الملخص
Hypertrophic scar( HS) is a very common skin fibrosis disorder after human skin injury and wound healing. The objective of this study was to investigate the efficacy of cell penetrating peptide TAT-modified liposomes loaded with salvianolic acid B( SAB-TAT-LIP) on proliferation,migration and cell cycle of human skin fibroblasts( HSF),and preliminarily evaluate its effect on prevention and treatment of HS. HSF were cultured in vitro,and MTT assay was used to detect the inhibitory effect of SAB-TAT-LIP on cell proliferation. Cell migration was assessed by Transwell chamber method and scratch method; and cell cycle change was detected by flow cytometry. In vitro cell studies showed that blank liposome basically had no toxic effect on HSF. Different concentrations of SABTAT-LIP inhibited proliferation on HSF in varying degrees after intervention for different periods in a dose and time dependent manner;meanwhile,SAB-TAT-LIP significantly inhibited the migration and invasion of HSF. At the same time,SAB-TAT-LIP could block the cell cycle at G0/G1 phase after intervention for 48 h,P<0.01 as compared with the blank control group. Conclusively,our experimental data quantitatively demonstrate that SAB-TAT-LIP has significant inhibitory effect on cells proliferation,invasion and migration,with blocking effect on G0/G1 phase. This may offer a promising therapeutic strategy for transdermal delivery in prevention and treatment of HS.
الموضوعات
Humans , Benzofurans , Pharmacology , Cell Cycle , Cell Movement , Cell Proliferation , Cell-Penetrating Peptides , Cells, Cultured , Drug Carriers , Fibroblasts , Cell Biology , Liposomes , Skin , Cell Biologyالملخص
Cell-penetrating peptides (CPPs) are short peptides that can penetrate the cell membrane or tissue barrier. CPPs can deliver a variety of biomacromolecules, such as proteins, RNA and DNA, into cells to produce intracellular functional effects. Endocytosis and direct penetration have been suggested as the two major uptake mechanisms for CPPs-mediated cargo delivery. Compared with other non-natural chemical molecules-based delivery reagents, the CPPs have better biocompatibility, lower cytotoxicity, are easily degraded after cargo delivery, and can be fused and recombined expressed with bioactive proteins. Because of these advantages, the CPPs have become an important potential tool for delivery of developing drugs which targets intracellular factors. As a novel delivery tool, the CPPs also show promising application prospects in biomedical researches. This review summarized recent advances regarding the classification characteristics, the cellular uptake mechanisms and therapeutic application potentials of CPPs.
الموضوعات
Biological Transport , Cell Membrane , Cell-Penetrating Peptides , Metabolism , Endocytosisالملخص
O desenvolvimento de resistência antimicrobiana e a consequente seleção de microrganismos multirresistentes consolidam-se como grandes ameaças à saúde global. Neste contexto, a busca por novas drogas antimicrobianas/microbicidas é fundamental e compostos como os peptídeos antimicrobianos (AMPs) tornaram-se alvos atraentes. Os AMPs são compostos químicos de massa molar média e grande diversidade estrutural, produzidos por todos os seres vivos e com capacidade de inibir o crescimento de e/ou matar microrganismos. O AMP Cheferina I (Chef I) foi isolado das raízes de Capsella bursa-pastoris e é resultado da proteólise de uma proteína da família das proteínas ricas em glicina, que em plantas estão relacionadas às funções de defesa e cicatrização. O nosso grupo de pesquisa foi pioneiro no desenvolvimento e estudo de análogos truncados amidados deste AMP atípico rico em glicina (67,9%) e histidina (28,6%), que se mostraram ativos frente às diferentes cepas de Candida e a S. cerevisiae pela internalização/ação celular acompanhada de manutenção da integridade da membrana plasmática; o análogo amidado (Chef Ia) e o análogo marcado com 5(6)-carboxifluoresceína/FAM (FAM-Chef Ia) tiveram as suas atividades antifúngicas potencializadas por íons Zn2+. Este trabalho deu continuidade ao estudo do efeito dos íons metálicos divalentes Zn2+, Cu2+, Ca2+ e Mg2+ nas atividades anticandida/fungistática e