Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 242
Filter
1.
Article in Chinese | WPRIM | ID: wpr-970535

ABSTRACT

Lilii Bulbus is a commonly used Chinese herbal medicine with both medicinal and edible values, while the market products usually has the problem of sulfur fumigation. Therefore, the quality and safety of Lilii Bulbus products deserve attention. In this study, ultra-high performance liquid chromatography-time of flight-tandem mass spectrometry(UPLC-Q-TOF-MS/MS) was combined with principal component analysis(PCA) and orthogonal partial least squares discriminant analysis(OPLS-DA) to analyze the differential components of Lilii Bulbus before and after sulfur fumigation. We identified ten markers generated after sulfur fumigation, summarized their mass fragmentation and transformation patterns, and verified the structures of phenylacrylic acid markers of sulfur fumigation. At the same time, the cytotoxicity of the aqueous extracts of Lilii Bulbus before and after sulfur fumigation was evaluated. The results showed that in the concentration range of 0-800 mg·L~(-1), the aqueous extract of Lilii Bulbus after sulfur fumigation had no significant effect on the viability of human liver LO2 cells, human renal proximal tubular HK-2 cells, and rat adrenal pheochromocytoma PC-12 cells. Moreover, the viability of the cells exposed to the aqueous extract of Lilii Bulbus before and after sulfur fumigation showed no significant difference. This study identified phenylacrylic acid and furostanol saponins as markers of sulfur-fumigated Lilii Bulbus for the first time, and made clear that proper sulfur fumigation of Lilii Bulbus would not produce cytotoxicity, providing a theoretical basis for the rapid identification and quality and safety control of sulfur-fumigated Lilii Bulbus.


Subject(s)
Humans , Animals , Rats , Fumigation , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid , Epithelial Cells , Sulfur
2.
Article in Chinese | WPRIM | ID: wpr-970529

ABSTRACT

This paper introduced the overview of the "eight trends" of Chinese medicinal materials(CMM) industry in 2021, analyzed the problems of CMM production, and put forward development suggestions. Specifically, "eight trends" could be summarized as follows.(1) The growing area of CMM tended to be stable, and some provinces began to release the local catalog of Dao-di herbs.(2) The protection process of new varieties accelerated, and a number of excellent varieties were bred.(3) The theory of ecological cultivation was further enriched, and the demonstration effect of ecological cultivation technology was prominent.(4) Some CMM realized complete mechanization and formed typical model cases.(5) The number of cultivation bases using the traceability platform increased, and provincial internet trading platforms were set up.(6) The construction of CMM industrial clusters accelerated, and the number of provincial-level regional brands increased rapidly.(7) Many new agricultural business entities were founded nationwide, and a variety of methods were used to drive the intensified development of CMM.(8) A number of local TCM laws were promulgated, and the management regulation of food and medicine homology substances catalogs was issued. On this basis, four suggestions for CMM production were proposed.(1) It is suggested to speed up the formulation of the national catalog of Dao-di herbs and carry out the certification of Dao-di herbs production bases.(2) Ecological planting of forest and grassland medicine should be further strengthened in terms of technical research and promotion based on the principle of ecological priority.(3) The basic work of disaster prevention should be paid more attention and technical measures for disaster mitigation should be developed.(4) The planted area of commonly used CMM should be incorporated into the national regular statistical system.


Subject(s)
Agriculture , Certification , Commerce , Industry , China
3.
Article in Chinese | WPRIM | ID: wpr-981465

