Your browser doesn't support javascript.
loading
تبين: 20 | 50 | 100
النتائج 1 - 20 de 371
المحددات
1.
مقالة ي الانجليزية | LILACS, BBO | ID: biblio-1535004

الملخص

ABSTRACT Objective: To identify the salivary metabolites profile of Mucopolysaccharidosis (MPS) types I, II, IV, and VI patients. Material and Methods: The participants were asked to refrain from eating and drinking for one hour before sampling, performed between 7:30 and 9:00 a.m. Samples were centrifuged at 10.000 × g for 60 min at 4°C, and the supernatants (500µl) were stored at −80°C until NMR analysis. The salivary proton nuclear magnetic resonance (1H-NMR) spectra were acquired in a 500 MHz spectrometer, and TOCSY experiments were used to confirm and assign metabolites. Data were analyzed descriptively. Results: Differences in salivary metabolites were found among MPS types and the control, such as lactate, propionate, alanine, and N-acetyl sugar. Understanding these metabolite changes may contribute to precision medicine and early detection of mucopolysaccharidosis and its monitoring. Conclusion: The composition of low molecular weight salivary metabolites of mucopolysaccharidosis subjects may present specific features compared to healthy controls.


الموضوعات
Humans , Male , Female , Saliva , Magnetic Resonance Spectroscopy/instrumentation , Mucopolysaccharidoses/pathology , Metabolomics , Proton Magnetic Resonance Spectroscopy/instrumentation , Cross-Sectional Studies/methods
2.
Chinese Journal of Epidemiology ; (12): 521-528, 2023.
مقالة ي صينى | WPRIM | ID: wpr-985522

الملخص

Identifying risk factors of the disease are one of the main tasks of epidemiology. With the advancement of omics technologies (e.g., genome, transcriptome, proteome, metabolome, and exposome), cancer etiology research has entered the stage of systems epidemiology. Genomic research identifies cancer susceptibility loci and uncovers their biological mechanisms. Exposomic research investigates the impact of environmental factors on biological processes and disease risks. The metabolome is downstream of biological regulatory networks, reflecting the effects of the gene, environment, and their interactions, which can help elucidate the biological mechanisms of genetic and environmental risk factors and identify new biomarkers. Here, we reviewed the applications of genomic, exposomic, and metabolomic studies in the etiologic research on cancer. We summarized the importance of multi-omics approaches and systems epidemiology in cancer etiology research and outlined future perspectives.


الموضوعات
Humans , Multiomics , Genomics , Metabolomics , Neoplasms/genetics , Biomarkers
3.
Chinese Journal of Cardiology ; (12): 722-730, 2023.
مقالة ي صينى | WPRIM | ID: wpr-984710

الملخص

Objective: To reveal the similarities and differences in myocardial metabolic characteristics between heart failure with preserved ejection fraction (HFpEF) and heart failure with reduced ejection fraction (HFrEF) mice using metabolomics. Methods: The experimental mice were divided into 4 groups, including control, HFpEF, sham and HFrEF groups (10 mice in each group). High fat diet and Nω-nitroarginine methyl ester hydrochloride (L-NAME) were applied to construct a"two-hit"HFpEF mouse model. Transverse aortic constriction (TAC) surgery was used to construct the HFrEF mouse model. The differential expression of metabolites in the myocardium of HFpEF and HFrEF mice was detected by untargeted metabolomics (UHPLC-QE-MS). Variable importance in projection>1 and P<0.05 were used as criteria to screen and classify the differentially expressed metabolites between the mice models. KEGG functional enrichment and pathway impact analysis demonstrated significantly altered metabolic pathways in both HFpEF and HFrEF mice. Results: One hundred and nine differentially expressed metabolites were detected in HFpEF mice, and 270 differentially expressed metabolites were detected in HFrEF mice. Compared with the control group, the most significantly changed metabolite in HFpEF mice was glycerophospholipids, while HFrEF mice presented with the largest proportion of carboxylic acids and their derivatives. KEGG enrichment and pathway impact analysis showed that the differentially expressed metabolites in HFpEF mice were mainly enriched in pathways such as biosynthesis of unsaturated fatty acids, ether lipid metabolism, amino sugar and nucleotide sugar metabolism, glycerophospholipid metabolism, arachidonic acid metabolism and arginine and proline metabolism. The differentially expressed metabolites in HFrEF mice were mainly enriched in arginine and proline metabolism, glycine, serine and threonine metabolism, pantothenate and CoA biosynthesis, glycerophospholipid metabolism, nicotinate and nicotinamide metabolism and arachidonic acid metabolism, etc. Conclusions: HFpEF mice have a significantly different myocardial metabolite expression profile compared with HFrEF mice. In addition, biosynthesis of unsaturated fatty acids, arachidonic acid metabolism, glycerophospholipid metabolism and arginine and proline metabolism are significantly altered in both HFpEF and HFrEF mice, suggesting that these metabolic pathways may play an important role in disease progression in both types of heart failure.


