Your browser doesn't support javascript.
loading
تبين: 20 | 50 | 100
النتائج 1 - 2 de 2
المحددات
إضافة المرشحات








النطاق السنوي
1.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;51(4): e6980, 2018. graf
مقالة ي الانجليزية | LILACS | ID: biblio-889067

الملخص

Hormones regulate hepatic gene expressions to maintain metabolic homeostasis. Ectonucleotide pyrophosphatase/phosphodiesterase 1 has been thought to interfere with insulin signaling. To determine its potential role in the regulation of metabolism, we analyzed its gene (Enpp1) expression in the liver of rats experiencing fasting and refeeding cycles, and in primary rat hepatocytes and human hepatoma HepG2 cells treated with insulin and dexamethasone using northern blot and real-time PCR techniques. Hepatic Enpp1 expression was induced by fasting and reduced by refeeding in the rat liver. In primary rat hepatocytes and HepG2 hepatoma cells, insulin reduced Enpp1 mRNA abundance, whereas dexamethasone induced it. Dexamethasone disrupted the insulin-reduced Enpp1 expression in primary hepatocytes. This is in contrast to the responses of the expression of the cytosolic form of phosphoenolpyruvate carboxykinase gene to the same hormones, where insulin reduced it significantly in the process. In addition, the dexamethasone-induced Enpp1 gene expression was attenuated in the presence of 8-Br-cAMP. In conclusion, we demonstrated for the first time that hepatic Enpp1 is regulated in the cycle of fasting and refeeding, a process that might be attributed to insulin-reduced Enpp1 expression. This insulin-reduced Enpp1 expression might play a role in the development of complications in diabetic patients.


الموضوعات
Humans , Animals , Male , Rats , Pyrophosphatases/genetics , RNA, Messenger/drug effects , Dexamethasone/pharmacology , Phosphoric Diester Hydrolases/genetics , Glucocorticoids/pharmacology , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Liver/enzymology , Pyrophosphatases/biosynthesis , Pyrophosphatases/drug effects , Insulin Resistance , RNA, Messenger/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Enzyme Induction/drug effects , Fasting/metabolism , Rats, Sprague-Dawley , Phosphoric Diester Hydrolases/biosynthesis , Phosphoric Diester Hydrolases/drug effects , Hep G2 Cells , Real-Time Polymerase Chain Reaction
2.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;26(4): 343-6, Apr. 1993. tab
مقالة ي الانجليزية | LILACS | ID: lil-148746

الملخص

A mitochondrial pyrophosphatase (PPase) from yeast cells (Saccharomyces cerevisiae) was studied and characterized. The hydrolytic activity towards inorganic pyrophosphate (PPi) was inhibited by different SH-reagents and increased in the presence of uncouplers, indicating a possible involvement of this enzyme in energy-linked processes. This view was also supported by the observation that these mitochondria were able to hydrolyze PPi, generating an electrical membrane potential (delta psi) of the same magnitude as that obtained with ATP. Both ATP and PPi inhibited the pyruvate dehydrogenase complex and it was demonstrated that PPi can be used as substrate by mitochondrial kinases leading to the same pattern of protein phosphorylation as when ATP is used


الموضوعات
Diphosphates/metabolism , Mitochondria/enzymology , Saccharomyces cerevisiae/enzymology , Hydrolysis , Mitochondria/drug effects , Pyrophosphatases/drug effects , Pyrophosphatases/metabolism , Saccharomyces cerevisiae/drug effects , Sulfhydryl Reagents/pharmacology , Uncoupling Agents/pharmacology
اختيار الاستشهادات
تفاصيل البحث