ABSTRACT

Pseudostellaria heterophylla in large-scale cultivation needs to apply pesticides to control diseases, and non-standard use of pesticide may cause excessive pesticide residues in medicinal materials, increasing the risk of clinical medication. To accurately monitor the residual pesticides, this paper investigated the drug use during the process of P. heterophylla disease prevention in 25 P. he-terophylla planting enterprises or individual households in Guizhou province. It was found that there were 8 common diseases in P. he-terophylla planting, including leaf spot, downy mildew, virus disease, root rot, dropping disease, purple feather disease, white silk disease, and damping-off disease. Twenty-three kinds of pesticides were used in disease control, mainly chemical synthetic pesticides, accounting for 78.3%, followed by biological pesticides and mineral pesticides, accounting for 13.0% and 8.7%, respectively. The disease prevention and control drugs were all low-toxic pesticides, and there were no varieties banned in the Chinese Pharmacopoeia(2020 edition). However, the pesticides used have not been registered on P. heterophylla, and the excessive use of drugs was serious. The present monitoring of pesticide residues in P. heterophylla is mainly based on traditional pesticides such as organochlorine, organophosphorus, and carbamate, which does not effectively cover the production of drugs and had certain safety risks. It is suggested to speed up the research and registration of drug use in the production of P. heterophylla, increase the use of biological pesticides, and further improve the monitoring indicators of pesticide residues in combination with the actual production of drugs, so as to promote the high-quality development of P. heterophylla industry.


Subject(s)
Biological Control Agents , Caryophyllaceae , Pesticide Residues , Pesticides , Plants, Medicinal
4.
Article in Chinese | WPRIM | ID: wpr-981443

ABSTRACT

A rich diversity of wild medicinal plant resources is distributed in China, but the breeding of new plant varieties of Chinese medicinal plants started late and the breeding level is relatively weak. Chinese medicinal plant resources are the foundation for new varieties breeding, and the plant variety rights(PVP) are of great significance for the protection and development of germplasm resources. However, most Chinese medicinal plants do not have a distinctness, uniformity, and stability(DUS) testing guideline. The Ministry of Agriculture and Rural Affairs has put 191 plant species(genera) on protection lists, of which only 30 are medicinal species(genera). At the same time, only 29 of 293 species(genera) plants in the Protection List of New Plant Varieties of the People's Republic of China(Forest and Grass) belong to Chinese medicinal plants. The number of PVP applications and authorization of Chinese medicinal plants is rare, and the composition of variety is unreasonable. Up to now, 29 species(genera) of DUS test guidelines for Chinese medicinal plants have been developed. Some basic problems in the breeding of new varieties of Chinese medicinal plants have appeared, such as the small number of new varieties and insufficient utilization of Chinese medicinal plant resources. This paper reviewed the current situation of breeding of new varieties of Chinese medicinal plants and the research progress of DUS test guidelines in China and discussed the application of biotechnology in the field of Chinese medicinal plant breeding and the existing problems in DUS testing. This paper guides the further application of DUS to protect and utilize the germplasm resources of Chinese medicinal plants.


Subject(s)
Agriculture , Biotechnology , Plant Breeding , Plants, Medicinal/genetics
5.
Article in Chinese | WPRIM | ID: wpr-981424

ABSTRACT

Based on the data of 56 kinds of diseases and drug use in 100 kinds of cultivated Chinese herbal medicines, this paper used frequency analysis method to count the types of diseases and their drug use characteristics, and systematically analyzed the status of drug registration and monitoring standards for disease prevention and control of Chinese herbal medicines. The results showed that 14 diseases such as root rot, powdery mildew, and drooping disease were common in the production of Chinese herbal medicines. Among the 99 pesticides reported, 67.68% were chemically synthesized, 23.23% were biological pesticides, and 9.09% were mineral pesticides. Among the reported pesticides, 92.93% of them were low toxic, with relative safety. However, 70% of the production drugs were not registered in Chinese herbal medicines, and the phenomenon of overdose was serious. The current pesticide residue monitoring standards does not match well with production drugs in China. Although the matching degree between Maximum Residue Limit of Pesticide in Food Safety National Standard(GB 2763-2021) and production drugs is more than 50%, there are few varieties of Chinese herbal medicines covered. The matching degree between Chinese Pharmacopoeia(2020 edition), Green Industry Standard of Medicinal Plants and Preparations(WM/T2-2004), and production drugs is only 1.28%. It is suggested to speed up the research and registration of Chinese herbal medicine production and further improve the pesticide residue limit standard combined with the actual production, so as to promote the high-quality development of Chinese herbal medicine industry.