الموضوعات
Mice , Animals , Heart Failure/metabolism , Stroke Volume , Chromatography, Liquid , Tandem Mass Spectrometry , Metabolomics , Arachidonic Acids , Proline
4.
Journal of Forensic Medicine ; (6): 596-600, 2023.
مقالة ي الانجليزية | WPRIM | ID: wpr-1009392

الملخص

Wound age estimation is the core content in the practice of forensic medicine. Accurate estimation of wound age is a scientific question that needs to be urgently solved by forensic scientists at home and abroad. Metabolomics techniques can effectively detect endogenous metabolites produced by internal or external stimulating factors and describe the dynamic changes of metabolites in vivo. It has the advantages of strong operability, high detection efficiency and accurate quantitative results. Machine learning algorithm has special advantages in processing high-dimensional data sets, which can effectively mine biological information and truly reflect the physiological, disease or injury state of the body. It is a new technical means for efficiently processing high-throughput big data. This paper reviews the status and advantages of metabolomic techniques combined with machine learning algorithm in the research of wound age estimation, and provides new ideas for this research.


الموضوعات
Algorithms , Machine Learning , Forensic Medicine , Metabolomics , Big Data
5.
Journal of Forensic Medicine ; (6): 373-381, 2023.
مقالة ي الانجليزية | WPRIM | ID: wpr-1009368

الملخص

OBJECTIVES@#To explore the potential biomarkers for the diagnosis of primary brain stem injury (PBSI) by using metabonomics method to observe the changes of metabolites in rats with PBSI caused death.@*METHODS@#PBSI, non-brain stem brain injury and decapitation rat models were established, and metabolic maps of brain stem were obtained by LC-MS metabonomics method and annotated to the HMDB database. Partial least square-discriminant analysis (PLS-DA) and random forest methods were used to screen potential biomarkers associated with PBSI diagnosis.@*RESULTS@#Eighty-six potential metabolic markers associated with PBSI were screened by PLS-DA. They were modeled and predicted by random forest algorithm with an accuracy rate of 83.3%. The 818 metabolic markers annotated to HMDB database were used for random forest modeling and prediction, and the accuracy rate was 88.9%. According to the importance in the identification of cause of death, the most important metabolic markers that were significantly up-regulated in PBSI group were HMDB0038126 (genipinic acid, GA), HMDB0013272 (N-lauroylglycine), HMDB0005199 [(R)-salsolinol] and HMDB0013645 (N,N-dimethylsphingosine).@*CONCLUSIONS@#GA, N-lauroylglycine, (R)-salsolinol and N,N-dimethylsphingosine are expected to be important metabolite indicators in the diagnosis of PBSI caused death, thus providing clues for forensic medicine practice.


الموضوعات
Rats , Animals , Metabolomics/methods , Brain Injuries , Biomarkers/metabolism , Brain Stem/metabolism
6.
مقالة ي صينى | WPRIM | ID: wpr-1008871

الملخص

This article analyzed the mechanism of Danggui Sini Decoction(DSD) in improving kidney injury caused by blood stasis syndrome(BSS) in rats. Firstly, 32 female SD rats were randomly divided into the following four groups: a normal group and a BSS group, both receiving an equal amount of distilled water by gavage; a normal+DSD group and a BSS+DSD group, both receiving 5.103 g·kg~(-1) DSD orally for a total of 14 days. Daily cold water bath was given to establish the BSS model, and on the 14th day, BSS rats were subcutaneously injected with 0.8 mg·kg~(-1) adrenaline. Normal rats were subjected to the water bath at 37 ℃ and injected with an equal volume of distilled water. After the experiment, 24-hour urine, serum, and kidney samples were collected for metabolomic analysis, biochemical measurements, and hematoxylin-eosin(HE) staining. The study then employed ~1H-NMR metabolomic technology to reveal the metabolic network regulated by DSD in improving BSS-induced kidney injury and used network pharmacology to preliminarily elucidate the key targets of the effectiveness of DSD. Pathological and biochemical analysis showed that DSD intervention significantly reduced inflammation and abnormal levels of blood creatinine, blood urea nitrogen, and urine protein in the kidneys. Metabolomic analysis indicated that DSD attenuated BSS-induced kidney injury primarily by regulating 10 differential metabolites and three major metabolic pathways(taurine and hypotaurine metabolism, citrate cycle, and acetaldehyde and dicarboxylic acid metabolism). Network pharmacology analysis suggested that the protective effect of DSD against BSS-induced kidney injury might be related to two key genes, ATP citrate lyase(ACLY) and nitric oxide synthase 2(NOS2), and two main metabolic pathways, i.e., arginine biosynthesis, and arginine and proline metabolism. This study, from the perspective of network regulation, provides initial insights and evidence into the mechanism of DSD in improving kidney injury induced by BSS, offering a basis for further investigation into the molecular mechanisms underlying its efficacy.


