الملخص
Objective To investigate the microstructural changes of temporal lobe epilepsy(TLE)in patients with sleep disorders based on diffusion kurtosis imaging(DKI).Methods This research prospectively included 38 TLE patients(case group)and 20 healthy controls(HC)(HC group).Participants used sleep questionnaires to evaluate their sleep status.All TLE patients were divided into groups with and without sleep disorders according to the diagnostic criteria and scale scores of sleep disorders.The mean kurtosis(MK),mean diffusivity(MD),and fractional anisotropy(FA)of the relevant region of interest(ROI)were measured by DKI sequence.The differences of sleep quality scores and DKI parameters between groups were further compared via independent samples t-test and one-way analysis of variance.Results The Epworth sleepiness scale(ESS),Athens insomnia scale(AIS),and Pittsburgh sleep qual-ity index(PSQI)scores of TLE patients with sleep disorders were significantly higher than those of HC group(P<0.05).The FA and MK values in TLE patients were significantly lower than those in HC group,while the MD value of TLE patients were substan-tially higher than that of HC group(P<0.05).The values of MK and FA in left TLE patients with sleep disorders were significantly lower than those of without sleep disorders(P<0.05),while there was no significant difference in MD value between the two groups(P>0.05).MK value of right TLE patients with sleep disor-ders was significantly lower than that of without sleep disorders(P<0.05),however,there were no significant differences in MD and FA values between the two groups(P>0.05).Conclusion Quantitative DKI analysis revealed differences in DKI parameters in TLE patients combined with sleep disorders,inferring a specific white matter fiber damage in this group and providing imaging data to support the personalized treatment and prognostic assessment of these patients.
الملخص
BACKGROUND:At present,the traditional powder sintering method is easy to introduce impurities in the process of preparing porous titanium,and the manufacturing of porous titanium still faces two major problems:impurity pollution and difficult control of the material forming process. OBJECTIVE:To prepare pure porous titanium with certain porosity,and analyze the microstructure evolution and properties of the porous titanium. METHODS:Porous titanium was prepared at a low energy density by selective laser melting technology.The parameter range of porous titanium with large porosity was obtained by measuring the porosity of the formed specimen,and the evolution of the microstructure and mechanical properties of the specimen in the range were analyzed. RESULTS AND CONCLUSION:(1)With the increase in energy density,the porosity of the porous titanium specimen decreased gradually.When the energy density was between 10.61 and 27.78 J/mm3,porous titanium with a porosity of 11.23%-33.67%could be formed.When the energy density was between 27.78-37.88 J/mm3,the forming parts were relatively dense.(2)The phase composition of porous titanium formed was mainly α titanium.With the increase in energy density,the porosity gradually decreased,and the pore morphology changed from irregularly connected pores to closed nearly spherical pores.The powder particles changed from a slightly sintered neck to a continuous fuse.The CT scan results revealed that there were a large number of connected pores in the forming specimen with a large specific surface area and the pore radius was roughly distributed between 2-6 μm at the energy density of 10.61 J/mm3.Simultaneously,porous titanium with compressive strength of 188-1 000 MPa could be obtained at the energy density of 10.61-27.78 J/mm3,which could meet the requirements of biomedical applications.(3)These results have confirmed that the selective laser melting technology can overcome the problems of impurity pollution and long manufacturing cycle caused by the traditional preparation process,and provide an effective solution for the preparation of porous titanium with excellent mechanical properties.
الملخص
BACKGROUND:In recent years,additive manufacturing(also known as 3D printing)has gradually become the mainstream method for producing titanium alloy brackets for removable partial dentures.Heat treatment,as an important method to improve the mechanical properties of 3D printed titanium alloys,has become a current hot topic of attention.OBJECTIVE:To summarize the main heat treatment technologies currently applied to 3D printed titanium alloy specimens(including annealing,solution aging,hot isostatic pressing,and other heat treatments)and their effects on the mechanical properties and microstructure of 3D printed titanium alloy specimens,providing a theoretical basis for improving the heat treatment technology of removable partial denture titanium alloy supports.METHODS:A computer search was conducted on research materials related to 3D printed titanium alloy heat treatment in databases such as CNKI,PubMed,and ScienceDirect.The search period was from 2012 to 2023.A total of 61 articles were selected based on inclusion and exclusion criteria.RESULTS AND CONCLUSION:(1)Using conventional annealing techniques to treat 3D printed titanium alloy specimens,keeping them at 500-900 ℃ for 2-4 hours,can effectively increase the elongation of 3D printed titanium alloy specimens.(2)Compared to conventional annealing techniques,solid solution aging treatment is more complex,and the titanium alloy specimens after solid solution aging treatment exhibit outstanding yield strength and better corrosion resistance.However,the 3D printed titanium alloy specimens after solid solution aging treatment have no advantage in terms of ductility.(3)Hot isostatic pressing treatment can reduce the internal defects of 3D printed titanium alloy specimens,significantly increase the elongation of 3D printed titanium alloy specimens,and increase their fatigue life.(4)Rapid heat treatment can significantly improve the elongation of 3D printed titanium alloy specimens,and the speed is faster.In terms of elongation improvement and heat treatment efficiency,it has more advantages than conventional annealing in the past.(5)The improvement of elongation of 3D printed titanium alloy specimens by cyclic heat treatment exceeds that of conventional annealing.Cyclic heat treatment can significantly improve the grain structure of 3D printed titanium alloy specimens,but the heat treatment time is too long and the efficiency is low.