Subject(s)
Humans , Biological Control Agents , Drugs, Chinese Herbal , Pesticide Residues , Pesticides
6.
Article in Chinese | WPRIM | ID: wpr-970620

ABSTRACT

By investigating the contamination status and predicting the exposure risk of mycotoxin in Coicis Semen, we aim to provide guidance for the safety supervision of Chinese medicinal materials and the formulation(revision) of mycotoxin limit standards. The content of 14 mycotoxins in the 100 Coicis Semen samples collected from five major markets of Chinese medicinal materials in China was determined by UPLC-MS/MS. The probability evaluation model based on Monte Carlo simulation method was established after Chi-square test and One-way ANOVA of the sample contamination data. Health risk assessment was performed on the basis of margin of exposure(MOE) and margin of safety(MOS). The results showed that zearalenone(ZEN), aflatoxin B_1(AFB_1), deoxynivalenol(DON), sterigmatocystin(ST), and aflatoxin B_2(AFB_2) in the Coicis Semen samples had the detection rates of 84%, 75%, 36%, 19%, and 18%, and the mean contamination levels of 117.42, 4.78, 61.16, 6.61, and 2.13 μg·kg~(-1), respectively. According to the limit standards in the Chinese Pharmacopoeia(2020 edition), AFB_1, AFs and ZEN exceeded the standards to certain extents, with the over-standard rates of 12.0%, 9.0%, and 6.0%, respectively. The exposure risks of Coicis Semen to AFB_1, AFB2, ST, DON, and ZEN were low, while 86% of the samples were contaminated with two or more toxins, which needs more attention. It is suggested that the research on the combined toxicity of different mycotoxins should be strengthened to accelerate the cumulative exposure assessment of mixed contaminations and the formulation(revision) of toxin limit standards.


Subject(s)
Humans , Mycotoxins/analysis , Coix , Aflatoxin B1/analysis , Chromatography, Liquid/methods , Food Contamination/analysis , Tandem Mass Spectrometry/methods
7.
Article in Chinese | WPRIM | ID: wpr-970619

ABSTRACT

In this study, the effect of brassinosteroid(BR) on the physiological and biochemical conditions of 2-year-old Panax notoginseng under the cadmium stress was investigated by the pot experiments. The results showed that cadmium treatment at 10 mg·kg~(-1) inhibited the root viability of P. notoginseng, significantly increased the content of H_2O_2 and MDA in the leaves and roots of P. noto-ginseng, caused oxidative damage of P. notoginseng, and reduced the activities of SOD and CAT. Cadmium stress reduced the chlorophyll content of P. notoginseng, increased leaf F_o, reduced F_m, F_v/F_m, and PIABS, and damaged the photosynthesis system of P. notoginseng. Cadmium treatment increased the soluble sugar content of P. notoginseng leaves and roots, inhibited the synthesis of soluble proteins, reduced the fresh weight and dry weight, and inhibited the growth of P. notoginseng. External spray application of 0.1 mg·L~(-1) BR reduced the H_2O_2 and MDA content in P. notoginseng leaves and roots under the cadmium stress, alleviated cadmium-induced oxidative damage to P. notoginseng, improved the antioxidant enzyme activity and root activity of P. notoginseng, increased the content of chlorophyll, reduced the F_o of P. notoginseng leaves, increased F_m, F_v/F_m, and PIABS, alleviated the cadmium-induced damage to the photosynthesis system, and improved the synthesis ability of soluble proteins. In summary, BR can enhance the anti-cadmium stress ability of P. notoginseng by regulating the antioxidant enzyme system and photosynthesis system of P. notoginseng under the cadmium stress. In the context of 0.1 mg·L~(-1) BR, P. notoginseng can better absorb and utilize light energy and synthesize more nutrients, which is more suitable for the growth and development of P. notoginseng.