الموضوعات
Rats , Female , Animals , Rats, Sprague-Dawley , Network Pharmacology , Drugs, Chinese Herbal/chemistry , Metabolomics , Kidney , Arginine , Water
7.
مقالة ي صينى | WPRIM | ID: wpr-1008864

الملخص

The study investigated the effects of different processed products of Polygonati Rhizoma(black bean-processed Polygonati Rhizoma, BBPR; stewed Polygonati Rhizoma, SPR) on the urinary metabolites in a rat model of Alzheimer's disease(AD). Sixty SPF-grade male SD rats were randomized into a control group, a model group, a donepezil group, a BBPR group, and a SPR group, with twelve rats in each group. Other groups except the control group were administrated with D-galactose injection(100 mg·kg~(-1)) once a day for seven weeks. The control group was administrated with an equal volume of normal saline once a day for seven consecutive weeks. After three weeks of D-galactose injection, bilateral hippocampal Aβ_(25-35) injections were performed for modeling. The rats were administrated with corresponding drugs(10 mL·kg~(-1)) by gavage since week 2, and the rats in the model and control group with an equal volume of double distilled water once a day for 35 continuous days. The memory behaviour and pathological changes in the hippocampal tissue were observed. The untargeted metabolites in the urine were detected by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UPLC-Q/TOF-MS). Principal component analysis(PCA) and orthogonal partial least square-discriminant analysis(OPLS-DA) were employed to characterize and screen differential metabolites and potential biomarkers, for which the metabolic pathway enrichment analysis was conducted. The results indicated that BBPR and SPR increased the new object recognition index, shortened the escape latency, and increased the times of crossing the platform of AD rats in the Morris water maze test. The results of hematoxylin-eosin(HE) staining showed that the cells in the hippocampal tissue of the drug administration groups were closely arranged. Moreover, the drugs reduced the content of interleukin-6(IL-6, P<0.01) and tumor necrosis factor-α(TNF-α) in the hippocampal tissue, which were more obvious in the BBPR group(P<0.05). After screening, 15 potential biomarkers were identified, involving two metabolic pathways: dicoumarol pathway and piroxicam pathway. BBPR and SPR may alleviate AD by regulating the metabolism of dicoumarol and piroxicam.


الموضوعات
Rats , Male , Animals , Alzheimer Disease/drug therapy , Chromatography, High Pressure Liquid/methods , Rats, Sprague-Dawley , Dicumarol , Galactose , Piroxicam , Metabolomics/methods , Biomarkers/urine
8.
مقالة ي صينى | WPRIM | ID: wpr-1008815

الملخص

This study used nasal lavage fluid for metabolomics to explore its feasibility, and applied it to the clinical metabolomics study of Xiaoqinglong Decoction in the treatment of allergic rhinitis(AR), aiming to investigate the molecular mechanism of Xiaoqing-long Decoction in the treatment of AR through differential changes in local nasal metabolism. AR patients were selected as the research subjects, and nasal lavage fluid was collected as the sample. Metabolomics analysis using liquid chromatography-mass spectrometry was performed on normal group, AR group, and Xiaoqinglong Decoction group. The differences in metabolic profiles among the groups were compared using principal component analysis and partial least squares discriminant analysis, and differential metabolites were identified and subjected to corresponding metabolic pathway analysis. The results showed that Xiaoqinglong Decoction significantly improved the symptoms of AR patients. The metabolomics analysis revealed 20 differential metabolites between AR group and Xiaoqinglong Decoction group. The core metabolite with a trending return in comparison to normal group was trimethyladipic acid. The metabolites were involved in multiple pathways, including β-alanine metabolism, glutathione metabolism, and phenylalanine, tyrosine, and tryptophan biosynthesis. The feasibility of applying nasal lavage fluid in nasal metabolomics was preliminarily demonstrated. Differential metabolites and enriched pathways in the treatment of AR patients with Xiaoqinglong Decoction were identified, indicating that it may improve rhinitis symptoms through the regulation of various metabolites, including antioxidant effects and correction of Th1/Th2 imbalance.


الموضوعات
Humans , Nasal Lavage Fluid , Rhinitis, Allergic/drug therapy , Metabolomics/methods , Metabolome
9.
مقالة ي صينى | WPRIM | ID: wpr-1008788

الملخص

This study aims to reveal the endogenous metabolic characteristics of acteoside in the young rat model of purinomycin aminonucleoside nephropathy(PAN) by non-targeted urine metabolomics and decipher the potential mechanism of action. Biochemical indicators in the urine of rats from each group were determined by an automatic biochemical analyzer. The potential biomarkers and related core metabolic pathways were identified by ultra-high performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometry(UHPLC-LTQ-Orbitrap MS) combined with principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA). MetaboAnalyst 5.0 was used to establish the receiver operating characteristic(ROC) curve for evaluating the clinical diagnostic performance of core metabolites. The results showed that acteoside significantly decreased urinary protein-to-creatinine ratio in PAN young rats. A total of 17 differential metabolites were screened out by non-targeted urine metabolomics in PAN young rats and they were involved in phenylalanine metabolism and phenylalanine, tyrosine and tryptophan biosynthesis. Thirtten differential metabolites were screened by acteoside intervention in PAN young rats, and they were involved in phenylalanine metabolism and arginine and proline metabolism. Among them, leucylproline and acetophenone were the differential metabolites that were significantly recovered after acteoside treatment. These pathways suggest that acteoside treats PAN in young rats by regulating amino acid metabolism. The area under the curve of two core biomarkers, leucylproline and acetophenone, were both greater than 0.9. In summary, acteoside may restore amino acid metabolism by regulating endogenous differential metabolites in PAN young rats, which will help to clarify the mechanism of acteoside in treating chronic glomerulonephritis in children. The characteristic biomarkers screened out have a high diagnostic value for evaluating the treatment of chronic glomerulonephritis in children with acteoside.