candidacida/fungicida a diferentes pHs e forças iônicas, estruturas e localizações intracelulares destes análogos. Os resultados na ausência de íons em pH 5,1 revelaram maior atividade do análogo fluorescente em relação à do não fluorescente. Neste mesmo pH, as atividades anticandida e candidacida de Chef Ia foram influenciadas negativamente pelos íons Ca2+ e Mg2+ (2-4 vezes) enquanto que, na presença de íons Zn2+ as atividades anticandida de ambos os análogos foram aumentadas (Chef Ia: 8-64 vezes; FAM-Chef Ia: 4-32 vezes). Os íons Cu2+ aumentaram a atividade anticandida de Chef Ia (2-4 vezes), mas não a do análogo fluorescente, mas as atividades candidacidas de ambos foram melhoradas (Chef Ia: 2-8 vezes; FAM-Chef Ia: 2 vezes). Em pH 5,1, os íons Zn2+ mantiveram a atividade anticandida de Chef Ia em alta força iônica, mas só FAM-Chef Ia exibiu atividade candidacida. Em pH 7,4 ambos análogos foram inativos em baixa e alta forças iônicas na ausência e presença de Zn2+ ou Cu2+. As maiores porcentagens de folhas-ß-antiparalelas e dobras foram observadas no espectro de DC de Chef Ia em pH 7,4, sendo que aqueles registrados em pH 5,1 e 7,4 em presença de íons Zn2 e Cu2+ indicaram a formação de quelatos estruturalmente distintos. Ambos os peptídeos são bioquelantes em potencial, sendo as proporções peptídeo: íon obtidas as seguintes: FAM-Chef Ia = 1:2 para Cu2+, 1:10 para Zn2+; Chef Ia = 1:1 para Cu2+. A análise da internalização celular de FAM-Chef Ia permitiu a suposição de dois mecanismos de internalização (translocação direta e endocitose), sendo que nas células vivas a presença de Zn2+ afetou negativamente a translocação direta (p 0,0343) e potencializou a endocitose (p 0,0002)
The development of antimicrobial resistance and the consequent selection of multiresistant microorganisms have become major threats to global health. In this context, the search for new antimicrobial/microbicidal drugs is crucial and the antimicrobial peptides (AMPs) have been seen as attractive targets. AMPs are chemical compounds of medium molecular mass and high structural diversity produced by all living beings, capable of inhibiting the growth of microorganisms and killing them. The AMP Shepherin I (Shep I) was isolated from the roots of Capsella bursa-pastoris, being a bioactive peptide encrypted in a glycine-rich protein from a family that in plants are strictly related to defense and healing functions. Our research group has pioneered the development and study of amidated truncated analogues of this atypical glycine- (67.9%) and histidine-rich (28.6%) AMP, which has shown activity against different strains of Candida and S. cerevisiae through cellular internalization with maintenance of the plasma membrane integrity. The amide analogue (Chef Ia) and its fluorescent analog labeled with 5 (6) - carboxyfluorescein / FAM (FAM-Chef Ia) had their antifungal activities potentiated by Zn2+ ions, so the present work continued examining the effect of the divalent metallic ions Zn2+, Cu2+, Ca2+ and Mg2+ on the anticandidal/fungistatic and candidacidal/fungicide activities at different pHs and ionic forces, structures and intracellular locations of these analogues. The results in the absence of those ions at pH 5.1 revealed that the fluorescently labelled analog was more potent than the nonfluorescent. At the same pH, Shep Ia anticandidal and candidacidal activities were negatively influenced by Ca2+ and Mg2+ ions (2-4 fold), whereas in the presence of Zn2+ ions the anticandidal activities of both analogues were increased (Shep Ia: 8-64 fold, FAM- Shep Ia: 4-32 fold). Cu2+ ions increased Shep Ia anticandidal activity (2-4 fold) but not that of FAM-Shep Ia, nevertheless, the candidacidal activities of both analogues were increased (Shep Ia: 2-8 fold, FAM-Shep Ia: 2 fold). Also at pH 5.1, the Zn2+ ions helped retaining the anticandidal activity of Shep Ia at high ionic strength, although only FAM-Shep Ia exhibited candidacidal activity. At pH 7.4 both analogues were inactive at low and high ionic strengths in the absence or presence of Zn2+ or Cu2+. The highest percentages of antiparallel ß-sheet and turns were observed in Shep Ia CD spectrum at pH 7.4, while those recorded at pH 5.1 and 7.4 in the presence of Zn2+ or Cu2+ ions indicated the formation of structurally different chelates. Both peptides are potential biochelates, with the following peptide:ion ratios: FAM-Shep Ia = 1: 2 for Cu2+, 1:10 for Zn2+; Shep Ia = 1: 1 for Cu2+. The analysis of the cellular internalization of FAM-Chef Ia allowed the assumption of two mechanisms of internalization (direct translocation and endocytosis) and in the living cells the presence of Zn2+ negatively affected the direct translocation (p 0.0343) and potentiated endocytosis (p 0.0002)