الملخص
Long-term burden of illness and associated medication usage make osteoporosis(OP) a common complication of respiratory diseases. The pathogenic risk factors and treatment strategies for respiratory diseases related OP are similar to primary OP. However, due to differences in the pathogenesis of each disease, there are distinctions in the characteristics of bone loss and treatment approaches. Therefore, targeted diagnostic and therapeutic plans need to be formulated. This article provides a comprehensive review of secondary OP caused by common respiratory diseases in terms of epidemiological characteristics, related risk factors or possible mechanisms, changes in bone metabolic indexes or characteristics of bone damage, and progress in diagnosis and treatment. The aim of this review is to offer insights into the prevention and treatment of secondary OP related to respiratory diseases and promote the development of a multidisciplinary collaborative approach.
الملخص
ObjectiveTo conduct a systematic comparative study on wild and cultivated Codonopsis pilosula(CP) from three aspects, including characters, microscopy, and contents of primary and secondary metabolites. MethodWild and cultivated CP samples were collected, their characters were measured using vernier caliper, tape measure and balance, the paraffin sections were stained with safranin-fixed green dyeing, and their microstructure were observed under the optical microscope. The content of alcohol-soluble extracts in wild and cultivated CP was determined according to the method for determination of extract under CP in the 2020 edition of Chinese Pharmacopoeia, the starch content was determined by anthrone colorimetry, the content of total polysaccharides was determined by kit method, Fiber analyzer was used to determine the content of fiber components, and ultra performance liquid chromatography(UPLC) was used to determine the content of monosaccharides, disaccharides and some secondary metabolites. Multivariate statistical analysis methods such as principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were employed to screen key differential components between wild and cultivated CP on the basis of variable importance in the projection(VIP) value>1 and P<0.05. ResultIn terms of morphological characteristics, the "lion's head-like" shape, longitudinal wrinkles, and circumferential wrinkles below the root cap of wild CP were more pronounced in wild CP compared to the cultivated ones. Regarding transverse sectional features, wild CP had more fissures on the outer side of the cortex and a larger duramen. Under microscopic examination, wild CP had more stone cells, a larger proportion of xylem, and the presence of cork cells arranged in rings in the xylem, while cultivated CP has a larger proportion of phloem, smaller vessel diameters, and a more loosely arranged vascular system. In terms of primary metabolites, the contents of 45% ethanol-soluble extract and total polysaccharides in cultivated CP were significantly higher than those in the wild ones(P<0.05), the contents of lignin, hemicellulose, cellulose, fructose and glucose in wild CP were significantly higher than those in the cultivated ones(P<0.05), while sucrose content in the cultivated CP was significantly higher than that in the wild ones(P<0.05). Concerning secondary metabolites, the contents of tryptophan and tangshenoside Ⅰ in cultivated CP were significantly higher than those in the wild ones(P<0.05), whereas the contents of lobetyolinin, lobetyol and atractylenolide Ⅲ in wild CP were significantly higher than those in the cultivated ones(P<0.05). ConclusionThere are significant differences between wild and cultivated CP in terms of morphological characteristics, microscopic features and chemical composition. Glucose, fructose, sucrose, tangshenoside Ⅰ, tryptophan and cellulose components are the key differential components between wild and cultivated CP. Wild CP contains more polyacetylenes and fructose, whereas cultivated CP has higher levels of tangshenoside Ⅰ and sucrose, with noticeably lower cellulose content. These distinctions may be related to their growth conditions, growth years and cultivation techniques. Based on the results of this study, it is recommended to increase polyacetylenes and the content ratio of fructose to sucrose as an indicators to characterize different production methods of CP, in order to guide the high-quality production of CP.
