoclasts,and the expression of Notch signaling pathway-related proteins such as Notch1,HES1,and Jagged1 is decreased.However,the specific mechanism of the Notch1 signaling pathway for the inhibition of osteoclast differentiation by puerarin is not clear. OBJECTIVE:To explore the effect of Notch signaling pathway on puerarin inhibiting the differentiation of mouse macrophage Raw264.7 into osteoclasts. METHODS:Raw264.7 cells were divided into seven groups for intervention culture.Blank control group was cultured in high-sugar DMEM medium;the osteoclast induction group was cultured in osteoclast induction medium;the puerarin intervention group was cultured with 50 μmol/L puerarin at the same time of osteoclast induction;Notch1 siRNA control group,Notch1 siRNA group,Notch1 overexpression control group and Notch1 overexpression group were transfected with Notch1 siRNA control sequence,Notch1 siRNA,Notch1 overexpression control plasmid and Notch1 overexpression plasmid,respectively,and then cultured with osteoclast induction medium and puerarin.The number and size of osteoclasts were observed by tartrate-resistant acid phosphatase staining,the skeleton formation of osteoclasts was observed by F-actin staining,and the gene expression level of osteoclast formation markers was detected by RT-PCR. RESULTS AND CONCLUSION:Tartrate-resistant acid phosphatase staining results showed that puerarin intervention could inhibit the generation of osteoclasts,Notch1 silencing could further reduce the number of osteoclasts,while the number of osteoclasts in the osteoclast-induced group increased significantly after Notch1 overexpression.The results of F-actin showed that Raw264.7 cells could form a well-defined F-actin ring after osteoclast induction.Puerarin intervention would inhibit the formation of cytoskeleton,and Notch1 silencing could aggravate the inhibitory effect of cytoskeleton formation,while Notch1 overexpression could alleviate this inhibitory effect of puerarin.RT-PCR results showed that puerarin could inhibit the mRNA expression levels of tartrate-resistant acid phosphatase,Cathepsin K and c-Fos,the expression of the above-mentioned three factors decreased significantly after Notch1 gene silencing,and Notch1 overexpression could upregulate the expression of these factors.These finding indicate that puerarin inhibits the differentiation of Raw264.7 cells into osteoclasts through the Notch signaling pathway.
الملخص
Objective@#To investigate the improvement of endoplasmic reticulum stress mediated by microRNANotchl)signaling axis on hypoxia/reoxygenation(H/R)human(miR)-34a-5p/transmembrane fusion protein 1 (es were randomly divided into Control group, H/R group, mimiccardiomyocytes. @*Methods@#Human cardiomyocytNC group, mimic group, inhibitor NC group andinhibitor group. Except the Control group, H/R injury model wasof miR-34a-5p and Notchl were detected by quantitative real.established in other groups. The expression levesurvival rate was detected by thiazolyl blue ( MTT), cell apopto-time polymerase chain reaction(qRT-PCR), celtargeting relationship between miR-34a-5p and Notchl was detec-sis rate was detected by flow cytometry, and theexpressions of transcriptional activator 6(ATF6), inositol demandted by dual luciferase gene reporting method. Thesmic reticulum kinase (PERK) and glucose regulatory protein 78 (GRP78)were detected by Western blot. @*Results@#miR-34a-5p targeted Notchl(P<0.05);compared with Con-apoptosis rate and protein expressions of ATF6, IREl, PERK andtrol group, the expression level of miR-34a-5pGRP78 in H/R group increased, while the cellsurvival rate and Notchl mRNA and protein expressions decreased(P<0.05). Compared with H/R group and minic NC group, miR-34a-5p expression, apoptosis rate , and proteinexpressions of ATF6, IRE1, PERK and GRP78in mimic group increased, while cell survival rate and Notchl mRNA and protein expressions decreased (P <0. 05).Compared with H/R group and inhibitor NC group, the exprespressions of ATF6 , IREl , PERK and GRP78 decreased in inhibi-sion of miR-34a-5p, apoptosis rate and protein etor group,while cell survival rate and Notch1 mINA and protein expressions increased ( P <0.05). @*Conclusion@#miR-34a-5p can inhibit the apoptosis of H/R human cardiomyocytes, possibly through the targeted inhibition ofNotchl-mediated endoplasmic reticulum stress.