الموضوعات
Cell-Penetrating Peptides/adverse effects , Anti-Infective Agents/analysis , Plant Roots/adverse effects , Capsella/anatomy & histologyالملخص
Amarogentin is an efficacious Chinese herbal medicine and a component of the bitter apricot kernel. It is commonly used as an expectorant and supplementary anti-cancer drug. β-Glucosidase is an enzyme that hydrolyzes the glycosidic bond between aryl and saccharide groups to release glucose. Upon their interaction, β-glucosidase catalyzes amarogentin to produce considerable amounts of hydrocyanic acid, which inhibits cytochrome C oxidase, the terminal enzyme in the mitochondrial respiration chain, and suspends adenosine triphosphate synthesis, resulting in cell death. Hydrocyanic acid is a cell-cycle-stage-nonspecific agent that kills cancer cells. Thus, β-glucosidase can be coupled with a tumor-specific monoclonal antibody. β-Glucosidase can combine with cancer-cell-surface antigens and specifically convert amarogentin to an active drug that acts on cancer cells and the surrounding antibodies to achieve a killing effect. β-Glucosidase is injected intravenously and recognizes cancer-cell-surface antigens with the help of an antibody. The prodrug amarogentin is infused after β-glucosidase has reached the target position. Coupling of cell membrane peptides with β-glucosidase allows the enzyme to penetrate capillary endothelial cells and clear extracellular deep solid tumors to kill the cells therein. The Chinese medicine amarogentin and β-glucosidase will become an important treatment for various tumors when an appropriate monoclonal antibody is developed.
الموضوعات
Humans , Amygdalin , Therapeutic Uses , Antibodies, Monoclonal , Therapeutic Uses , Antineoplastic Agents , Therapeutic Uses , Cell-Penetrating Peptides , Therapeutic Uses , Iridoids , Therapeutic Uses , Prodrugs , Therapeutic Uses , beta-Glucosidase , Therapeutic Usesالملخص
BACKGROUND: Collagen organization within tissues has a critical role in wound regeneration. Collagen fibril diameter, arrangements and maturity between connective tissue growth factor (CTGF) small interfering RNA (siRNA) and mismatch scrambled siRNA-treated wound were compared to evaluate the efficacy of CTGF siRNA as a future implement for scar preventive medicine. METHODS: Nanocomplexes of CTGF small interfering RNA (CTGF siRNA) with cell penetrating peptides (KALA and MPGΔNLS) were formulated and their effects on CTGF downregulation, collagen fibril diameter and arrangement were investigated. Various ratios of CTGF siRNA and peptide complexes were prepared and down-regulation were evaluated by immunoblot analysis. Control and CTGF siRNA modified cells-populated collagen lattices were prepared and rates of contraction measured. Collagen organization in rabbit ear 8 mm biopsy punch wound at 1 day to 8 wks post injury time were investigated by transmission electron microscopy and histology was investigated with Olympus System and TS-Auto software. RESULTS: CTGF expression was down-regulated to 40% of control by CTGF siRNA/KALA (1:24) complexes (p < 0.01) and collagen lattice contraction was inhibited. However, down-regulated of CTGF by CTGF siRNA/MPGΔNLS complexes was not statistically significant. CTGF KALA-treated wound appeared with well formed-basket weave pattern of collagen fibrils with mean diameter of 128 ± 22 nm (n = 821). Mismatch siRNA/KALA-treated wound showed a high frequency of parallel small diameter fibrils (mean 90 ± 20 nm, n = 563). CONCLUSION: Controlling over-expression of CTGF by peptide-mediated siRNA delivery could improve the collagen orientation and tissue remodeling in full thickness rabbit ear wound.