الملخص
ObjectiveTo compare wild and cultivated Paeoniae Radix Rubra(PRR) in three aspects, including character, microscope, determination of primary and secondary metabolites. MethodSeventeen batches of wild and nine batches of cultivated PRR were collected,their character data were measured by vernier caliper and scales, and their paraffin sections were made by safranin-fixed green dyeing for the observation of microscopic features. The content of ethanol-soluble extracts and total tannin from wild and cultivated PRR was determined by the method of general principle 2201 and 2202 in the 2020 edition of Chinese Pharmacopoeia, the content of polysaccharides was determined by phenol-sulfuric acid method. Anthrone colorimetry was used to determine the content of starch, and Van Soest method of washing fiber was used to determine the content of fiber. The contents of fructose, glucose and sucrose in wild and cultivated PRR were determined by ultra-high performance liquid chromatography evaporative light scattering detection(UPLC-ELSD), and the secondary metabolites(gallic acid, methyl gallate, catechin, oxypaeoniflorin, albiflorin, paeoniflorin, ellagic acid, 1,3,4,6-tetragalloylglucose, galloylpaeoniflorin, 1,2,3,4,6-O-pentagalloylglucose, naringenin, benzoylpaeoniflorin and benzoylalbiflorin) were determined by UPLC. Principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to analyze the data of wild and cultivated PRR, the contribution of different factors to the difference was determined according to the variable importance in the projection(VIP) value>1 and P<0.05. ResultIn term of characters, wild PRR showed the traditional characteristic of Zaopi Fencha, its outer skin was loose and easy to fall off, its surface had longitudinal furrow and wrinkle, but the outer skin of cultivated PRR was not easy to fall off, and its surface was relatively smooth. The radial texture of xylem of wild PRR cross-section was more obvious, showing radial striations, vacuoles and more cracks, while the radial texture of xylem of cultivated PRR cross-section was not obvious, dense and some had cracks. Microscopically, the number of radial vessels arranged in the xylem of wild PRR was more than that of cultivated PRR, the number of calcium oxalate clusters in the phloem and xylem of wild PRR was more than that of cultivated PRR, while the number of starch grains was significantly higher in cultivated PRR. In terms of the content of primary chemical constituents, the contents of polysaccharides and starch of cultivated PRR were significantly higher than those of wild PRR(P<0.05), while the contents of cellulose, lignin, fructose and glucose of wild PRR were significantly higher than those of cultivated PRR(P<0.05). The results of determination of 13 secondary metabolites showed that the contents of paeoniflorin, methyl gallate, catechin and oxypaeoniflorin in wild PRR were significantly higher than those in cultivated PRR(P<0.05), while the contents of albiflorin, gallic acid, ellagic acid, naringenin, benzoylpaeoniflorin and benzoylalbiflorin were significantly lower than those of cultivated PRR(P<0.05). A total of 10 variables contributing to the differentiation between wild and cultivated PRR were screened, including albiflorin, cellulose, benzoylpaeoniflorin, oxypaeoniflorin, naringenin, ellagic acid, starch, lignin, paeoniflorin and total tannins. ConclusionThere are significant differences between wild and cultivated PRR in characters, microscopic characteristics, contents of primary and secondary metabolites. It is suggested that the content ratio of paeoniflorin and albiflorin, the contents of oxypaeoniflorin and cellulose can be used as indicators to characterize production methods of PRR so as to improve the quality standard of PRR. This study can provide reference for the improvement of quality standard of PRR and the guidance of high quality production of PRR.
الملخص
ObjectiveBased on the traditional quality evaluation methods summarized in previous dynasties, this paper systematically contrasted cultivated Astragali Radix(CA) and wild-simulated Astragali Radix(WA) from the aspects of character, microstructure and chemical composition by modern technological means. MethodThe collected CA and WA were compared in characters and microscopic characteristics in cross section, and comparative analysis were performed on the contents of cellulose, extracts, carbohydrate, total flavonoids, total saponins, etc. Then ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometer(UPLC-Q-TOF-MS) and desorption electrospray ionization mass spectrometry imaging(DESI-MSI) were used to comparatively analyze the secondary metabolites and their spatial distributions in the xylem and phloem of CA and WA. ResultIn terms of characters, the characters and sectional features of WA was consistent with the characteristics of high-quality Astragali Radix, while the CA was quite different from the traditional high-quality Astragali Radix. In terms of microscopy, the phellem layer of CA was thin, and the section fissures were mostly distributed through the cambium in a long strip shape without obvious growth ring characteristics. The cork layer of WA was thick, and the cracks in the section were distributed in the center of the xylem and the outer edge of the phloem in an irregular cavity shape. The cambium was tight without cracks, and had obvious characteristics of a growth ring. In terms of chemical composition, the contents of water-soluble extract, 80% ethanol extract and sucrose of CA was significantly higher than those of WA, while the contents of total saponins, lignin and hemicellulose were significantly lower than those of WA. And the contents of 100% ethanol extract, total polysaccharides and total flavonoids in both of them were generally similar, but slightly higher in WA. The contents of 2 kinds of monoacyl-substituted flavonoid glycosides in the xylem of WA was significantly higher than those of CA, while the contents of 2 kinds of flavonoid aglycones and one flavonoid glycoside were on the contrary. The contents of 7 saponins in phloem of WA were significantly higher than those of CA. ConclusionThere are significant differences between CA and WA in characters, microstructure and chemical components, in which CA has a fast growth rate and a short planting period, and the primary metabolites such as water-soluble extracts and sucrose are more enriched, which is the reason for its firm texture and sweetness being significantly higher than those of WA. However, the contents of lignin, hemicellulose and some secondary metabolites in WA are significantly higher than those in the CA, which are close to the traditional description of characters and quality. Based on the results of this study, it is suggested to strengthen the production of WA, improve the supply capacity of WA, and gradually upgrade the current standard. It is recommended to increase the contents of monoacyl-substituted flavonoid glycosides, total saponins and other indicators that can characterize different production methods, so as to guide the high-quality production of Astragali Radix.
