Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 12.891
Filter
1.
Int. j. morphol ; 42(4): 1039-1048, ago. 2024.
Article in English | LILACS | ID: biblio-1569261

ABSTRACT

SUMMARY: Resveratrol (RES) and quercetine (QRC), is a promising agent relevant for both cancer chemoprevention and treatment via several signaling pathways, involved in their anticancer activity related to its chemotherapeutic potential, associated with the induction of ROS generation in cancer cells, leading to apoptosis. In our study, we have summarized the mechanisms of action of RES and QRC, and their pharmacological implications and potential therapeutic applications in cancer therapy. After treatment of Hep 2 cells with QRC or RES, the death pathways such as the cytochrome c release, ERK1/2 and IRS-1 pathways were upregulated, while cell survival pathway, including PI3K/AKT were downregulated. The RES and QRC caused oncosis, cells hypertrophy, hypercondensatin of chromatin, rupture of the plasma membrane and nuclear membrane, and formation of apoptotic bodies. Morphometric measurements of some cellular and nuclear parameters showed that RES and QRC induced an increase in cells and nuclear size, the nucleocytoplasmic ratio remained below 1 (N-Cyt R < 1), sign of low nuclear activity. The RES and QRC induced apoptosis of Hep2 cells by increasing of oxidative stress markers, MDA, and by modulating detoxifying enzymes, CAT and SOD. Our study results prove antiproliferative and proapoptotic properties of quercetin and resveratrol with regard to larynx cancer.


Resveratrol (RES) y quercetina (QRC), es un agente prometedor y relevante tanto para la quimioprevención como para el tratamiento del cáncer a través de varias vías de señalización, involucrado en su actividad anticancerígena relacionada con su potencial quimioterapéutico, asociado con la inducción de la generación de especies reactivas del oxígeno (ROS) en células cancerosas, lo que lleva a apoptosis. En nuestro estudio, hemos resumido los mecanismos de acción de RES y QRC, y sus implicaciones farmacológicas y posibles aplicaciones terapéuticas en la terapia del cáncer. Después del tratamiento de las células Hep 2 con QRC o RES, las vías de muerte, tal como la liberación de citocromo c, las vías ERK1/2 e IRS-1, se regulaban positivamente, mientras que la vía de supervivencia celular, incluida PI3K/AKT, se regulaba negativamente. El RES y el QRC provocaron oncosis, hipertrofia celular, hipercondensación de la cromatina, rotura de la membrana plasmática y nuclear y formación de cuerpos apoptóticos. Las mediciones morfométricas de algunos parámetros celulares y nucleares mostraron que RES y QRC indujeron un aumento en las células y el tamaño nuclear, la proporción nucleocitoplasmática se mantuvo por debajo de 1 (N- Cyt R <1), signo de baja actividad nuclear. RES y QRC indujeron la apoptosis de las células Hep2 aumentando los marcadores de estrés oxidativo, MDA, y modulando las enzimas desintoxicantes, CAT y SOD. Los resultados de nuestro estudio demuestran las propiedades antiproliferativas y proapoptóticas de la quercetina y el resveratrol con respecto al cáncer de laringe.


Subject(s)
Humans , Quercetin/pharmacology , Cell Line, Tumor/drug effects , Resveratrol/pharmacology , Cell Survival , Cell Death , Apoptosis , Oxidative Stress , Cell Proliferation/drug effects
2.
Int. j. morphol ; 42(4): 984-990, ago. 2024. ilus, tab
Article in English | LILACS | ID: biblio-1569276