الموضوعات
Biopsy , Cell-Penetrating Peptides , Cicatrix , Collagen , Connective Tissue Growth Factor , Connective Tissue , Down-Regulation , Ear , Microscopy, Electron, Transmission , Preventive Medicine , Regeneration , RNA, Small Interfering , Wounds and Injuriesالملخص
Cell-penetrating peptides (CPPs) are short amino acids that have been widely used to deliver macromolecules such as proteins, peptides, DNA, or RNA, to control cellular behavior for therapeutic purposes. CPPs have been used to treat immunological diseases through the delivery of immune modulatory molecules in vivo. Their intracellular delivery efficiency is highly synergistic with the cellular characteristics of the dendritic cells (DCs), which actively uptake foreign antigens. DC-based vaccines are primarily generated by pulsing DCs ex vivo with various immunomodulatory antigens. CPP conjugation to antigens would increase DC uptake as well as antigen processing and presentation on both MHC class II and MHC class I molecules, leading to antigen specific CD4+ and CD8+ T cell responses. CPP-antigen based DC vaccination is considered a promising tool for cancer immunotherapy due to the enhanced CTL response. In this review, we discuss the various applications of CPPs in immune modulation and DC vaccination, and highlight the advantages and limitations of the current CPP-based DC vaccination.
الموضوعات
Amino Acids , Antigen Presentation , Cell-Penetrating Peptides , Dendritic Cells , DNA , Immune System Diseases , Immunotherapy , Peptides , RNA , Vaccination , Vaccinesالملخص
The second part of this review deals with the molecules and processes involved in the processing and presentation of the antigenic fragments to the T-cell receptor. Though the nature of the antigens presented varies, the most significant class of antigens is proteins, processed within the cell to be then recognized in the form of peptides, a mechanism that confers an extraordinary degree of precision to this mode of immune response. The efficiency and accuracy of this system is also the result of the myriad of mechanisms involved in the processing of proteins and production of peptides, in addition to the capture and recycling of alternative sources aiming to generate further diversity in the presentation to T-cells.
A segunda parte desta revisão trata das moléculas e processos envolvidos no processamento e apresentação dos fragmentos antigênicos ao receptor de célula-T. Apesar de variar a natureza do antígeno apresentado, a classe mais significativa é a das proteínas, as quais são processadas dentro da célula para enfim serem reconhecidas na forma de peptídeos, o que confere um grau extraordinário de precisão a essa forma de resposta imune. A eficiência e a precisão desse sistema se devem também à miríade de mecanismos envolvidos no processamento de proteínas e produção de peptídeos, além da captura e reciclagem de fontes alternativas de antígenos com o objetivo de gerar ainda maior diversidade na apresentação à célula-T.
الموضوعات
Humans , Antigen Presentation/immunology , Cell-Penetrating Peptides/metabolism , HLA Antigens/metabolism , Major Histocompatibility Complex/immunology , Cell-Penetrating Peptides/immunology , HLA Antigens/immunologyالملخص
The purpose of the study is to construct R8 peptide (RRRRRRRR) and pH sensitive polyethylene glycols (PEG) co-modified liposomes (Cl-Lip) and utilize them in breast cancer treatment. The co-modified liposomes were prepared with soybean phospholipid, cholesterol, DSPE-PEG2K-R8 and PEG5K-Hz-PE (pH sensitive PEG). The size and zeta potential of Cl-Lip were also characterized. The in vitro experiment demonstrated that the Cl-Lip had high serum stability in 50% fetal bovine serum. The cellular uptake of Cl-Lip under different pre-incubated conditions was evaluated on 4T1 cells. And the endocytosis pathway, lysosome escape ability and tumor spheroid penetration ability were also evaluated. The results showed the particle size of the Cl-Lip was (110.4 ± 5.2) nm, PDI of the Cl-Lip was 0.207 ± 0.039 and zeta potential of the Cl-Lip was (-3.46 ± 0.05) mV. The cellular uptake of Cl-Lip on 4T1 cells was pH sensitive, as the cellular uptake of Cl-Lip pre-incubated in pH 6.0 was higher than that of pH 7.4 under each time point. The main endocytosis pathways of Cl-Lip under pH 6.0 were micropinocytosis and energy-dependent pathway. At the same time, the Cl-Lip with pre-incubation in pH 6.0 had high lysosome escape ability and high tumor spheroid penetration ability. All the above results demonstrated that the Cl-Lip we constructed had high pH sensitivity and is a promising drug delivery system.