الملخص
Objective@#To study the influence of procyanidins on the bonding strength of dentin bleached by carbamide peroxide to composite resin.@*Methods @#By applying different treatments to dentin bonding interfaces, 120 human third molars were randomly divided into 12 groups (n = 10): W group (no bleaching+deionized water), Wa group (no bleaching+deionized water+aging), WT1 group (no bleaching+5% procyanidins for 1 min), WT1a group (no bleaching+5% procyanidins for 1 min+aging), WT2 group (no bleaching+5% procyanidins for 5 min), WT2a group (no bleaching+5% procyanidins for 5 min+aging), C group (carbamide peroxide+deionized water), Ca group (carbamide peroxide+deionized water+aging), CT1 group (carbamide peroxide+5% procyanidins for 1 min), CT1a group (carbamide peroxide+5% procyanidins for 1 min+aging), CT2 group (carbamide peroxide+5% procyanidins for 5 min), and CT2a group (carbamide peroxide+5% procyanidins for 5 min+aging). The bond strength to composite resin was measured by universal mechanical testing machine, microstructure and the nanoleakages were measured by scanning electron microscope immediately or after the thermal cycling aging test.@*Results@#The immediate bond strength of the bleached groups pretreated with procyanidins for 1 min (P<0.001) and 5 min (P<0.001) was higher than that of Group C, and the difference was statistically significant. Meanwhile, there was no statistically significant difference between Group CT1 and Group CT2 (P = 1.000). After the thermal cycles, the bond strength of each group declined. The differences between Group W and Group Wa (P<0.001) and Group C and Group Ca (P<0.001) were statistically significant, but no significant differences between Group CT1 and Group CT1a (P = 0.052) or Group CT2 and Group CT2a (P = 0.053) were found. The main effects of “aging” (P<0.001), “bleaching” (P<0.001) and “procyanidins” (P<0.001) and the second-order interaction effects of “bleaching * procyanidins” (P = 0.008), “bleaching * aging” (P = 0.024), and “aging * procyanidins” (P<0.001) were statistically significant. SEM observations showed that the hybrid layers in Groups C, CT1 and CT2 were not clear, and the hybrid layers in Groups Ca, CT1a and CT2a were partially destroyed and disintegrated. Under backscattering mode, it was observed that there were a large number of silver nitrate particles in the hybrid layer of Group Ca, and the residual silver ions in the hybrid layer of Groups CT1a and CT2a were decreased. @*Conclusion@# Pretreatment with 5% procyanidins for 1 min can improve the immediate bond strength of dentin bleached by carbamide peroxide to composite resin and maintain bonding durability.
الملخص
Dioscoreae Rhizoma formula granules are made from decoction pieces by decocting, extracting, separating, concentrating, drying and granulating, which have the advantages of simple dispensing, convenient use and easy to take without decoction. However, because Dioscoreae Rhizoma is rich in starch and mucus components, its extract powder and formula granules are poorly soluble and difficult to dissolve or disperse completely within 5 min, and the insoluble material is difficult to dissolve completely even after 24 h in water, which affects the quality evaluation of the formula granules and medication psychology of patients. Therefore, by studying the dissolution process and mechanism of Dioscoreae Rhizoma extract and its formula granules, it was found that the special chemical composition of Dioscoreae Rhizoma, the denaturation of starch and its compounding with protein and other substances during the high temperature extraction process, and the contraction of coating membrane during the spray drying process were combined to form the special microstructure of coating membrane covering starch granules, and it is the root cause of poor solubility of Dioscoreae Rhizoma formula granules. Based on the research on the structure, property and function of the powder, this paper proposed a technical strategy to improve the solubility of Dioscoreae Rhizoma formula granules by powder modification process, and experimentally demonstrated that the modified Dioscoreae Rhizoma formula granules could completely dissolve within 2 min, which solved the technical problem and could provide reference for the improvement of solubility of other similar varieties, and promote the high-quality development of traditional Chinese medicine formula granule industry.
