Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Add filters

Year range
Acta Pharmaceutica Sinica ; (12): 396-404, 2023.
Article in Chinese | WPRIM | ID: wpr-965707


The purpose of this research is to identify the chemical constituents of sea buckthorn leaves extract (SBLE) and explore its hypoglycemic biological activity. SBLE was prepared by hot reflux extraction with 65% ethanol, and its chemical composition was analyzed by ultra-high-performance liquid chromatography-photodiode array-mass spectrometry/mass spectrometry (UHPLC-PDA-MS/MS) system. The animal experiments were compliant with ethical principles for animal use and had been approved by the Animal Experiment Ethics Committee of Jinan University. Mice were injected with streptozocin (STZ) to establish a hyperglycemic animal model, and SBLE (1.5 g·kg-1) was administered by gavage for 5 weeks. The fasting blood glucose (FBG) and oral glucose tolerance were detected. Normal mice were given SBLE (1.5 g·kg-1) by intragastric administration for 10 days, and blood was collected from the tail vein to detect the changes in blood glucose within 120 min after sucrose or starch loading. The mucous membrane of the small intestine of mice was taken to detect the activity of α-glucosidase (AG), and the activity of yeast-derived AG incubated with SBLE was evaluated. The glucose uptake by Caco-2 cells treated with SBLE was detected by fluorescence microscopy and cytometry, and the gene expression of sodium-dependent glucose transporter 1 (SGLT1) and glucose transporter 2 (GLUT2) in Caco-2 cells were detected by real-time quantitative PCR (qPCR). A total of 18 compounds were identified, mainly including tannins and flavonoids. SBLE reduced FBG and increased oral glucose tolerance in STZ hyperglycemic mice. SBLE effectively inhibited the increase of blood glucose caused by starch intake in normal mice. SBLE exerted good inhibitory activity on yeast-derived AG (IC50 = 16.94 μg·mL-1) and small intestinal mucosa AG with an inhibition rate of 15.48%. SBLE (25-100 μg·mL-1) dose-dependently inhibited glucose uptake by Caco-2 cells, and SBLE significantly reduced the mRNA level of SGLT1 without changing the expression of GLUT2. In conclusion, the UHPLC characteristic fingerprint of SBLE is established with 18 chemical components identified by mass spectrometry, and SBLE exerts hypoglycemic effect by inhibiting the activity of AG and the absorption of glucose by intestinal epithelial cells.

Acta Pharmaceutica Sinica ; (12): 1544-1556, 2022.
Article in Chinese | WPRIM | ID: wpr-929450


Ferroptosis is a novel type of cell death, which is distinguished from the traditional cell death pathways such as apoptosis, proptosis, necrosis and autophagy in terms of morphology, biochemistry and genetics. The main features of ferroptosis are the iron accumulation and lipid peroxidation. The regulation mechanism of ferroptosis involves glutathione metabolism, lipid peroxidation reactions and iron metabolism, which are closely related to the pathological process of tumor, aging, neurodegenerative diseases, ischemia reperfusion injury, cardiovascular and cerebrovascular diseases, kidney injury, hepatic fibrosis and so on. How to effectively study the role of ferroptosis regulation mechanism in the treatment of diseases becomes the hot spot and focus of the ferroptosis research. In recent years, with the in-depth study of ferroptosis, the identification, confirmation and the mechanism of ferroptosis have been developed significantly and have come forth continuously, in the meantime, techniques based on the morphology, biochemistry, molecular biology and genetics have been widely applied in the detection of ferroptosis. In order to deepen readers' understanding of ferroptosis and its detection methods, this paper will mainly review the current research progress on the detection methods and their application in ferroptosis, summarize and discuss their advantages and disadvantages in the detection of ferroptosis, this knowledge are crucial for better understanding and studying the biological function of ferroptosis.

Acta Pharmaceutica Sinica B ; (6): 2323-2338, 2020.
Article in English | WPRIM | ID: wpr-881114


Herpes simplex virus type 1 (HSV-1) is a ubiquitous and widespread human pathogen, which gives rise to a range of diseases, including cold sores, corneal blindness, and encephalitis. Currently, the use of nucleoside analogs, such as acyclovir and penciclovir, in treating HSV-1 infection often presents limitation due to their side effects and low efficacy for drug-resistance strains. Therefore, new anti-herpetic drugs and strategies should be urgently developed. Here, we reported that baicalein, a naturally derived compound widely used in Asian countries, strongly inhibited HSV-1 replication in several models. Baicalein was effective against the replication of both HSV-1/F and HSV-1/Blue (an acyclovir-resistant strain)