الموضوعات
Animals , Mice , Cell Line, Tumor , Cell-Penetrating Peptides , Chemistry , Cholesterol , Chemistry , Drug Delivery Systems , Liposomes , Oligopeptides , Chemistry , Particle Size , Phospholipids , Chemistry , Polyethylene Glycolsالملخص
Cell-penetrating peptides (CPPs) offer a non-selective and receptor-independent mode to promote cellular uptake. Although the non-specificity of CPP-mediated internalization allows this approach applicable to a wide range of tumor types potentially, their universality is a significant obstacle to their clinical utility for targeted delivery of cancer therapeutics and imaging agents. Accordingly, many reports have focused on selective switching of systemically delivered inert CPPs into their active form in lesions (tumor). In this review, our attention is mainly confined to such an enzyme-sensitive domain incorporated delivery system with activatable CPPs (ACPPs), which have displayed the exciting strength in balancing the CPPs' pros and cons, and potential in the treatment and diagnosis of some diseases.
الموضوعات
Humans , Cell-Penetrating Peptides , Chemistry , Drug Delivery Systems , Enzymes , Chemistry , Neoplasms , Drug Therapyالملخص
The purpose of this study is to prepare T7 and TAT dual modified liposomes (T7-TAT-LIP) to penetrate through blood brain barrier and target to brain tumor cells. The liposomes were prepared with CFPE, T7 modified PEG-DSPE, TAT modified PEG-DSPE, soybean phospholipid, PEG-DSPE and cholesterol. The CFPE was used to track the cellular uptake efficiency. The density of T7 and TAT and the length of PEG were optimized, and then the liposomes were characterized by particle size, zeta potential, morphology and stability. Afterwards, the cellular uptake by bEnd.3 and C6 cells were evaluated. The results showed that the optimized parameters were 6% of T7, 0.5% of TAT, the molecular weight of PEG for T7 was 2000 and the molecular weight of PEG for TAT was 1000. After optimization, the particle size of T7-TAT-LIP was 118 nm, the zeta potential was -6.32 mV and the particles were spherical. The turbidity and particle size of liposomes were not obviously changed after 24 h incubation in PBS at 37 °C. The particle size and polydispersity index were also stable during 1 month incubation at 4-8 °C. The cellular uptake by both bEnd.3 and C6 cells of T7-TAT-LIP was higher than that of T7 or TAT modified liposomes, suggesting dual modified liposomes possessed better blood brain barrier targeting ability and brain tumor targeting ability than the single ligand modified liposomes.
الموضوعات
Biological Transport , Blood-Brain Barrier , Brain Neoplasms , Drug Therapy , Cell-Penetrating Peptides , Pharmacology , Cholesterol , Liposomes , Particle Size , Phosphatidylethanolamines , Polyethylene Glycolsالملخص
The preparation method, serum stability, efficiency of cellular uptake and apoptosis induction of the cell penetrating peptide TAT and cleavable PEG co-modified liposomes loaded with paclitaxel (C-TAT-Lipo) were investigated. The best preparation procedure was performed by orthogonal test based on single factor screening method. First, the paclitaxel (PTX)-loaded liposomes were prepared by filming-rehydration method, evaluated with entrapment efficiency and polydispersity index. The morphology of C-TAT-Lipo was characterized by transmission electron microscopy. Turbidity variations were monitored in the presence of fetal bovine serum (FBS) to evaluate the serum stability of the liposomes developed here. Next, the efficiency of cellular uptake of different Rho-PE-labeled liposomes on B16F1 cells in vitro was evaluated by confocal laser scanning microscopy (CLSM) and flow cytometry. The quantitative analysis of apoptosis induced by different PTX-loaded liposomes was performed by Annexin V-FITC/PI double staining. The optimal formulation was as follows: Chol : lipid: 1 : 8 (molar ratio); drug : lipid: 1 : 40 (mass ratio); lipid concentration: 3 mmol x L(-1); temperature of hydration: 25 degrees C. The mean size and polydispersity index of C-TAT-Lipo were about (97.97 +/- 3.68) nm and 0.196 +/- 0.037, the zeta potential was (-0.89 +/- 0.45) mV, the entrapment efficiency of paclitaxel was (90.16 +/- 1.53)%. The particle sizes did not exhibit significant variations in 50% FBS over 24 h at 37 degrees C. The efficiency of cellular uptake of the C-TAT-Lipo increased 1.40 fold following the cleavage of PEG. Apoptosis analysis showed 59.3% increase of the apoptosis and necrosis profile of C-TAT-Lipo after the detachment of PEG shells, which was markedly higher than that of N-TAT-LP with or without glutathione and SL, respectively. The results indicate that the C-TAT-Lipo is successfully prepared by filming-rehydration method and shows significant antitumor activities.