الملخص
AIM: To observe the postoperative changes in macular morphological structure and blood flow density of patients with idiopathic macular epiretinal membrane(IMEM)by optical coherence tomography angiography(OCTA), and explore their correlation with visual acuity.METHOD: Prospective study. A total of 45 cases(45 eyes)with IMEM admitted to our hospital from January 2020 to July 2021 were included. The best corrected visual acuity(BCVA), central macular area thickness(CMT), foveal avascular zone(FAZ)area and changes in blood flow density of superficial capillary plexus(SCP)were observed at 1mo, 1, 3 and 6mo before and after operation.RESULT: The BCVA at 1wk after operation had no significant change compared with preoperative data(P>0.05), while it was improved at other time points(P<0.05). The CMT measured at 1wk after operation was thickened significantly(P<0.05), while it was significantly decreased at 1mo, 3mo and 6mo after operation(P<0.05). The FAZ area measured at 1wk and 1mo after operation had no significant change(P>0.05), while it was significantly enlarged at 3 and 6mo after operation(P<0.05). The SCP measured at 1wk, 1 and 3mo after operation had no significant change(P>0.05), while it was significantly decreased at 6mo after operation(P<0.05). BCVA measured at 3 and 6mo after operation was positively correlated with CMT(r=0.457, 0.615, P=0.032, 0.012).CONCLUSION: The visual acuity of patients with IMEM recovered quickly within 1mo after operation, and then it tended to be stable. However, the recovery of macular foveal morphology and blood flow distribution was slower than that of visual acuity, and there was no obvious correlation with visual acuity.
الملخص
Background At present, a large number of reports focus on the bones of limbs and trunk, while there are few studies on the effect of fluorosis on jawbone which is the inevitable structural basis for the development and treatment of oral diseases. Objective To preliminarily investigate the effect of fluoride exposure on the mechanical properties of jawbone by observing the changes in the intraosseous environment and the maximum load against shearing force (LSFmax) of the jawbone in rats with chronic fluoride treatment. Methods Screening experiment: 48 SD male rats were randomly divided into a control group and three fluoride exposure groups (50, 150, and 250 mg·L−1 fluoride concentration), 12 rats in each group. The fluoride exposure groups were molded by feeding different concentrations of sodium fluoride solution, and the control group drank tap water from Guizhou area. Each group was further divided into 4 subgroups with 3 animals each according to observation time points after 0, 2, 4, and 6 months. The LSFmax of the jawbone was measured with an electronic universal ergometer, the expression of type I collagen (Col1) was shown by Sirius red staining, and the expression of runt-related transcription factor 2 (Runx2) was determined semi-quantitatively by immunohistochemistry at selected time points. Formal experiment: 12 male SD rats were randomly divided into a fluoride exposure group and a control group. The fluoride exposure group were fed with 150 mg·L−1 sodium fluoride solution, and the control group drank tap water from Guizhou. After feeding with fluoride for 5 months, the ergometer was used to measure the LSFmax of the jawbone. Osteoclasts were counted after tartrate resistant acid phosphatase (TRAP) staining. Col1, Runx2, bone morphogenetic protein 2 (BMP-2), alkaline phosphatase (ALP), and cathepsin K (Cath K) were detected semi-quantitatively by immunohistochemistry expression and Sirius red staining. Micro computed tomography (Micro CT) was used to observe the trabecular bone microstructure. Results Screening experiment: The LSFmax of the control group and the 50 mg·L−1 fluoride exposure group reached the peak value at the 2nd month, and the LSFmax of the 50 mg·L−1 fluoride exposure group reached the valley value at the 4th month. The LSFmax of the 150 mg·L−1 fluoride exposure group at the 4th month was higher than that at the 6th month (P<0.05). There was no significant difference in the LSFmax at each time point in the 250 mg·L−1 fluoride exposure group. At the same time point, there was no statistically significant difference in LSFmax among the groups. The Col1 levels of the 50 mg·L−1, 150 mg·L−1, and 250 mg·L−1 fluoride exposure groups were higher than the time point 0 from the 2nd month (P<0.05). The Runx2 showed no statistically significant difference by concentration or time. Formal experiment: After feeding with 150 mg·L−1 fluoride for 5 months, the LSFmax of the fluoride exposure group was greater than that of the control group (P<0.05). The expressions of Col1, Runx2, BMP2, ALP, and Cath K in the fluorosis exposure group were higher than those in the control group (P<0.05). There were no statistically significant differences in osteoclast count or indicators of bone trabecular microstructure. Conclusion Chronic fluoride exposure may increase the shear strength of jaw bone.