الموضوعات
Humans , Child , Rats , Animals , Puromycin Aminonucleoside , Metabolomics/methods , Biomarkers/urine , Chromatography, High Pressure Liquid/methods , Acetophenones , Glomerulonephritis , Phenylalanine , Amino Acids
10.
مقالة ي صينى | WPRIM | ID: wpr-1008760

الملخص

This study aimed to investigate the mechanism of Xihuang Pills in improving hyperplasia of mammary gland(HMG) in rats based on urine metabolomics using ultra-performance liquid chromatography-quadrupole-Orbitrap mass spectrometry(UPLC-Q-Orbitrap-MS). The HMG rat model was established by intramuscular injection of estradiol benzoate solution(0.5 mg·kg~(-1), 25 days) followed by progesterone injection(5 mg·kg~(-1), 5 days). UPLC-Q-Orbitrap-MS technology was used to establish the endogenous small-molecule metabolic profiles in urine samples of rats in the blank group, the HMG model group, and Xihuang Pills group. Multivariate statistical analysis was performed for pattern recognition, t test and variable importance in the projection(VIP) were used to screen potential biomarkers. The significantly changed differential metabolites were identified using the online database Human Metabolome Database(HMDB). Metabolic pathway enrichment analysis was conducted using the MetaboAnalyst 5.0 database. The results showed that 90 differential metabolites with significant changes(P<0.05) were identified between the blank group and the HMG model group using the HMDB. Among them, 48 metabolites significantly reverted(P<0.05) after administration of Xihuang Pills, which may be related to the regulatory effect of Xihuang Pills. Thirteen metabolic pathways significantly associated with HMG were identified when the differential metabolites were imported into the MetaboAnalyst 5.0 database, and Xihuang Pills could modulate seven of these pathways. These metabolic pathways mainly involved histidine metabolism, arginine and proline metabolism, β-alanine metabolism, glycine, serine and threonine metabolism, tryptophan metabolism, pyrimidine metabolism, and amino sugar and nucleotide sugar metabolism. This study utilized UPLC-Q-Orbitrap-MS and urine metabolomics technology to analyze the mechanism of Xihuang Pills in improving HMG, laying the foundation for further in-depth research.


الموضوعات
Humans , Rats , Animals , Chromatography, High Pressure Liquid/methods , Hyperplasia , Metabolomics/methods , Metabolome , Biomarkers/urine
11.
مقالة ي صينى | WPRIM | ID: wpr-1008759

الملخص

This study investigated the effects of Xuefu Zhuyu Decoction on myocardial metabolites in a rat model of coronary heart disease with heart blood stasis syndrome and explored the therapeutic mechanism of blood circulation-promoting and blood stasis-removing therapy. SD rats were randomly divided into a sham operation group, a model group, a Xuefu Zhuyu Decoction group(14.04 g·kg~(-1)), and a trimetazidine group(5.4 mg·kg~(-1)). The sham operation group underwent thread insertion without ligation, while the other groups underwent coronary artery left anterior descending branch ligation to induce a model of coronary heart disease with heart blood stasis syndrome. Three days after modeling, drug intervention was performed, and samples were taken after 14 days of intervention. General conditions were observed, and electrocardiogram and cardiac ultrasound indices were measured. Hematoxylin-eosin(HE) staining and Masson staining were used to observe tissue pathological morphology. The enzyme linked immunosorbent assay(ELISA) was used to measure the levels of triglyceride(TG) and total cholesterol(TC) in the serum. Ultra high performance liquid chromatography-quantitative exactive-mass spectrometry(UHPLC-QE-MS) technology was used to screen differential metabolites in myocardial tissue and conduct metabolic pathway enrichment analysis. The results showed that Xuefu Zhuyu Decoction significantly improved the general condition of the model rats, reduced heart rate and ST segment elevation in the electrocardiogram, increased left ventricular ejection fraction(LVEF) and left ventricular fractional shortening(LVFS), and decreased left ventricular internal diameter in diastole(LVIDd) and left ventricular internal diameter in systole(LVIDs). HE staining and Masson staining showed that Xuefu Zhuyu Decoction effectively alleviated myocardial tissue structural disorders, inflammatory cell infiltration, and collagen fiber deposition in the model rats. ELISA results showed that Xuefu Zhuyu Decoction effectively regulated serum TG and TC levels in the model rats. There were significant differences in the metabolic phenotypes of myocardial samples in each group. Fourteen differential metabolites were identified in the Xuefu Zhuyu Decoction group, involving five metabolic pathways, including arginine and proline metabolism, glycerophospholipid metabolism, aminoacyl-tRNA biosynthesis, ether lipid metabolism, and alanine, aspartate, and glutamate metabolism. Xuefu Zhuyu Decoction improved cardiac function and myocardial structural damage in the rat model of coronary heart disease with heart blood stasis syndrome, and its biological mechanism involved the regulation of lipid metabolism, choline metabolism, amino acid metabolism, energy metabolism, and protein synthesis pathways.