الموضوعات
Animals , Mice , Annexin A5 , Apoptosis , Cell Line, Tumor , Cell-Penetrating Peptides , Pharmacology , Fluorescein-5-isothiocyanate , Liposomes , Chemistry , Melanoma, Experimental , Microscopy, Confocal , Paclitaxel , Pharmacology , Particle Size , Polyethylene Glycols , Chemistryالملخص
To develop a cell-penetrating chimeric apoptotic peptide AVPI-LMWP/DNA co-delivery system for cancer therapy, we prepared the AVPI-LMWP/pTRAIL self-assembled complexes containing a therapeutic combination of peptide drug AVPI and DNA drug TRAIL. The chimeric apoptotic peptide AVPI-LMWP was synthesized using the standard solid-phase synthesis. The cationic AVPI-LMWP could condense pTRAIL by electrostatic interaction. The physical-chemical properties of the AVPI-LMWP/pTRAIL complexes were characterized. The cellular uptake efficiency and the inhibitory activity of the AVPI-LMWP/pTRAIL complexes on tumor cell were also performed. The results showed that the AVPI-LMWP/pTRAIL complexes were successfully prepared by co-incubation. With the increase of mass ratio (AVPI-LMWP/DNA), the particle size was decreased and the zeta potential had few change. Agarose gel electrophoresis showed that AVPI-LMWP could fully bind and condense pTRAIL at a mass ratio above 15:1. Cellular uptake efficiency was improved along with the increased ratio of W(AVPI-LMWP)/WpTRAIL. The in vitro cytotoxicity experiments demonstrated that the AVPI-LMWP/pTRAIL (W:W = 20:1) complexes was significantly more effective than the pTRAIL, AVPI-LMWP alone or LMWP/pTRAIL complexes on inhibition of HeLa cell growth. Our studies indicated that the AVPI-LMWP/pTRAIL co-delivery system could deliver plasmid into HeLa cell and induce tumor cell apoptosis efficiently, which showed its potential in cancer therapy using combination of apoptoic peptide and gene drugs.
الموضوعات
Humans , Antineoplastic Agents , Chemistry , Cell-Penetrating Peptides , Chemistry , DNA , Chemistry , Drug Delivery Systems , HeLa Cells , Neoplasms , Drug Therapy , Particle Size , Plasmidsالملخص
Cell-penetrating peptide (CPP) is a kind of small molecular peptide which can pass through a variety of cell membranes. It can carry bioactive macromolecules into cells. Due to lacking of tissue-selecting and targeting behavior, the application of CPP in the field of tumor treatment is limited. Activatable cell- penetrating peptide (ACPP) has brought the dawn to the application of CPP. This review mainly introduces the applications of ACPP in the targeting antitumor drug delivery which was designed based on the differences between tumor microenvironment and normal tissues as well as the exogenous physical stimulation.
الموضوعات
Humans , Cell-Penetrating Peptides , Pharmacology , Drug Delivery Systems , Neoplasms , Drug Therapy , Tumor Microenvironmentالملخص
he aim of this study was to obtain a cell-penetrating cytoglobin (Cygb), which combines the transmembrane function of cell-penetrating peptides TAT with the anti-aging and anti-fibrotic role of cytoglobin. The Cygb gene was complexed with TAT gene by overlapping PCR, inserted into the vector pET22b to construct the recombinant expression plasmid (pET22b-TAT-Cygb) and then transformed into Escherichia coli BL21 (DE3). The fusion protein TAT-Cygb, whose expression was induced by lactose, was purified by CM Sepharose Fast Flow Protocol and verified by Western blotting. The final TAT-Cygb had a molecular weight of 23 kDa with 95% purity, as shown by SDS-PAGE. As demonstrated by bioactivity experiments, TAT-Cygb exhibited a high specific peroxidase activity up to (422.30 ± 0.36) U/mg. Both TAT-Cygb and Cygb pretreatment group could protect Hacat cells against oxidation of H2O2, but only TAT-Cygb treatment group could remedy cells injuried by H2O2 (RGR = 98%), which was significantly different from Cygb treatment group (RGR = 79%). We successfully obtained the bioactive and cell-penetrating fusion protein TAT-Cygb that has the potential application in anti-aging, anti-fibrotic and anti-cancer.