Subject(s)
Cadmium/metabolism , Antioxidants/pharmacology , Panax notoginseng , Brassinosteroids/pharmacology , Chlorophyll/metabolism , Plant Roots/metabolism , Stress, Physiological
8.
Article in Chinese | WPRIM | ID: wpr-970591

ABSTRACT

To study the residue and dietary risk of propiconazole in Panax notoginseng and the effects on physiological and bioche-mical properties of P. notoginseng, we conducted foliar spraying of propiconazole on P. notoginseng in pot experiments. The physiolo-gical and biochemical properties studied included leaf damage, osmoregulatory substance content, antioxidant enzyme system, non-enzymatic system, and saponin content in the main root. The results showed that at the same application concentration, the residual amount of propiconazole in each part of P. notoginseng increased with the increase in the times of application and decreased with the extension of harvest interval. After one-time application of propiconazole according to the recommended dose(132 g·hm~(-2)) for P. ginseng, the half-life was 11.37-13.67 days. After 1-2 times of application in P. notoginseng, propiconazole had a low risk of dietary intake and safety threat to the population. The propiconazole treatment at the recommended concentration and above significantly increased the malondialdehyde(MDA) content, relative conductivity, and osmoregulatory substances and caused the accumulation of reactive oxygen species in P. notoginseng leaves. The propiconazole treatment at half(66 g·hm~(-2)) of the recommended dose for P. ginseng significantly increased the activities of superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT) in P. notoginseng leaves. The propiconazole treatment at 132 g·hm~(-2) above inhibited the activities of glutathione reductase(GR) and glutathione S-transferase(GST), thereby reducing glutathione(GSH) content. Proconazole treatment changed the proportion of 5 main saponins in the main root of P. notoginseng. The treatment with 66 g·hm~(-2) propiconazole promoted the accumulation of saponins, while that with 132 g·hm~(-2) and above propiconazole significantly inhibited the accumulation of saponins. In summary, using propiconazole at 132 g·hm~(-2) to prevent and treat P. notoginseng diseases will cause stress on P. notoginseng, while propiconazole treatment at 66 g·hm~(-2) will not cause stress on P. notoginseng but promote the accumulation of saponins. The effect of propiconazole on P. notoginseng diseases remains to be studied.


Subject(s)
Panax notoginseng/chemistry , Panax , Antioxidants/pharmacology , Saponins/pharmacology , Glutathione , Risk Assessment
9.
Article in Chinese | WPRIM | ID: wpr-970589

ABSTRACT

Chinese medicinal resources are the cornerstone of the sustainable development of traditional Chinese medicine industry. However, due to the fecundity of species, over-exploitation, and limitations of artificial cultivation, some medicinal plants are depleted and even endangered. Tissue culture, a breakthrough technology in the breeding of traditional Chinese medicinal materials, is not limited by time and space, and can allow the production on an annual basis, which plays an important role in the protection of Chinese medicinal resources. The present study reviewed the applications of tissue culture of medicinal plants in the field of Chinese medicinal resources, including rapid propagation of medicinal plant seedlings, breeding of novel high-yield and high-quality cultivars, construction of a genetic transformation system, and production of secondary metabolites. Meanwhile, the current challenges and suggestions for the future development of this field were also proposed.


Subject(s)
Sustainable Development , Plants, Medicinal/genetics , Plant Breeding , Medicine, Chinese Traditional , Technology
10.
Article in Chinese | WPRIM | ID: wpr-1008800

ABSTRACT

Dao-di herbs are the treasure of Chinese materia medica and one of the characteristic research objects of traditional Chinese medicine(TCM). Probing into the microevolution of Dao-di herbs can help to reveal their biological essence and quality formation mechanisms. The progress in molecular biology and omics provides the possibility to elucidate the phylogenetic and quality forming characteristics of Dao-di herbs at the molecular level. In particular, genomics serves as a powerful tool to decipher the genetic origins of Dao-di herbs, and molecular markers have been widely used in the research on the genetic diversity and population structure of Dao-di herbs. Focusing on the excellent traits and quality of Dao-di herbs, this paper reviews the studies about the microevolution process of quality formation mechanisms of Dao-di herbs with the application of molecular markers and omics, aiming to underpin the protection and utilization of TCM resources.