الموضوعات
Rats , Animals , Stroke Volume , Rats, Sprague-Dawley , Ventricular Function, Left , Coronary Disease/drug therapy , Metabolomics
12.
مقالة ي صينى | WPRIM | ID: wpr-1008732

الملخص

The study investigated the effect of Buyang Huanwu Decoction(BYHWD) on endogenous biomarkers in the urine of rats with chronic inflammation induced by lipopolysaccharide(LPS) using ultra-high performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry(UPLC-Q-TOF-MS), aiming to elucidate the molecular mechanism underlying the therapeutic effect of BYHWD on chronic inflammation from a metabolomics perspective. Male SD rats were randomly divided into a normal group, a model group, and low-, medium-, and high-dose BYHWD groups(7.5, 15, and 30 g·kg~(-1)). The model group and BYHWD groups received tail intravenous injection of LPS(200 μg·kg~(-1)) on the first day of each week, followed by oral administration of BYHWD once a day for four consecutive weeks. Urine samples were collected at the end of the administration period, and UPLC-Q-TOF-MS was used to analyze the metabolic profiles of the rat urine in each group. Multivariate statistical analysis methods such as principal component analysis(PCA), partial least squares-discriminant analysis(PLS-DA), and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to analyze the effect of BYHWD on endogenous metabolites. One-way ANOVA and variable importance for the projection(VIP) were used to screen for potential biomarkers related to chronic inflammation. The identified biomarkers were subjected to pathway and enrichment analysis using MetaboAnalyst 5.0. A total of 25 potential biomarkers were screened and identified in the rat urine in this experiment. Compared with the normal group, the model group showed significant increases in the levels of 14 substances(P<0.05) and significant decreases in the levels of 11 substances(P<0.05). BYHWD was able to effectively reverse the trend of most endogenous biomarkers. Compared with the model group, BYHWD significantly down-regulated 13 biomarkers(P<0.05) and up-regulated 10 biomarkers(P<0.05). The metabolic products were mainly related to the biosynthesis of pantothenic acid and coenzyme A, tryptophan metabolism, retinol metabolism, and propionate metabolism. BYHWD has therapeutic effect on chronic inflammation induced by LPS, which may be related to its ability to improve the levels of endogenous metabolites, enhance the body's anti-inflammatory and antioxidant capabilities, and restore normal metabolic activity.


الموضوعات
Rats , Male , Animals , Chromatography, High Pressure Liquid/methods , Lipopolysaccharides , Rats, Sprague-Dawley , Metabolomics/methods , Inflammation/drug therapy , Biomarkers/urine
13.
مقالة ي صينى | WPRIM | ID: wpr-1008642

الملخص

In this study, untargeted metabolomics was conducted using the liquid chromatography-tandem mass spectrometry(LC-MS/MS) technique to analyze the potential biomarkers in the plasma of mice with heart failure with preserved ejection fraction(HFpEF) induced by a high-fat diet(HFD) and nitric oxide synthase inhibitor(Nω-nitro-L-arginine methyl ester hydrochloride, L-NAME) and explore the pharmacological effects and mechanism of Jiming Powder in improving HFpEF. Male C57BL/6N mice aged eight weeks were randomly assigned to a control group, a model group, an empagliflozin(10 mg·kg~(-1)·d~(-1)) group, and high-and low-dose Jiming Powder(14.3 and 7.15 g·kg~(-1)·d~(-1)) groups. Mice in the control group were fed on a low-fat diet, and mice in the model group and groups with drug intervention were fed on a high-fat diet. All mice had free access to water, with water in the model group and Jiming Powder groups being supplemented with L-NAME(0.5 g·L~(-1)). Drugs were administered on the first day of modeling, and 15 weeks later, blood pressure and cardiac function of the mice in each group were measured. Heart tissues were collected for hematoxylin-eosin(HE) staining to observe pathological changes and Masson's staining to observe myocardial collagen deposition. Untargeted metabolomics analysis was performed on the plasma collected from mice in each group, and metabolic pathway analysis was conducted using MetaboAnalyst 5.0. The results showed that the blood pressure was significantly lower and the myocardial concentric hypertrophy and left ventricular diastolic dysfunction were significantly improved in both the high-dose and low-dose Jiming Powder groups as compared with those in the model group. HE and Masson staining showed that both high-dose and low-dose Jiming Powder significantly alleviated myocardial fibrosis. In the metabolomics experiment, 23 potential biomarkers were identified and eight strongly correlated metabolic pathways were enriched, including linoleic acid metabolism, histidine metabolism, alpha-linolenic acid metabolism, glycerophospholipid metabolism, purine metabolism, porphyrin and chlorophyll metabolism, arachidonic acid metabolism, and pyrimidine metabolism. The study confirmed the pharmacological effects of Jiming Powder in lowering blood pressure and ameliorating HFpEF and revealed the mechanism of Jiming Powder using the metabolomics technique, providing experimental evidence for the clinical application of Jiming Powder in treating HFpEF and a new perspective for advancing and developing TCM therapy for HFpEF.