الموضوعات
Humans , Blotting, Western , Cell Line , Cell-Penetrating Peptides , Electrophoresis, Polyacrylamide Gel , Escherichia coli , Metabolism , Gene Products, tat , Genetic Vectors , Globins , Hydrogen Peroxide , Recombinant Fusion Proteinsالملخص
The aim of the study is to establish a platform to deliver therapeutic proteins into target cells through a polyarginine-based cell penetrating peptide. To facilitate the expression of therapeutic proteins, a pSUMO (Small Ubiquitin-like Modifier)-R9-EGFP (enhanced green fluorescence protein) prokaryotic expression vector was constructed. After induction, the fusion protein SUMO-R9-EGFP was efficiently expressed. To validate the cell penetrating ability of the fusion protein, HepG2 cells were incubated with the purified R9-EGFP or EGFP protein as control, internalization of the fluorescent proteins was examined by either flow cytometry or confocal microscopy. The result obtained by flow cytometry showed that the R9-EGFP fusion protein could efficiently penetrate into the HepG2 cells in a dose and time-dependent manner. In contrast, the fluorescence was barely detected in the HepG2 cells incubated with EGFP control. The fluorescence intensity of the R9-EGFP treated cells reached plateau phase after 1.5 h. The result obtained by confocal microscopy shows that R9-EGFP efficiently entered into the HepG2 cells and was exclusively located in the cytoplasm, whereas, no fluorescence was detected in the cells incubated with the EGFP control. The heparin inhibition experiment showed that heparin could inhibit penetrating effect of the R9-EGFP protein by about 50%, suggesting that the penetrating ability of the fusion protein is heparin-dependent. In summary, the study has established a platform to deliver therapeutic proteins into target cells through a polyarginine-based penetrating peptide.
الموضوعات
Humans , Cell-Penetrating Peptides , Genetics , Pharmacology , Genetic Vectors , Genetics , Green Fluorescent Proteins , Genetics , Hep G2 Cells , Peptides , Genetics , Metabolism , Protein Transport , Recombinant Fusion Proteins , Genetics , Pharmacologyالملخص
The purpose of this study is to investigate the penetration effects and mechanism of N-arginine chitosan (ACS). This novel transdermal enhancer with a mimetic structure of cell-penetration peptides was synthesized by introducing hydrophilic arginine groups to the amino-group on chitosan's side chain. The structure of ACS was confirmed by FT-IR, 1H NMR and element analysis. In addition, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) was used to study the protein conformation and the water content of stratum corneum, and the result suggested that ACS can change the orderly arrangement of the molecules in the stratum corneum, making the stack structure of keratin become loose. And ACS can increase the water content of the stratum corneurn. Inverted fluorescence microscope and flow cytometry were used to examine penetration effect of ACS on Hacat cell. The result confirmed that the uptake of ACS was enhanced with increased substitution degree of arginine by 4-8 folds compared to chitosan. In vitro penetration studies on three electrical types of drugs were carried out using three model drugs of negatively charged aspirin, positively charged terazosin and neutral drug isosorbide mononitrate by the method of Franz diffusion cells. The results showed that ACS has obviously penetration of the negatively charged drug aspirin, and certain penetration of neutral drug issorbide mononitrate, but inhibition of positively charged terazosin. In vivo imaging technology research results show that the ACS can significantly enhance the fluorescence intensity of morin, which is the auto-fluorescence anionic drug. These obtained results suggested that ACS, as a promising transdermal enhancer, can change the structure of the keratinocytes and analog penetrating peptides promote absorption, but have certain selectivity for the drug.
الموضوعات
Animals , Humans , Male , Mice , Administration, Cutaneous , Arginine , Chemistry , Pharmacology , Aspirin , Pharmacokinetics , Cell Line , Cell Survival , Cell-Penetrating Peptides , Chemistry , Pharmacology , Chitosan , Chemistry , Pharmacology , Drug Carriers , Isosorbide Dinitrate , Pharmacokinetics , Keratinocytes , Cell Biology , Prazosin , Pharmacokinetics , Skin Absorptionالملخص
To enhance the penetration of P53 into tumor cells by fusion it with the cell penetrating peptide 9R. The fusion gene of 9R-p53 was cloned into the expression vector. The fusion protein, CPPs-P53, was expressed and purified. We detected the rate of cell growth inhibition and apoptosis by MTT and Annexin-V-FITC/PI double stained method respectively for measuring its effect on tumor cells. CPPs-P53 and P53 were successfully expressed and purified, the purity of both proteins reached up to 90%. MTT assay showed that the cell growth inhibition by CPPs-P53 was more efficient than P53, and the rate of cell growth inhibition is dose-dependent. The apoptosis experiment showed that P53 could induce apoptosis of tumor cells. Compared with the P53, CPPs-P53 had a more significant effect in inducing cell apoptosis (**P < 0.01). The CPPs-P53 shows more significant effects than P53 in inhibiting cell growth and inducing apoptosis on tumor cells.