ABSTRACT

SUMMARY: In this study we aimed to examine the effect of novel vasodilatory drug Riociguat co-administration along resveratrol to recover neurodegeneration in experimental stroke injury. For that purpose, thirty-five adult female rats were divided into five groups (Control, MCAO, MCAO + R, MCAO + BAY, MCAO + C) of seven animals in each. Animals in Control group did not expose to any application during the experiment and sacrificed at the end of the study. Rats in the rest groups exposed to middle cerebral artery occlusion (MCAO) induced ischemic stroke. MCAO + R group received 30 mg/kg resveratrol, and MCAO + BAY group received 10 mg/kg Riociguat. The MCAO + C group received both drugs simultaneously. The drugs were administered just before the reperfusion, and the additional doses were administered 24h, and 48h hours of reperfusion. All animals in this study were sacrificed at the 72nd hour of experiment. Total brains were received for analysis. Results of this experiment indicated that MCAO led to severe injury in cerebral structure. Bax, IL-6 and IL-1ß tissue levels were up-regulated, but anti-apoptotic Bcl-2 immunoexpression was suppressed (p<0.05). In resveratrol and Riociguat treated animals, the neurodegenerations and apoptosis and inflammation associated protein expressions were improved compared to MCAO group, but the most success was obtained in combined treatment exposed animals in MCAO + C group. This study indicated that the novel soluble guanylate stimulator Riociguat is not only a potent neuroprotective drug in MCAO induced stroke, but also synergistic administration of Riociguat along with resveratrol have potential to increase the neuroprotective effect of resveratrol in experimental cerebral stroke exposed rats.


En este estudio, nuestro objetivo fue examinar el efecto de la coadministración del nuevo fármaco vasodilatador Riociguat junto con resveratrol para recuperar la neurodegeneración en lesiones por ataques cerebrovasculares experimentales. Para ello, se dividieron 35 ratas hembras adultas en cinco grupos (Control, MCAO, MCAO + R, MCAO + BAY, MCAO + C) de siete animales en cada uno. Los animales del grupo control no fueron sometidos a ninguna aplicación durante el experimento y se sacrificaron al final del estudio. Las ratas de los grupos expuestas a la oclusión de la arteria cerebral media (MCAO) indujeron un ataque cerebrovascular isquémico. El grupo MCAO + R recibió 30 mg/kg de resveratrol y el grupo MCAO + BAY recibió 10 mg/kg de Riociguat. El grupo MCAO + C recibió ambos fármacos simultáneamente. Los fármacos se administraron antes de la reperfusión y las dosis adicionales se administraron a las 24 y 48 horas de la reperfusión. Todos los animales en este estudio fueron sacrificados a las 72 horas del experimento. Se recibieron cerebros totales para su análisis. Los resultados indicaron que la MCAO provocaba lesiones graves en la estructura cerebral. Los niveles tisulares de Bax, IL-6 e IL- 1ß estaban regulados positivamente, pero se suprimió la inmunoexpresión antiapoptótica de Bcl-2 (p <0,05). En los animales tratados con resveratrol y Riociguat, las neurodegeneraciones y las expresiones de proteínas asociadas a la apoptosis y la inflamación mejoraron en comparación con el grupo MCAO, sin embargo el mayor éxito se obtuvo en el tratamiento combinado de animales expuestos en el grupo MCAO + C. Este estudio indicó que el nuevo estimulador de guanilato ciclasa soluble Riociguat no solo es un fármaco neuroprotector potente en el ataque cerebrovascular inducido por MCAO, sino que también la administración sinérgica de Riociguat junto con resveratrol tiene el potencial para aumentar el efecto neuroprotector del resveratrol en ratas experimentales expuestas a un ataque cerebrovascular.


Subject(s)
Animals , Female , Rats , Pyrazoles/administration & dosage , Pyrimidines/administration & dosage , Stroke/drug therapy , Resveratrol/administration & dosage , Arterial Occlusive Diseases , Enzyme-Linked Immunosorbent Assay , Immunohistochemistry , Interleukin-6/analysis , Apoptosis/drug effects , Neuroprotective Agents , Middle Cerebral Artery , Stroke/pathology , Enzyme Activators/administration & dosage , Models, Animal , Drug Therapy, Combination , Interleukin-1beta/analysis , Guanylate Cyclase/drug effects , Inflammation
3.
Braz. j. med. biol. res ; 57: e13229, fev.2024. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1534065