الملخص
OBJECTIVE@#To investigate the effect of Yinlai Decoction (YD) on the microstructure of colon, and activity of D-lactic acid (DLA) and diamine oxidase (DAO) in serum of pneumonia mice model fed with high-calorie and high-protein diet (HCD).@*METHODS@#Sixty male Kunming mice were randomly divided into 6 groups by the random number table method: normal control, pneumonia, HCD, HCD with pneumonia (HCD-P), YD (229.2 mg/mL), and dexamethasone (15.63 mg/mL) groups, with 10 in each group. HCD mice were fed with 52% milk solution by gavage. Pneumonia mice was modeled with lipopolysaccharide inhalation and was fed by gavage with either the corresponding therapeutic drugs or saline water, twice daily, for 3 days. After hematoxylin-eosin staining, the changes in the colon structure were observed under light microscopy and transmission electron microscope, respectively. Enzyme-linked immunosorbent assay was used to detect the protein levels of DLA and DAO in the serum of mice.@*RESULTS@#The colonic mucosal structure and ultrastructure of mice in the normal control group were clear and intact. The colonic mucosal goblet cells in the pneumonia group tended to increase, and the size of the microvilli varied. In the HCD-P group, the mucosal goblet cells showed a marked increase in size with increased secretory activity. Loose mucosal epithelial connections were also observed, as shown by widened intercellular gaps with short sparse microvilli. These pathological changes of intestinal mucosa were significantly reduced in mouse models with YD treatment, while there was no significant improvement after dexamethasone treatment. The serum DLA level was significantly higher in the pneumonia, HCD, and HCD-P groups as compared with the normal control group (P<0.05). Serum DLA was significantly lower in the YD group than HCD-P group (P<0.05). Moreover, serum DLA level significantly increased in the dexamethasone group as compared with the YD group (P<0.01). There was no statistical significance in the serum level of DAO among groups (P>0.05).@*CONCLUSIONS@#YD can protect function of intestinal mucosa by improving the tissue morphology of intestinal mucosa and maintaining integrity of cell connections and microvilli structure, thereby reducing permeability of intestinal mucosa to regulate the serum levels of DLA in mice.
الموضوعات
Mice , Male , Animals , Lactic Acid/pharmacology , Intestinal Mucosa , Colon/pathology , Dexamethasone/pharmacology , Diet, High-Protein , Pneumonia/pathologyالملخص
Objective To investigate the changes in plasma amyloid-β (Aβ) level and their relationship with white matter microstructure in the patients with amnesic mild cognitive impairment(aMCI) and vascular mild cognitive impairment (vMCI).Methods A total of 36 aMCI patients,20 vMCI patients,and 34 sex and age matched healthy controls (HC) in the outpatient and inpatient departments of the First Affiliated Hospital of Anhui Medical University were enrolled in this study.Neuropsychological scales,including the Mini-Mental State Examination,the Montreal Cognitive Assessment,and the Activity of Daily Living Scale,were employed to assess the participants.Plasma samples of all the participants were collected for the measurement of Aβ42 and Aβ40 levels.All the participants underwent magnetic resonance scanning to obtain diffusion tensor imaging (DTI) data.The DTI indexes of 48 white matter regions of each individual were measured (based on the ICBM-DTI-81 white-matter labels atlas developed by Johns Hopkins University),including fractional anisotropy (FA) and mean diffusivity (MD).The cognitive function,plasma Aβ42,Aβ40,and Aβ42/40 levels,and DTI index were compared among the three groups.The correlations between the plasma Aβ42/40 levels and DTI index of aMCI and vMCI patients were analyzed.Results The Mini-Mental State Examination and the Montreal Cognitive Assessment scores of aMCI and vMCI groups were lower than those of the HC group (all P<0.001).There was no significant difference in the Activity of Daily Living Scale score among the three groups (P=0.654).The plasma Aβ42 level showed no significant difference among the three groups (P=0.227).The plasma Aβ40 level in the vMCI group was higher than that in the HC group (P=0.014),while it showed no significant difference between aMCI and HC groups (P=1.000).The plasma Aβ42/40 levels in aMCI and vMCI groups showed no significant differences from that in the HC group (P=1.000,P=0.105),while the plasma Aβ42/40 level was lower in the vMCI group than in the aMCI group (P=0.016).The FA value of the left anterior limb of internal capsule in the vMCI group was lower than those in HC and aMCI groups (all P=0.001).The MD values of the left superior corona radiata,left external capsule,left cingulum (cingulate gyrus),and left superior fronto-occipital fasciculus in the vMCI group were higher than those in HC (P=0.024,P=0.001,P=0.003,P<0.001) and aMCI (P=0.015,P=0.004,P=0.019,P=0.001) groups,while the MD values of the right posterior limb of internal capsule (P=0.005,P=0.001) and left cingulum (hippocampus) (P=0.017,P=0.031) in the aMCI and vMCI groups were higher than those in the HC group.In the aMCI group,plasma Aβ42/40 level was positively correlated with FA of left posterior limb of internal capsule (r=0.403,P=0.015) and negatively correlated with MD of the right fonix (r=-0.395,P=0.017).In the vMCI group,plasma Aβ42/40 level was positively correlated with FA of the right superior cerebellar peduncle and the right anterior limb of internal capsule (r=0.575,P=0.008;r=0.639,P=0.002),while it was negatively correlated with MD of the right superior cerebellar peduncle and the right anterior limb of internal capsule (r=-0.558,P=0.011;r=-0.626,P=0.003).Conclusions Plasma Aβ levels vary differently in the patients with aMCI and vMCI.The white matter regions of impaired microstructural integrity differ in the patients with different dementia types in the early stage.The plasma Aβ levels in the patients with aMCI and vMCI are associated with the structural integrity of white matter,and there is regional specificity between them.