الموضوعات
Male , Mice , Animals , Heart Failure/metabolism , Powders , Stroke Volume/physiology , Chromatography, Liquid , NG-Nitroarginine Methyl Ester/therapeutic use , Mice, Inbred C57BL , Tandem Mass Spectrometry , Metabolomics , Biomarkers , Water
14.
مقالة ي صينى | WPRIM | ID: wpr-970601

الملخص

Ultra-high performance liquid chromatography-quadrupole-time of flight tandem mass spectrometry(UHPLC-Q-TOF-MS) was employed in this study to observe the effect of Huaihua Powder on the serum metabolites of mice with ulcerative colitis and reveal the mechanism of Huaihua Powder in the treatment of ulcerative colitis. The mouse model of ulcerative colitis was established by dextran sodium sulfate salt(DSS). The therapeutic effect of Huaihua Powder on ulcerative colitis was preliminarily evaluated based on the disease activity index(DAI), colon appearance, colon tissue morphology, and the content of inflammatory cytokines such as tumor necrosis factor-α(TNF-α), interleukin-6(IL-6), and interleukin-1β(IL-1β). UHPLC-Q-TOF-MS was employed to profile the endogenous metabolites of serum samples in blank control group, model group, and low-, medium-, and high-dose Huaihua Powder groups. Multivariate analyses such as principal component analysis(PCA), partial least squares discriminant analysis(PLS-DA), and orthogonal partial least squares discriminant analysis(OPLS-DA) were performed for pattern recognition. Potential biomarkers were screened by Mass Profiler Professional(MPP) B.14.00 with the thresholds of fold change≥2 and P<0.05. The metabolic pathways were enriched by MetaboAnalyst 5.0. The results showed that Huaihua Powder significantly improved the general state and colon tissue morphology of mice with ulcerative colitis, reduced DAI, and lowered the levels of TNF-α, IL-6, and IL-1β in serum. A total of 38 potential biomarkers were predicted to be related to the regulatory effect of Huaihua Powder, which were mainly involved in glycerophospholipid metabolism, glycine, serine, and threonine metabolism, mutual transformation of glucuronic acid, and glutathione metabolism. This study employed metabolomics to analyze the mechanism of Huaihua Powder in the treatment of ulcerative colitis, laying a foundation for the further research.


الموضوعات
Mice , Animals , Colitis, Ulcerative/metabolism , Powders , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , Metabolomics , Colon , Disease Models, Animal , Biomarkers , Dextran Sulfate/therapeutic use
15.
مقالة ي صينى | WPRIM | ID: wpr-970576

الملخص

This paper aimed to study the effect of Dalbergia cochinchinensis heartwood on plasma endogenous metabolites in rats with ligation of the left anterior descending coronary artery, and to analyze the mechanism of D. cochinchinensis heartwood in improving acute myocardial ischemic injury. The stability and consistency of the components in the D. cochinchinensis heartwood were verified by the establishment of fingerprint, and 30 male SD rats were randomly divided into a sham group, a model group, and a D. cochinchinensis heartwood(6 g·kg~(-1)) group, with 10 rats in each group. The sham group only opened the chest without ligation, while the other groups established the model of ligation. Ten days after administration, the hearts were taken for hematoxylin-eosin(HE) staining, and the content of heart injury indexes in the plasma creatine kinase isoenzyme(CK-MB) and lactate dehydrogenase(LDH), energy metabolism-related index glucose(Glu) content, and vascular endothelial function index nitric oxide(NO) was determined. The endogenous metabolites were detected by ultra-high-performance liquid chromatography-time-of-flight-mass spectrometry(UPLC-Q-TOF-MS). The results showed that the D. cochinchinensis heartwood reduced the content of CK-MB and LDH in the plasma of rats to relieve myocardial injury, reduced the content of Glu in the plasma, improved myocardial energy metabolism, increased the content of NO, cured the vascular endothelial injury, and promoted vasodilation. D. cochinchinensis heartwood improved the increase of intercellular space, myocardial inflammatory cell infiltration, and myofilament rupture caused by ligation of the left anterior descending coronary artery. The metabolomic study showed that the content of 26 metabolites in the plasma of rats in the model group increased significantly, while the content of 27 metabolites decreased significantly. Twenty metabolites were significantly adjusted after the administration of D. cochinchinensis heartwood. D. cochinchinensis heartwood can significantly adjust the metabolic abnormality in rats with ligation of the left anterior descending coronary artery, and its mechanism may be related to the regulation of cardiac energy metabolism, NO production, and inflammation. The results provide a corresponding basis for further explaining the effect of D. cochinchinensis on the acute myocardial injury.


الموضوعات
Male , Animals , Rats , Rats, Sprague-Dawley , Dalbergia , Myocardial Ischemia , Metabolomics , Heart , Heart Injuries , Creatine Kinase, MB Form
16.
مقالة ي صينى | WPRIM | ID: wpr-970551