Subject(s)
Drugs, Chinese Herbal , Phylogeny , Plants, Medicinal/chemistry , Medicine, Chinese Traditional , Phenotype
11.
Article in Chinese | WPRIM | ID: wpr-1008666

ABSTRACT

A field experiment was conducted to measure the physiological characteristics, yield, active ingredient content, and other indicators of Carthamus tinctorius leaves undergoing 13 sowing date treatments. The principal component analysis(PCA) and redundancy analysis were used to analyze the correlation between these indicators to explore the effect of sowing date on the yield and active ingredient content of C. tinctorius in Liupanshan of Ningxia. The results illustrated that the early sowing in autumn and spring had significant effects on leaf photosynthetic parameters, SPAD value, antioxidant enzyme activity, nitrogen metabolism enzyme activity, filament yield, grain yield, and hydroxy safflower yellow A(HYSA) of C. tinctorius. Sowing in mid-November and late March had the best effect. Leaf transpiration rate, stomatal conductance, nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase increased by 44.9%, 52.4%, 15.9%, 60.8%, 10.3%, and 38.3%, respectively. The activities of superoxide dismutase, peroxidase, and catalase decreased by 10.8%, 4.1%, and 20.9%, respectively. The improvement of photosynthetic physiological characteristics promoted the dry matter accumulation and reproductive growth of C. tinctorius. The yield of filaments and seeds increased by 15.5% and 11.7%, and the yield of HYSA and kaempferol increased by 17.9% and 20.0%. In short, the suitable sowing date can promote the growth and development of C. tinctorius in Liupanshan of Ningxia, and significantly improve the yield and quality, which is conducive to the high quality and efficient production of C. tinctorius.


Subject(s)
Carthamus tinctorius , Seeds , Peroxidase/metabolism , Plant Leaves/metabolism , Antioxidants
12.
Article in Chinese | WPRIM | ID: wpr-1008663

ABSTRACT

Root rot is a microbial disease that is difficult to control and can result in serious losses in the planting of most Chinese medicinal materials. As high as 87.6% of roots or rhizomes of Chinese medicinal materials are susceptible to root rot, which seriously affects the cultivation development of Chinese medicinal materials. Trichoderma fungi, possessing biological control functions, can induce plants to improve their resistance to microbial diseases, promote plant growth, and effectively reduce the losses caused by various microbial diseases on cultivation. At present, Trichoderma is rarely used in the cultivation of Chinese medicinal materials, so it has great application potential for the prevention and control of root rot diseases in farmed Chinese medicinal materials. Based on the above situation, after comparison and discussion, it is believed that compared with chemical control and physical control, biological control of root rot diseases of Chinese medicinal materials is more efficient and meets the development needs of Chinese medicinal materials ecological planting in China. This paper reviewed the progress in the research and application of Trichoderma in the control of root rot diseases in the root and rhizome of farmed Chinese medicinal materials in the past 10 years and found that most of the current research on the biological control of root rot diseases in Chinese medicinal materials was mostly limited to the verification of the inhibitory effect of Trichoderma strains on the growth of the pathogenic microbes. Studies on the induction effect of Trichoderma on Chinese medicinal materials are not in depth. Studies on the responding mechanisms of most Chinese medicinal materials to Trichoderma are highly absent. Moreover, there are few reports on field experiments, which indicates that there is a long way to go before Trichoderma is widely applied in the farming practice of Chinese medicinal materials. To sum up, this paper aimed to link the present and the future and advocated further relevant research and more experiments on the application of Trichoderma in the farming of Chinese medicinal materials.


Subject(s)
Agriculture , Farms , Plant Diseases/microbiology , Rhizome , Trichoderma
13.
Article in Chinese | WPRIM | ID: wpr-1008623