الموضوعات
Humans , Diffusion Tensor Imaging , White Matter/diagnostic imaging , Cognitive Dysfunction , Outpatients , Cognition , Amyloid beta-Peptidesالملخص
OBJECTIVE@#To summarize the influence of microstructure on performance of triply-periodic minimal surface (TPMS) bone scaffolds.@*METHODS@#The relevant literature on the microstructure of TPMS bone scaffolds both domestically and internationally in recent years was widely reviewed, and the research progress in the imfluence of microstructure on the performance of bone scaffolds was summarized.@*RESULTS@#The microstructure characteristics of TPMS bone scaffolds, such as pore shape, porosity, pore size, curvature, specific surface area, and tortuosity, exert a profound influence on bone scaffold performance. By finely adjusting the above parameters, it becomes feasible to substantially optimize the structural mechanical characteristics of the scaffold, thereby effectively preempting the occurrence of stress shielding phenomena. Concurrently, the manipulation of these parameters can also optimize the scaffold's biological performance, facilitating cell adhesion, proliferation, and growth, while facilitating the ingrowth and permeation of bone tissue. Ultimately, the ideal bone fusion results will obtain.@*CONCLUSION@#The microstructure significantly and substantially influences the performance of TPMS bone scaffolds. By deeply exploring the characteristics of these microstructure effects on the performance of bone scaffolds, the design of bone scaffolds can be further optimized to better match specific implantation regions.
الموضوعات
Tissue Scaffolds/chemistry , Tissue Engineering/methods , Bone and Bones , Porosityالملخص
Objective:The microstructure, tensile strength, and bursting strength of different brands of hernia meshes were compared and analyzed through experiments to evaluate the performance of different meshes.Methods:The balance and microscope were used to test the weight and microstructure of 15 common meshes and the tensile testing machine and burst testing machine were used to test the tensile and bursting properties of the mesh, and the mechanical properties of the mesh were analyzed.Results:The woven structures of the mesh are diamond, polygon and circle. The average weight of inguinal meshes is 0.08 mg/mm 2, and the average weight of abdominal wall hernia meshes is 0.18 mg/mm 2. The wire diameters of G3 - G6 meshes are larger, while the mesh opening ratio of G12 is lower. In the tensile performance test, it is known that G15 has the highest tensile strength, G12 and G14 have lower tensile strengths in lightweight meshes, and G1, G2, and G7 have lower tensile strengths in lightweight meshes. In the burst performance test, it is known that G3, G9, and G15 have the highest burst strength, while G12, G13, and G14 have the lowest burst strength in lightweight meshes. G1, G2, and G4 have the lowest burst strength in lightweight meshes. Conclusions:The mesh with a polygonal mesh and a large mesh opening ratio has better mechanical properties. The results of this study provide experimental evidence for optimizing hernia meshes, which is expected to provide better support for related research and applications.
الملخص
The effect of cooking on pH, juiciness, instrumental colour and microstructural properties of chicken breast meat was investigated. Industrial skinless chicken breast meat samples were purchased, frozen and sliced into dimensions , thawed and cooked by air frying (AF), baking (BK), deep fat frying (DF) and grilling (GR) at 170, 180 and 1900C for 0, 4, 8, 12 and 16 min. The pH value of the cooked samples increased from 6.05 to 6.25. Cooking methods, temperatures and times each resulted to increase in pH. The results of objective sensory instrumental analyses showed that cooking decreased significantly (p < 0.05) juiciness of cooked chicken breast meat. Samples cooked by BK had the highest juiciness value of 24.91%, while DF cooked samples had the least value of 13.89%.The instrumental analyses increased L*, a*, b* values and browning index. The temperature and time of cooking showed similar effects on juiciness and instrumental colour. Short cooking time (8 min) and 1700C resulted in higher juiciness and best appetizing appearance to the consumers. The microstructure studies showed that raw chicken breast meat had an intact muscle fibres and bundles, but cooking caused disintegration of muscle fibres, perimysial – collagen shrinkage and it resulted to drier samples with big cracks/ voids and big surface damages, particularly in AF, BK and GR cooked products at 1900C for 8 min.