ABSTRACT

Abstract The incidence of non-alcoholic fatty liver (NAFLD) remains high, and many NAFLD patients suffer from severe ischemia-reperfusion injury (IRI). Currently, no practical approach can be used to treat IRI. Puerarin plays a vital role in treating multiple diseases, such as NAFLD, stroke, diabetes, and high blood pressure. However, its role in the IRI of the fatty liver is still unclear. We aimed to explore whether puerarin could protect the fatty liver from IRI. C57BL/6J mice were fed with a high‐fat diet (HFD) followed by ischemia reperfusion injury. We showed that hepatic IRI was more severe in the fatty liver compared with the normal liver, and puerarin could significantly protect the fatty liver against IRI and alleviate oxidative stress. The PI3K-AKT signaling pathway was activated during IRI, while liver steatosis decreased the level of activation. Puerarin significantly protected the fatty liver from IRI by reactivating the PI3K-AKT signaling pathway. However, LY294002, a PI3K-AKT inhibitor, attenuated the protective effect of puerarin. In conclusion, puerarin could significantly protect the fatty liver against IRI by activating the PI3K-AKT signaling pathway.

4.
Braz. j. med. biol. res ; 57: e13437, fev.2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1557316

ABSTRACT

Clinical studies have found that neonatal sevoflurane exposure can increase the risk of cognitive dysfunction. However, recent studies have found that it can exhibit neuroprotective effects in some situations. In this study, we aimed to explore the effects of sevoflurane neonatal exposure in rats. A total of 144 rat pups (72 males and 72 females) were assigned to six groups and separately according to sevoflurane exposure of different times on the seventh day after birth. Blood gas analysis and western blot detection in the hippocampus were conducted after exposure. The Morris water maze test was conducted on the 32nd to 38th days after birth. The expression of PSD95 and synaptophysin in the hippocampus was detected after the Morris water maze test. We found that neonatal exposure to sevoflurane promoted apoptosis in the hippocampus, and Bax and caspase-3 were increased in a dose-dependent manner. The 2-h exposure had the greatest effects on cognitive dysfunction. However, with the extension of exposure time to 6 h, the effects on cognitive function were partly compensated. In addition, sevoflurane exposure decreased synaptogenesis in the hippocampus. However, as the exposure time was extended, the suppression of synaptogenesis was attenuated. In conclusion, neonatal sevoflurane exposure exhibited duration-dependent effects on cognitive function via Bax-caspase-3-dependent apoptosis and bidirectional effects on synaptogenesis in rats.

5.
Braz. j. med. biol. res ; 57: e13889, fev.2024. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1568967

ABSTRACT

With the escalating incidence and mortality rates of cancer, there is an ever-growing emphasis on the research of anticancer drugs. Cordycepin, the primary nucleoside antibiotic isolated from Cordyceps militaris, has emerged as a remarkable agent for cancer prevention and treatment. Functioning as a natural targeted antitumor drug, cordycepin assumes an increasingly pivotal role in cancer therapy. This review elucidates the mechanisms of cordycepin in inhibiting tumor cell proliferation, inducing apoptosis, as well as its capabilities in suppressing angiogenesis and metastasis. Moreover, the immunomodulatory effects of cordycepin in cancer treatment are explored. Additionally, the current status, challenges, and future prospects of cordycepin application in clinical trials are briefly discussed. The objective is to provide a valuable reference for the utilization of cordycepin in cancer treatment.

