ABSTRACT
Lignosus rhinocerotis (tiger milk mushroom) is widely used by the indigenous people of Malaysia as a traditional remedy. The present study was carried out in order to evaluate the antioxidant, cytotoxic and anti-neuroinflammatory activities of L. rhinocerotis extract on brain microglial cells (BV2). The antioxidant activity was evaluated by 2,2-diphenyl-1-picryhydrazyl (DPPHâ¢), 2,2'-azinobis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTSâ¢+) scavenging assays, and ferric reducing antioxidant power (FRAP). The FRAP, DPPH and ABTSâ¢+ scavenging capacities of the TE3 fraction were 420.77 mg FE/g, 58.01%, and 7%, respectively. The cytotoxic activity was determined by MTS assay. The in vitro model of anti-neuroinflammatory property was evaluated by measuring the production of nitric oxide (NO) in lipopolysaccharide (LPS)-induced BV2 cells. The TE3 fraction showed a significant NO reduction at 1 to 100 µg/mL. The TE3 fraction down-regulated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2) genes while it upregulated heme oxygenase (HO-1) and NADPH quinone acceptor oxidoreductase-1 (NQO-1) genes. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) transcription was also activated. The chemical component of the active fraction (TE3) was identified by gas chromatography-mass spectrometry (GCMS). Overall, the BV2 in vitro model anti-neuroinflammatory activity of L. rhinocerotis may be caused by the lipid constituents identified in the fraction
Subject(s)
In Vitro Techniques/methods , Cells/classification , Agaricales/classification , Inflammation/drug therapy , Lipids/adverse effects , Gas Chromatography-Mass Spectrometry/instrumentation , Antioxidants/pharmacologyABSTRACT
ABSTRACT The interaction between 6-shogaol, a pharmacologically active ginger constituent, and human serum albumin (HSA), the main in vivo drug transporter, was investigated using isothermal titration calorimetry (ITC). The value of the binding constant, Ka (5.02 ± 1.37 × 104 M−1) obtained for the 6-shogaol-HSA system suggested intermediate affinity. Analysis of the ITC data revealed feasibility of the binding reaction due to favorable enthalpy and entropy changes. The values of the thermodynamic parameters suggested involvement of van der Waals forces, hydrogen bonds and hydrophobic interactions in the 6-shogaol-HSA complex formation.