الملخص
Objective To investigate the morphological typing and clinical significance of the distal tibiofibular syndesmosis fibular notch based on CT images. Methods According to the inclusion and exclusion ceiteria‚ the imaging data of patients undergoing ankle joint CT examination were analyzed‚ and the inferior tibiofibular joint fibula notch was classified according to the morphological characteristics. The measurements included 8 distances. There were 123 males and 102 females‚ all of whom were Han nationality‚ aged 18-60 years old. Results Retrospectively analyzed the result of 225 patients from December 2013 to December 2022. The distal tibiofibular syndesmosis fibular notch was divided into four types according to morphological characteristics‚ C-shaped (50. 67%)‚ V-shaped (26. 67%)‚ flat-shaped (15. 11%) and L-shaped (7. 56%). The angle between the anterior and posterior facets of the flat shape (145. 56 ± 9. 25)° was the largest and the angle between the anterior and posterior facets of the L shape (125. 07 ± 13. 54)° was the smallest(P< 0. 05); the depth of the notch in the flat shape (3. 11 ± 0. 83) mm was the smallest and in the L shape (4. 47±1. 11) mm was the largest(P<0. 05);The posterior facet length (13. 06 ± 3. 56) mm and anterior tibiofibular gap (3. 83±1. 49) mm on left were larger than on the right side (P<0. 05); The posterior facet length (13. 36 ± 3. 46) mm‚ fibular notch depth (3. 93 ± 1. 10) mm and vertical distance of tibiofibular overlap (9. 10 ± 2. 55) mm larger in men than in women (P<0. 05). Conclusion In this study‚ the data related to the inferior tibiofibular syndesmosis notch were measured and divided into four types according to the shape. The flat inferior tibiofibular syndesmosis notch is more likely to have chronic ankle instability‚ and the fibula is more likely to move forward during anatomical reduction. The inferior tibiofibular syndesmosis of L-shaped and C-shaped notches is more prone to posterior displacement of fibula or poor rotation reduction during anatomical reduction.
الملخص
@#[摘 要] 目的:探究牛蒡子苷元(ARC)通过调控Notch/Hes-1信号通路对口腔鳞状细胞癌(OSCC)HSC-3细胞增殖、凋亡和侵袭的影响及其机制。方法:使用不同质量浓度的ARC处理人HSC-3细胞,CCK-8法检测ARC对细胞增殖活力的影响,以选择适宜的药物浓度。将HSC-3细胞分为对照组、ARC-L组(10 mg/L ARC)、ARC-M组(20 mg/L ARC)、ARC-H组(40 mg/L ARC)和ARC-H+Jagged1/FC组(40 mg/L ARC+1.2 μg/mL Jagged1/FC)。采用EdU法检测细胞增殖能力,划痕愈合实验、Transwell实验和流式细胞术分别检测细胞的迁移、侵袭能力及细胞周期和细胞凋亡率,WB法检测增殖(c-Myc、cyclin D1)、凋亡(BAX、Bcl-2、survivin)、EMT(E-cadherin、vimentin、Snail)及Notch/Hes-1通路(Notch 1、Hes-1、NICD)相关蛋白的表达水平。结果:与0 mg/L相比,10~80 mg/L的ARC均能显著降低HSC-3细胞增殖活力(均P<0.05)。与对照组相比,ARC-L组、ARC-M组和ARC-H组HSC-3细胞EdU阳性率、划痕愈合率、侵袭细胞数、S期和G2/M期细胞占比及c-Myc、cyclin D1、Bcl-2、survivin、vimentin、Snail、Notch 1、Hes-1和NICD蛋白表达均显著降低(均P<0.05),细胞凋亡率、G0/G1期细胞占比及BAX、E-cadherin的蛋白表达均显著升高(均P<0.05),且呈浓度梯度依赖性。同时使用Notch激动剂Jagged1/FC,则可部分逆转ARC对HSC-3细胞增殖、迁移、侵袭、凋亡及相关蛋白表达的作用(均P<0.05)。结论:ARC可能通过抑制Notch/Hes-1信号通路抑制OSCC细胞HSC-3增殖和侵袭并促进细胞凋亡。