6.
Article in Chinese | WPRIM | ID: wpr-1006554

ABSTRACT

ObjectiveTo explore the mechanism of Wenyang Jieyu prescription in regulating hippocampal neuron apoptosis and improving synaptic plasticity in the mouse model of depression induced by maternal separation combined with restraint stress. MethodThe mice on postnatal day 0 (PD0) were randomly assigned into a control group (n=10) and a modeling group (n=50). Maternal separation combined with restraint stress was adopted to establish the mouse model of depression, and the modeled mice were randomized into model, Wenyang prescription, Jieyu prescription, Wenyang Jieyu prescription, and fluoxetine groups (n=10) on the weaning day (PD21). From PD21 to PD111, the mice were fed with the diets mixed with corresponding medicines. The sucrose preference test, open field test, O-maze test, and novel object recognition test were then conducted to evaluate the depression, memory, and learning abilities of mice. Immunohistochemistry (IHC) was employed to measure the atomic absorbance (AA) of postsynaptic density protein 95 (PSD95) in the hippocampus. Terminal-deoxynucleoitidyl transferase-mediated nick-end labeling (TUNEL) was employed to detect the apoptosis of hippocampal neurons. Western blot was employed to determine the protein levels of brain-derived neurotrophic factor (BDNF), phosphorylated tyrosine kinase receptor B/tyrosine kinase receptor B (p-TrkB/TrkB), phosphorylated protein kinase B/protein kinase B (p-Akt/Akt), phosphorylated mammalian target of rapamycin/mammalian target of rapamycin (p-mTOR/mTOR), B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X (Bax), cysteinyl aspartate-specific proteinase-3 (Caspase-3), synaptophysin (Syn), and PSD95. ResultCompared with the control group, the modeling decreased the sucrose preference rate, time spent in central zone within 5 min, total movement distance, time spent in the open arm, and cognition index (P<0.01). Furthermore, it decreased the expression of PSD95, increased the neuron apoptosis in the hippocampus (P<0.01), down-regulated the protein levels of BDNF, p-TrkB/TrkB, p-Akt/Akt, p-mTOR/mTOR, Bcl-2, PSD95, and Syn (P<0.01), and up-regulated the protein levels of Bax and Caspase-3 (P<0.05) in the hippocampus. Compared with the model group, Wenyang Jieyu prescription and fluoxetine increased the sucrose preference rate, time spent in central zone within 5 min, total movement distance, time spent in the open arm, and cognition index (P<0.05, P<0.01). Moreover, the drugs increased the expression of PSD95, reduced the neuron apoptosis (P<0.01), up-regulated the protein levels of BDNF, p-TrkB/TrkB, p-Akt/Akt, p-mTOR/mTOR, Bcl-2, PSD95, and Syn (P<0.01), and down-regulated the protein levels of Bax and Caspase-3 (P<0.01). ConclusionWenyang Jieyu prescription outperformed Wenyang prescription and Jieyu prescription in the treatment of the depressive behavior induced by maternal separation combined with restraint stress in mice. It exerted the therapeutic effect by reducing the hippocampal neuron apoptosis and improving the synaptic plasticity via the BDNF/Akt/mTOR pathway.

7.
China Pharmacy ; (12): 283-289, 2024.
Article in Chinese | WPRIM | ID: wpr-1006611

ABSTRACT

OBJECTIVE To investigate the attenuation and synergism of Hugan buzure recipe (HBR) combined with oxaliplatin on hepatocellular carcinoma tumor bearing nude mice and its mechanism. METHODS Eight nude mice were selected from 40 nude mice as the blank group (normal saline), and the remaining nude mice were inoculated with hepatoma cells Huh7 to establish the tumor-bearing model. The 32 modeled nude mice were randomly allocated to four groups: model group (normal saline, ig), HBR group (0.69 g/kg, ig), oxaliplatin group (10 mg/kg, ip), and combination group (intraperitoneal injection of 0.69 g/kg HBR+intragastric administration of 10 mg/kg oxaliplatin), with 8 mice in each group. Administer drug/normal saline once a day for 32 consecutive days; administer subcutaneous injection once every 7 days for a total of 5 times. During the experiment, the general condition of nude mice in each group was observed, and the tumor volume was measured every 4 days. On the 30th day of administration, the thermal stimulation paw withdrawal latency of nude mice in each group were detected. The tumor inhibition rate, spleen coefficient, the number of red blood cells, white blood cells and platelets in the whole blood of nude mice in each group, and the content of aspartate aminotransferase (AST) and creatinine in serum were detected after the end of administration. HE staining was used to observe the pathological changes in tumor tissues in nude mice in each group. The expression of microtubule-associated protein 1 light chain 3 (LC3),selective autophagy adaptor protein p62, B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), and Caspase-3 protein in tumor tissues. RESULT Compared with the model group, the tumor volume, tumor weight, white blood cells,red blood cells in the whole blood and spleen coefficients of nude mice in the oxaliplatin group were significantly decreased (P<0.01); the thermal stimulation paw withdrawal latency, AST and creatinine in serum were significantly increased (P<0.05 or P<0.01). Compared with the oxaliplatin group, the tumor volume and tumor weight of nude mice in the combination group were significantly decreased (P<0.01); the white blood cells, red blood cells and platelets in the whole blood and spleen coefficients of nude mice were significantly increased (P<0.05 or P<0.01); the thermal stimulation paw withdrawal latency, AST and creatinine in serum were significantly decreased (P<0.01); the expression levels of LC3, Bax and Caspase-3 proteins in tumor tissues of nude mice were significantly increased (P<0.01), and the expression levels of p62 and Bcl-2 proteins were significantly decreased (P<0.01). CONCLUSIONS HBR enhances the tumor inhibition rate of oxaliplatin by inducing apoptosis and autophagy, and can alleviate the peripheral neurotoxicity, hematological toxicity, hepatorenal toxicity, and immune organ toxicity caused by oxaliplatin in nude mice.