الملخص
Defining and visualizing the three-dimensional (3D) structures of pharmaceuticals provides a new and important tool to elucidate the phenomenal behavior and underlying mechanisms of drug delivery systems. The mechanism of drug release from complex structured dosage forms, such as bilayer osmotic pump tablets, has not been investigated widely for most solid 3D structures. In this study, bilayer osmotic pump tablets undergoing dissolution, as well as after dissolution in a desiccated solid state were examined, and visualized by synchrotron radiation micro-computed tomography (SR-μCT). In situ formed 3D structures at different in vitro drug release states were characterized comprehensively. A distinct movement pattern of NaCl crystals from the push layer to the drug layer was observed, beneath the semi-permeable coating in the desiccated tablet samples. The 3D structures at different dissolution time revealed that the pushing upsurge in the bilayer osmotic pump tablet was directed via peripheral "roadways". Typically, different regions of the osmotic front, infiltration region, and dormant region were classified in the push layer during the dissolution of drug from tablet samples. According to the observed 3D microstructures, a "subterranean river model" for the drug release mechanism has been defined to explain the drug release mechanism.
الملخص
The research on clinical high-risk for psychosis is a hotspot in recent years, which is helpful to the early identification and early intervention of psychosis. White matter fibers are the important structural basis of complex information transmission function among brain regions. The existing literatures show that there are abnormal white matter microstructures in individuals at clinical high-risk for psychosis, which is related to their clinical symptoms and social function. Diffusion tensor imaging is the only non-invasive technique to study the microstructure of brain white matter. This paper reviews the existing evidences of microstructural abnormalities of white matter at clinical high-risk for psychosis by diffusion tensor imaging, in order to comprehensively analyze the potential neurobiomarkers in the early stage of the disease and the pathological evolution characteristics in the development of the disease.
الملخص
AIM:To evaluate the macular microstructural changes in patients with rhegmatogenous retinal detachment(RRD)after silicone oil tamponade by spectral-domain optical coherence tomography(SD-OCT).METHODS:From November 2019 to July 2021, 27 patients with 27 eyes in RRD who underwent vitrectomy combined with silicone oil tamponade in Cangzhou Aier Eye Hospital were enrolled in this study as the observation group, other 30 healthy volunteers with 30 eyes were included in the control group. The best corrected visual acuity(BCVA)of patients before and after operation were observed, and quantified evaluation of the postoperative macular microstructural changes were performed by SD-OCT.RESULTS: The BCVA(LogMAR)of the observation group at 1wk and 3mo after operation(0.61±0.23, 0.69±0.34)were improved compared with those before operation(1.43±0.77)(all P<0.01). The cube volume and average cube thickness in the macular area at 3mo after operation in the observation group were lower than those at 1wk and 1mo after operation in the control group(all P<0.05). There were no differences in the average ganglion cell-inner plexiform layer(GCIPL)thickness, minimum GCIPL thickness, average macular retinal nerve fiber layer(mRNFL)thickness and minimum mRNFL thickness at 1wk, 1 and 3mo after operation in the observation group, but all decreased compared with the control group(all P<0.01). There were 9 eyes with subretinal fluid(SRF)in the observation group during postoperative follow-up, SRF had a tendency to be gradually absorbed, but 1 eye had a secondary macular hole; 3 eyes had ellipsoid zone disruption, which had a tendency to be gradually repaired; 2 eyes had submacular perfluorocarbon liquid; 2 eyes had macular edema.CONCLUSION: SD-OCT can show the microstructure and morphological changes very well in macular area in patients with RRD after silicone oil tamponade, and has important clinical value for the preoperative and postoperative follow-up evaluation of RRD.
الملخص
Objective:To analyze the microstructure of commonly used surgical hemostatic powders and investigate their hemostatic properties.Methods:The microstructures of seven commonly used surgical hemostatic powders were observed by scanning electron microscopy and analyzed by particle size testing, and then the hemostatic properties of the seven commonly used surgical hemostatic powders were evaluated by an in vitro coagulation promotion test and a rabbit liver bleeding model.Results:The average particle size of Aristide hemostatic powder was 45.143 μm, and there were many grooves on the surface of the particles with increased specific surface area. The results of in vitro coagulation promotion tests showed that the absorbance and coagulation index of Aviagen were the lowest, which were 0.039 30±0.006 03 and 3.42, respectively. The rabbit liver bleeding experiment showed that the hemostatic effect of hemostatic powder materials in the experimental group was better than that in the control group (all P<0.001), among which Aviagen and Aristide were more effective. The hemostatic time and the effective bleeding volume of the experimental group and the control group were (44±17) s and (48±9) s, and (63±19) mg and (73±18) mg, respectively, and the differences were statistically significant (all P<0.05). Conclusions:There are many grooves on the surface of Arista granules, which gives them a better performance in homeostasis in surgical applications. Avitene has lower absorbance and coagulation index, and better hemostatic properties.