ABSTRACT

It has become a common consensus that resource conservation and intensive recycling for improving resource utilization efficiency is an important way to achieve carbon peak and carbon neutrality(dual carbon). Traditonal Chinese medicine(TCM)resources as national strategic resources are the material basis and fundamental guarantee for the development of TCM industry and health services. However, the rapid growth of China's TCM industry and the continuous expansion and extension of the industrial chain have exposed the low efficiency of TCM resources. Resource waste and environmental pollution caused by the treatment and discharge of TCM waste have emerged as major problems faced by the development of the industry, which has aroused wide concern. Considering the dual carbon goals, this paper expounds the role and potential of TCM resource recycling and circular economy industry development. Taking the typical model of TCM resource recycling as the case of circular economy industry in reducing carbon source and increasing carbon sink, this paper puts forward the suggestions for the TCM circular economy industry serving the double carbon goals. The suggestions mainly include strengthening the policy and strategic leading role of the double carbon goals, building an objective evaluation system of low-carbon emission reduction in the whole industrial chain of TCM resources, building an industrial demonstration park for the recycling of TCM resources, and promoting the establishment of a circular economy system of the whole industrial chain of TCM resources. These measures are expected to guide the green transformation of TCM resource industry from linear economic model to circular economy model, provide support for improving the utilization efficiency and sustainable development of TCM resources, and facilitate the low-carbon and efficient development of TCM resource industry and the achievement of the double carbon goals.


Subject(s)
Medicine, Chinese Traditional , Equipment Reuse , Goals , Environmental Pollution , Economic Development , Carbon , China
14.
Article in Chinese | WPRIM | ID: wpr-928155

ABSTRACT

Illumina Xten was employed for shallow sequencing of Panax ginseng(ginseng) samples, MISA for screening of SSR loci, and Primer 3 for primer design. Polymorphic primers were screened from 180 primers. From the successfully amplified polymorphic primers, 15 primers which featured clear peak shape, good polymorphism, and ease of statistics were selected and used to evaluate the genetic diversity and germplasm resources of 36 ginseng accessions with different fruit colors from Jilin province. The results showed that red-fruit ginseng population had high genetic diversity with the average number of alleles(N_a) of 1.031 and haploid genetic diversity(h) of 0.172. The neighbor-joining cluster analysis demonstrated that the germplasms of red-fruit and yellow-fruit ginseng populations were obviously intermixed, and pick-fruit ginseng germplasms clustered into a single clade. The results of STRUCTURE analysis showed high proportion of single genotype in pick-fruit ginseng germplasm and abundant genotypes in red-fruit and yellow-fruit ginseng germplasms with obvious germplasm mixing. AMOVA revealed that genetic variation occurred mainly within populations(62.00%, P<0.001), and rarely among populations(39%, P<0.001), but homogenization was obvious among different populations. In summary, pink-fruit ginseng population may contain rare genotypes, which is the basis for breeding of high-quality high-yield, and multi-resistance varieties, genetic improvement of varieties, and sustainable development and utilization of ginseng germplasm resources.


Subject(s)
Fruit/genetics , Genetic Variation , Microsatellite Repeats , Panax/genetics , Plant Breeding
15.
Article in Chinese | WPRIM | ID: wpr-928109

ABSTRACT

This study aims to explore the resource utilization of used fungus-growing materials produced in the cultivation of Gastrodia elata. To be specific, based on the production practice, this study investigated the recycling mechanism of used fungus-growing materials of G. elata by Phallus inpudicus. To screen edible fungi with wide adaptability, this study examined the allelopathic effects of Armillaria mellea secretions on P. impudicus and 6 kinds of large edible fungi and the activities of enzymes related to degradation of the used fungus-growing materials of G. elata. The results showed that P. impudicus can effectively degrade cellulose, hemicellulose, and lignin in used fungus-growing materials of G. elata. The cellulase activity of A. mellea was significantly higher than that of P. impudicus, and the activities of lignin peroxidase, polyphenol oxidase, and xylanase of P. impudicus were significantly higher than those of A. mellea, which was the important reason why A. mellea and P. impudicus used different parts and components of the used fungus-growing materials to absorb carbon sources and develop ecological niche differences. The growth of P. impudicus was significantly inhibited on the used fungus-growing materials of G. elata. The secretions of A. mellea had allelopathic effects on P. impudicus and other edible fungi, and the allelopathic effects were related to the concentration of allelopathy substances. The screening result showed that the growth and development of L. edodes and A. auricular were not significantly affected by 30% of A. mellea liquid, indicating that they had high resistance to the allelopathy of A. mellea. The results showed that the activities of extracellular lignin peroxidase, polyphenol oxidase, and xylanase of the two edible fungi were similar to those of P. impudicus, and the cellulase activity was higher than that of P. impudicus. This experiment can be further verified by small-scale production tests.