الموضوعات
Humans , Apoptosis , Cell Line, Tumor , Cell-Penetrating Peptides , Pharmacology , Tumor Suppressor Protein p53 , Pharmacologyالملخص
To investigate the rat intestinal absorption of stearic acid-octaarginine (SA-R8) modified solid lipid nanoparticles containing paclitaxel (SA-R8-PTX-SLN), compared with the commercially available preparation of PTX (Taxol) and PTX-loaded solid lipid nanoparticles (PTX-SLN), the in situ intestinal absorption of SA-R8-PTX-SLN was investigated by means of single-pass rat intestinal perfusion technique. The absorptions of the preparations were investigated at different intestinal segments, different drug concentrations and in the presence of P-glycoprotein inhibitor (verapamil). The results showed that PTX could be absorbed at each intestinal segment and the three preparations all showed maximum absorptions at the duodenum. The cumulative absorptions of three preparations at each intestinal segment appeared SA-R8-PTX-SLN > PTX-SLN > Taxol (P < 0.05). SA-R8-PTX-SLN showed a liner absorption manner at the duodenum in the examined drug concentration range. The cumulative absorptions of Taxol and PTX-SLN were significantly promoted after the addition of P-glycoprotein inhibitor (verapamil) into the preparation (P < 0.05), but absorption of SA-R8-PTX-SLN existed no significantly difference compared with the preparation without verapamil (P > 0.05). SA-R8 and SLN might both effectively improve the oral absorption of PTX in the intestinal tract.
الموضوعات
Animals , Male , Rats , ATP Binding Cassette Transporter, Subfamily B, Member 1 , Antineoplastic Agents, Phytogenic , Chemistry , Pharmacokinetics , Cell-Penetrating Peptides , Chemistry , Drug Carriers , Intestinal Absorption , Lipids , Chemistry , Nanoparticles , Oligopeptides , Chemistry , Paclitaxel , Chemistry , Pharmacokinetics , Perfusion , Rats, Sprague-Dawley , Stearic Acids , Chemistry , Verapamil , Pharmacologyالملخص
Intracellular transduction of hydrophilic macromolecules has been problematic owing to the biochemical restriction imposed by lipid bilayer of the cytoplasmic membrane. Several technologies have been developed to improve the intracellular delivery of the large molecules for therapeutic purpose, including cell penetrating peptide. Cell penetrating peptides or cell permeable peptides (CPPs) were initially discovered based on the potency of certain full-length proteins or proteins to translocate across the plasma membrane. Currently, CPPs are broadly applied for intracellular delivery of biologically functional molecules in vivo and vitro, varying from small molecules, peptides, proteins, liposomes and nucleic acids. With introducing the history and characteristics of CPPs, this review will focus on the intracellular transduction mechanism and application of CPPs.
الموضوعات
Cell Membrane , Cell-Penetrating Peptides , Endocytosis , Lipid Bilayers , Liposomes , Nucleic Acids , Peptides , Proteinsالملخص
A novel chitosan derivant, N-octyl-N-arginine chitosan (OACS) with a mimetic structure of cell-penetrating peptides was synthesized by introducing hydrophilic arginine groups and hydrophobic octyl groups to the amino-group on chitosan's side chain. Structure of the obtained polymer was characterized by FT-IR and 1H NMR. The substitution degree of octyl and arginine groups was calculated through element analysis and spectrophotometric method, separately. The critical micelle concentration of OACS was 0.12 - 0.27 mgmL(-1) tested by fluorescence spectrometry. The solubility test showed OACS could easily dissolve in pH 1 - 12 solutions and self-assemble to form a micelle solution with light blue opalescence. The OACS micelles have a mean size of 158.4 - 224.6 nm, polydisperse index of 0.038 - 0.309 and a zeta potential of +19.16 - +30.80 mV determined by malvern zetasizer. AFM images confirmed free OACS micelle has a regular sphere form with a uniform particle size. MTT test confirmed that OACS was safe in 50 - 1 000 micromol-L(-1). The result of HepG2 cell experiment showed that the cell internalization of OACS micelles enhanced with increased substitution degree of arginine by 40 folds compared to chitosan. Thus, OACS micelles were a promising nano vehicle with permeation enhancement and drug carrier capability.