8.
Article in English | WPRIM | ID: wpr-1009495

ABSTRACT

PURPOSE@#The incidence of heatstroke (HS) is not particularly high; however, once it occurs, the consequences are serious. It is reported that calcitonin gene-related peptide (CGRP) is protective against brain injury in HS rats, but detailed molecular mechanisms need to be further investigated. In this study, we further explored whether CGRP inhibited neuronal apoptosis in HS rats via protein kinase A (PKA)/p-cAMP response element-binding protein (p-CREB) pathway.@*METHODS@#We established a HS rat model in a pre-warmed artificial climate chamber with a temperature of (35.5 ± 0.5) °C and a relative humidity of 60% ± 5%. Heatstress was stopped once core body temperature reaches above 41 °C. A total of 25 rats were randomly divided into 5 groups with 5 animals each: control group, HS group, HS+CGRP group, HS+CGRP antagonist (CGRP8-37) group, and HS+CGRP+PKA/p-CREB pathway blocker (H89) group. A bolus injection of CGRP was administered to each rat in HS+CGRP group, CGRP8-37 (antagonist of CGRP) in HS+CGRP8-37 group, and CGRP with H89 in HS+CGRP+H89 group. Electroencephalograms were recorded and the serum concentration of S100B, neuron-specific enolase (NSE), neuron apoptosis, activated caspase-3 and CGRP expression, as well as pathological morphology of brain tissue were detected at 2 h, 6 h, and 24 h after HS in vivo. The expression of PKA, p-CREB, and Bcl-2 in rat neurons were also detected at 2 h after HS in vitro. Exogenous CGRP, CGRP8-37, or H89 were used to determine whether CGRP plays a protective role in brain injury via PKA/p-CREB pathway. The unpaired t-test was used between the 2 samples, and the mean ± SD was used for multiple samples. Double-tailed p < 0.05 was considered statistically significant.@*RESULTS@#Electroencephalogram showed significant alteration of θ (54.50 ± 11.51 vs. 31.30 ± 8.71, F = 6.790, p = 0.005) and α wave (16.60 ± 3.21 vs. 35.40 ± 11.28, F = 4.549, p = 0.020) in HS group compared to the control group 2 h after HS. The results of triphosphate gap terminal labeling (TUNEL) showed that the neuronal apoptosis of HS rats was increased in the cortex (9.67 ± 3.16 vs. 1.80 ± 1.10, F = 11.002, p = 0.001) and hippocampus (15.73 ± 8.92 vs. 2.00 ± 1.00, F = 4.089, p = 0.028), the expression of activated caspase-3 was increased in the cortex (61.76 ± 25.13 vs. 19.57 ± 17.88, F = 5.695, p = 0.009) and hippocampus (58.60 ± 23.30 vs. 17.80 ± 17.62, F = 4.628, p = 0.019); meanwhile the expression of serum NSE (5.77 ± 1.78 vs. 2.35 ± 0.56, F = 5.174, p = 0.013) and S100B (2.86 ± 0.69 vs. 1.35 ± 0.34, F = 10.982, p = 0.001) were increased significantly under HS. Exogenous CGRP decreased the concentrations of NSE and S100B, and activated the expression of caspase-3 (0.41 ± 0.09 vs. 0.23 ± 0.04, F = 32.387, p < 0.001) under HS; while CGRP8-37 increased NSE (3.99 ± 0.47 vs. 2.40 ± 0.50, F = 11.991, p = 0.000) and S100B (2.19 ± 0.43 vs. 1.42 ± 0.30, F = 4.078, p = 0.025), and activated the expression caspase-3 (0.79 ± 0.10 vs. 0.23 ± 0.04, F = 32.387, p < 0.001). For the cell experiment, CGRP increased Bcl-2 (2.01 ± 0.73 vs. 2.15 ± 0.74, F = 8.993, p < 0.001), PKA (0.88 ± 0.08 vs. 0.37 ± 0.14, F = 20.370, p < 0.001), and p-CREB (0.87 ± 0.13 vs. 0.29 ± 0.10, F = 16.759, p < 0.001) levels; while H89, a blocker of the PKA/p-CREB pathway reversed the expression.@*CONCLUSIONS@#CGRP can protect against HS-induced neuron apoptosis via PKA/p-CREB pathway and reduce activation of caspase-3 by regulating Bcl-2. Thus CGRP may be a new target for the treatment of brain injury in HS.