Subject(s)
Agaricales , Ascomycota , Basidiomycota , Catechol Oxidase , Cellulases , Gastrodia
16.
Article in Chinese | WPRIM | ID: wpr-928107

ABSTRACT

The continuous cropping obstacle of Gastrodia elata is outstanding, but its mechanism is still unclear. In this study, microbial changes in soils after G. elata planting were investigated to explore the mechanism correlated with continuous cropping obstacle. The changes of species and abundance of fungi and bacteria in soils planted with G. elata after 1, 2, and 3 years were compared. The pathogenic fungi that might cause continuous cropping diseases of G. elata were isolated. Finally, the prevention and control measures of soil-borne fungal diseases of G. elata were investigated with the rotation planting pattern of "G. elata-Phallus impudicus". The results showed that G. elata planting resulted in the decrease in bacterial and fungal community stability and the increase in harmful fungus species and abundance in soils. This change was most obvious in the second year after G. elata planting, and the soil microbial community structure could not return to the normal level even if it was left idle for another two years. After G. elata planting in soils, the most significant change was observed in Ilyonectria cyclaminicola. The richness of the Ilyonectria fungus in soils was significantly positively correlated with the incidence of G. elata diseases. When I. cyclaminicola was inoculated in the sterile soil, the rot rate of G. elata was also significantly increased. After planting one crop of G. elata and one to three crops of P. impudicus, the fungus community structure in soils gradually recovered, and the abundance of I. cyclaminicola decreased year by year. Furthermore, the disease rate of G. elata decreased. The results showed that the cultivation of G. elata made the Ilyonectria fungi the dominant flora in soils, and I. cyclaminicola served as the main pathogen of continuous cropping diseases of G. elata, which could be reduced by rotation planting with P. impudicus.


Subject(s)
Bacteria , Fungi , Gastrodia/microbiology , Mycobiome , Soil , Soil Microbiology
17.
Article in Chinese | WPRIM | ID: wpr-928106

ABSTRACT

Brown rot is a common disease in the cultivation and production of Gastrodia elata, but its pathogens have not been fully revealed. In this study, the pathogenic fungi were isolated and purified from tubers of 77 G. elata samples with brown rot. Pathogens were identified by the pathogenicity test and morphological and molecular identification. The pathogenicity of each pathogen and its inhibitory effects on Armillaria gallica were compared. The results showed that 119 strains of fungi were isolated from tubers of G. elata infected with brown rot. Among them, the frequency of separation of Ilyonectria fungi was as high as 42.01%. The pathogenicity test showed that the pathogenicity characteristics of six strains of fungi were consistent with the natural symptoms of brown rot in G. elata. The morphological and molecular identification results showed that the six strains belonged to I. cyclaminicola and I. robusta in the Nectriaceae family of Sordariomycetes class, respectively. Both types of fungi could produce pigments, conidia, and chlamycospore, and the growth rate of I. cyclaminicola was significantly higher than that of I. robusta. The comparison of pathogenicity showed that the spots formed by I. cyclaminicola inoculation were significantly larger than those of I. robusta inoculation, suggesting I. cyclaminicola was superior to I. robusta in pathogenicity. The results of confrontation culture showed that I. cyclaminicola and I. robusta could signi-ficantly inhibit the germination and cordage growth of A. gallica. A. gallica also inhibited the growth of pathogens, and I. cyclaminicola was less inhibited as compared with I. robusta. The results of this study revealed for the first time that I. cyclaminicola and I. robusta were the pathogens responsible for G. elata brown rot.