الملخص

Children's fever is often accompanied by food accumulation. Traditional Chinese medicine believes that removing food stagnation while clearing heat of children can effectively avoid heat damage. To systematically evaluate the efficacy of Xiaoer Chiqiao Qingre Granules(XRCQ) in clearing heat and removing food accumulation and explore its potential mechanism, this study combined suckling SD rats fed with high-sugar and high-fat diet with injection of carrageenan to induce rat model of fever and food accumulation. This study provided references for the study on the pharmacodynamics and mechanism of XRCQ. The results showed that XRCQ effectively reduced the rectal temperature of suckling rats, improved the inflammatory environment such as the content of interleukin-1β(IL-1β), interleukin-2(IL-2), interferon-γ(IFN-γ), white blood cells, and monocytes. XRCQ also effectively repaired intestinal injury and enhanced intestinal propulsion function. According to the confirmation of its efficacy of clearing heat, the thermolytic mechanism of XRCQ was further explored by non-targeted and targeted metabolomics methods based on LTQ-Orbitrap MS/MS and UPLC-QQQ-MS/MS. Non-target metabolomics analysis of brain tissue samples was performed by QI software combined with SIMCA-P software, and 22 endogenous metabolites that could be significantly regulated were screened out. MetaboAnalyst pathway enrichment results showed that the intervention mechanism was mainly focused on tyrosine metabolism, tricarboxylic acid cycle, inositol phosphate metabolism, and other pathways. At the same time, the results of targeted metabolomics of brain tissue samples showed that XRCQ changed the vitality of digestive system, and inhibited abnormal energy metabolism and inflammatory response, playing a role in clearing heat and removing food stagnation from multiple levels.


الموضوعات
Animals , Rats , Rats, Sprague-Dawley , Hot Temperature , Tandem Mass Spectrometry , Metabolomics , Food , Fever , Interferon-gamma
17.
مقالة ي صينى | WPRIM | ID: wpr-970511

الملخص

This research aimed to study the effect of Uremic Clearance Granules on chronic kidney disease in SD rats by using the methods of microbial functional genomics combined with metabolomics, and to preliminarily explore its mechanism. The SD rat model of chronic kidney disease was established by the adenine-induced method. After the model was successfully induced, the animals were randomly divided into a negative control group, a Uremic Clearance Granule treatment group, and a normal control group, with 8 rats in each group. After 4 weeks of administration, animal feces and serum were collected, and 16S rDNA sequencing technology was used to analyze the abundance, diversity, and function prediction of intestinal microorganisms. Liquid chromatography-mass spectrometry(LC-MS) technology was used to perform high-throughput sequencing to detect animal serum metabolites. The MetPA database was used to screen out potential biomarkers of chronic kidney disease in rats and conduct the enrichment analysis of metabolic pathways. Spearman's method was used to analyze the correlation between the two omics. The results showed that Uremic Clearance Granules effectively improved the body weight loss and renal function-related biochemical and appearance indicators in rats with chronic kidney disease. The results of 16S rDNA sequencing showed that Uremic Clearance Granules regulated the diversity and composition of the intestinal flora in rats with chronic kidney disease. The changes in the intestinal flora affected functional metabolic pathways such as amino acid biosynthesis and metabolism, lipid metabolism, and carbohydrate metabolism. The results of LC-MS showed that as compared with the negative control group, 15 metabolites were reversed in the Uremic Clearance Granule treatment group, among which 11 potential marker metabolites were significantly up-regulated and 4 potential marker metabolites were significantly down-regulated. Five amino acid metabolic pathways were mainly involved, which were significantly correlated with changes in the intestinal flora. Therefore, Uremic Clearance Granules can improve the renal function of rats with chronic kidney disease, and the mechanism may be related to its effect on the amino acid metabolism pathway by regulating the intestinal flora.


الموضوعات
Rats , Animals , Rats, Sprague-Dawley , Renal Insufficiency, Chronic/drug therapy , Metabolomics/methods , Gastrointestinal Microbiome , Amino Acids
18.
مقالة ي صينى | WPRIM | ID: wpr-970504

الملخص

With the approach of untargeted metabolomics and correlation analysis, this study aimed to explore the mechanism of Aurantii Fructus from Lingnan region in alleviating dryness by analyzing the different effects of raw Aurantii Fructus(RAF) and processed Aurantii Fructus(PAF) on fecal endogenous metabolism in normal rats. Eighteen Sprague-Dawley(SD) rats were randomly divided into a control group(C), an RAF group(10 g·kg~(-1)), and a PAF group(10 g·kg~(-1)). After seven days of administration, the effects of RAF and PAF on dryness-related indexes were compared, including water intake, fecal water content, salivary secretion, the expression of AQP5, VIP, and 5-HT in the submandibular gland, as well as the expression of AQP3, VIP, and 5-HT in the colon. The fecal samples in each group were determined by LC-MS. Multivariate statistical analysis and Pearson correlation coefficient were used for screening the differential metabolites and metabolic pathways in alleviating dryness of RAF. The results indicated that both RAF and PAF showed certain dryness, and the dryness of RAF was more significant. Moreover, PAF could alleviate dryness of RAF to a certain extent by reducing the water intake, fecal water content, and the expression of AQP3, VIP, and 5-HT in the colon and increasing the salivary secretion and the levels of AQP5, VIP, and 5-HT in the submandibular gland. According to the analysis of fecal metabolomics, 99 and 58 metabolites related to dryness were found in RAF and PAF respectively, where 16 of them played an important role in alleviating dryness of RAF. Pathway analysis revealed that the mechanism of PAF in alleviating dryness of RAF was presumably related to the regulation of riboflavin metabolism, purine metabolism, arginine biosynthesis, pyrimidine metabolism, alanine metabolism, aspartate metabolism, glutamate metabolism, and retinol metabolism pathways. This study suggested that PAF might alleviate dryness of RAF by affecting the metabolic levels of the body, which provides a new basis for further clarifying the processing mechanism of PAF.