Subject(s)
Fungi , Gastrodia , Plant Tubers , Spores, Fungal , Virulence
18.
Article in Chinese | WPRIM | ID: wpr-928104

ABSTRACT

Due to the special biological characteristics, Gastrodia elata suffers from high resource consumption and low utilization rate in modern agricultural production, which significantly block the green and healthy development of this industry. Based on the theory and technology in ecological cultivation of Chinese medicinal materials, this study analyzed the challenges in ecological cultivation of G. elata, such as waste of fungus material, a few cultivation modes available, continuous cropping obstacles, frequent occurrence of diseases, and poor stability of ecological structure. According to the production practice, the following suggestions were proposed for ecological cultivation of G. elata: following the principle of environmental protection and no pollution, selecting suitable habitats to yield high-quality medicinal materials, committing to green control of diseases and pests, upgrading industrial structure to maximize the benefits, establishing a sound mechanism for protecting the genetic diversity of wild G. elata, carrying out simulative habitat cultivation to improve medicinal material quality, adopting science-based planning of fungus resources to relieve forestry pressure, enhancing the recycling and utilization of fungus materials, and applying diversified cultivation modes to improve the stability of ecological structure. The result is expected to provide a reference for the quality development of G. elata industry.


Subject(s)
Agriculture , Gastrodia/chemistry , Plants, Medicinal/chemistry
19.
Article in Chinese | WPRIM | ID: wpr-928074

ABSTRACT

Lonicera Japonica Flos is the dried bud or nascent flower of Lonicera japonica(Caprifoliaceae). The plant suffers from various diseases and pests in the growth period and thus pesticides are often used. As a result, the resultant pesticide residues in Lonicera Japonica Flos have aroused great concern. This review summarized the investigation, detection methods, content analysis, and risk assessment of pesticide residues in Lonicera Japonica Flos since 1996, and compared the maximum residue limits among different countries and regions. The results showed that the pesticide residues were detected in Lonicera Japonica Flos from different production areas, and only some exceeded the limits. The residual pesticides have changed from organochlorines to new types such as tebuconazole and nitenpyram. The detection method has upgraded from chromatography to chromatography-mass spectrometry. Most pesticide residues will not cause health risks, except carbofuran. Pesticide residues limit the development of Lonicera Japonica Flos industry in China. In practice, we should improve the drug registration of Lonicera Japonica Flos, promote ecological prevention and control technology, and formulate and promote pesticide residue limit standard of Lonicera Japonica Flos.


Subject(s)
Flowers/chemistry , Lonicera/chemistry , Mass Spectrometry , Pesticide Residues/analysis , Pesticides/analysis
20.
Article in Chinese | WPRIM | ID: wpr-928072

ABSTRACT

Panax notoginseng is a perennial Chinese medicinal plant, which has serious continuous cropping obstacles and is prone to a variety of diseases and insect pests during the growth process. At present, the prevention and control of pests and diseases is mainly carried out through chemical pesticides, and the consequent pesticide residues of P. notoginseng have attracted much attention. This study reviewed the types and detection methods of pesticide residues in P. notoginseng from 1981 to 2021, and compared the limits of pesticide residues in P. notoginseng in China and abroad to provide a reference for rational application of pesticides in P. notoginseng and quality control of medicinal materials, thereby promoting the sustainable development of the P. notoginseng industry in China. Currently, there are only 40 published papers on pesticide residues of P. notoginseng, which is indicative of a serious problem of insufficient research. At present, hundreds of pesticide residues in P. notoginseng can be detected simultaneously by using chromatography-tandem mass spectrometry. The pesticides detected have gradually changed from early prohibited ones, such as dichlorodiphenyl trichloroethane(DDT), benzene hexachloride(BHC), and parathion, to low toxic ones(e.g., dimethomorph, procymidone, propicona-zole, and difenoconazole). The dietary risk from pesticide residues in P. notoginseng is low, which would not cause harm to consu-mers. This study concluded that in the future, the development of the quality standard for pesticide residues of P. notoginseng should be actively carried out. To increase the pesticides used in actual production in the quality standard based on the existing ones and to guide farmers to use pesticides scientifically will be the focus of future work.


Subject(s)
China , Panax notoginseng , Pesticide Residues/analysis , Pesticides/analysis , Plants, Medicinal
SELECTION OF CITATIONS
SEARCH DETAIL