الموضوعات
Rats , Animals , Drugs, Chinese Herbal/pharmacology , Rats, Sprague-Dawley , Serotonin , Metabolomics , Water
19.
مقالة ي صينى | WPRIM | ID: wpr-970487

الملخص

In this study, an ultra-performance liquid chromatography-quadrupole time-of-flight high resolution mass spectrometer(UPLC-Q-TOF-HRMS) was used to investigate the effects of the active ingredients in Periploca forrestii compound on spleen metabolism in rats with collagen-induced arthritis(CIA), and its potential anti-inflammatory mechanism was analyzed by network pharmacology. After the model of CIA was successfully established, the spleen tissues of rats were taken 28 days after administration. UPLC-Q-TOF-HRMS chromatograms were collected and analyzed by principal component analysis(PCA), orthogonal partial least squares discriminant analysis(OPLS-DA), and MetPA. The results showed that as compared with the blank control group, 22 biomarkers in the spleen tissues such as inosine, citicoline, hypoxanthine, and taurine in the model group increased, while 9 biomarkers such as CDP-ethanolamine and phosphorylcholine decreased. As compared with the model group, 21 biomarkers such as inosine, citicoline, CDP-ethanolamine, and phosphorylcholine were reregulated by the active ingredients in P. forrestii. Seventeen metabolic pathways were significantly enriched, including purine metabolism, taurine and hypotaurine metabolism, glycerophospholipid metabolism, and cysteine and methionine metabolism. Network pharmacology analysis found that purine metabolism, glycerophospholipid metabolism, and cysteine and methionine metabolism played important roles in the pathological process of rheumatoid arthritis. This study suggests that active ingredients in P. forrestii compound can delay the occurrence and development of inflammatory reaction by improving the spleen metabolic disorder of rats with CIA. The P. forrestii compound has multi-target and multi-pathway anti-inflammatory mechanism. This study is expected to provide a new explanation for the mechanism of active ingredients in P. forrestii compound against rheumatoid arthritis.


الموضوعات
Rats , Animals , Periploca , Cysteine , Cytidine Diphosphate Choline , Network Pharmacology , Phosphorylcholine , Metabolomics , Arthritis, Rheumatoid/drug therapy , Biomarkers , Glycerophospholipids , Methionine , Purines , Chromatography, High Pressure Liquid
20.
مقالة ي صينى | WPRIM | ID: wpr-970486

الملخص

This study aimed to investigate the effective substances and mechanism of Yishen Guluo Mixture in the treatment of chronic glomerulonephritis(CGN) based on metabolomics and serum pharmacochemistry. The rat model of CGN was induced by cationic bovine serum albumin(C-BSA). After intragastric administration of Yishen Guluo Mixture, the biochemical indexes related to renal function(24-hour urinary protein, serum urea nitrogen, and creatinine) were determined, and the efficacy evaluations such as histopathological observation were carried out. The serum biomarkers of Yishen Guluo Mixture in the treatment of CGN were screened out by ultra-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry(UPLC-Q-TOF-MS) combined with multivariate statistical analysis, and the metabolic pathways were analyzed. According to the mass spectrum ion fragment information and metabolic pathway, the components absorbed into the blood(prototypes and metabolites) from Yishen Guluo Mixture were identified and analyzed by using PeakView 1.2 and MetabolitePilot 2.0.4. By integrating metabolomics and serum pharmacochemistry data, a mathematical model of correlation analysis between serum biomarkers and components absorbed into blood was constructed to screen out the potential effective substances of Yishen Guluo Mixture in the treatment of CGN. Yishen Guluo mixture significantly decreased the levels of 24-hour urinary protein, serum urea nitrogen, and creatinine in rats with CGN, and improved the pathological damage of the kidney tissue. Twenty serum biomarkers of Yishen Guluo Mixture in the treatment of CGN, such as arachidonic acid and lysophosphatidylcholine, were screened out, involving arachidonic acid metabolism, glycerol phosphatide metabolism, and other pathways. Based on the serum pharmacochemistry, 8 prototype components and 20 metabolites in the serum-containing Yishen Guluo Mixture were identified. According to the metabolomics and correlation analysis of serum pharmacochemistry, 12 compounds such as genistein absorbed into the blood from Yishen Guluo Mixture were selected as the potential effective substances for the treatment of CGN. Based on metabolomics and serum pharmacochemistry, the effective substances and mechanism of Yishen Guluo Mixture in the treatment of CGN are analyzed and explained in this study, which provides a new idea for the development of innovative traditional Chinese medicine for the treatment of CGN.


الموضوعات
Animals , Rats , Arachidonic Acid , Biomarkers/blood , Blood Proteins , Chromatography, High Pressure Liquid , Creatinine , Drugs, Chinese Herbal/therapeutic use , Glomerulonephritis/metabolism , Metabolomics , Urea , Chronic Disease , Disease Models, Animal , Complex Mixtures/therapeutic use
اختيار الاستشهادات
تفاصيل البحث