Subject(s)
Animals , Rats , Apoptosis , Brain Injuries/pathology , Calcitonin Gene-Related Peptide/metabolism , Caspase 3 , Isoquinolines , Proto-Oncogene Proteins c-bcl-2 , Rats, Sprague-Dawley , Sulfonamides , Heat Stroke/pathology
9.
Article in English | WPRIM | ID: wpr-1010288

ABSTRACT

OBJECTIVE@#To investigate the effects of asperuloside on cervical cancer based on endoplasmic reticulum (ER) stress and mitochondrial pathway.@*METHODS@#Different doses (12.5-800 µg/mL) of asperuloside were used to treat cervical cancer cell lines Hela and CaSki to calculate the half maximal inhibitory concentration (IC50) of asperuloside. The cell proliferation was analyzed by clone formation assay. Cell apoptosis, intracellular reactive oxygen species (ROS) and mitochondrial membrane potential were determined by flow cytometry. The protein expressions of cleaved-caspase-3, Bcl-2, Bax, Cyt-c, cleaved-caspase-4 and glucose-regulated protein 78 (GRP78) were analyzed by Western blot. And the inhibitor of ER stress, 4-phenyl butyric acid (4-PBA) was used to treat cervical cancer cells to further verify the role of ER stress in the apoptosis of cervical cancer cells induced by asperuloside.@*RESULTS@#Asperuloside of 325, 650, and 1300 µg/mL significantly inhibited the proliferation and promoted apoptosis of Hela and CaSki cells (P<0.01). All doses of asperuloside significantly increased intracellular ROS levels, reduced mitochondrial membrane potential, significantly reduced Bcl-2 protein expression level, and increased Bax, Cyt-c, GRP78 and cleaved-caspase-4 expressions (P<0.01). In addition, 10 mmol/L 4-PBA treatment significantly promoted cell proliferation and reduced apoptosis (P<0.05), and 650 µg/mL asperuloside could reverse 4-PBA-induced increased cell proliferation, decreased apoptosis and cleaved-caspase-3, -4 and GRP78 protein expressions (P<0.05).@*CONCLUSION@#Our study revealed the role of asperuloside in cervical cancer, suggesting that asperuloside promotes apoptosis of cervical cancer cells through ER stress-mitochondrial pathway.


Subject(s)
Female , Humans , Uterine Cervical Neoplasms/metabolism , Caspase 3/metabolism , bcl-2-Associated X Protein/metabolism , Reactive Oxygen Species/metabolism , Endoplasmic Reticulum Chaperone BiP , HeLa Cells , Proto-Oncogene Proteins c-bcl-2/metabolism , Apoptosis , Endoplasmic Reticulum Stress , Cell Line, Tumor
10.
Article in English | WPRIM | ID: wpr-1010324

ABSTRACT

OBJECTIVE@#To examine the therapeutic effect of Fangji Fuling Decoction (FFD) on sepsis through network pharmacological analysis combined with in vitro and in vivo experiments.@*METHODS@#A sepsis mouse model was constructed through intraperitoneal injection of 20 mg/kg lipopolysaccharide (LPS). RAW264.7 cells were stimulated by 250 ng/mL LPS to establish an in vitro cell model. Network pharmacology analysis identified the key molecular pathway associated with FFD in sepsis. Through ectopic expression and depletion experiments, the effect of FFD on multiple organ damage in septic mice, as well as on cell proliferation and apoptosis in relation to the mitogen-activated protein kinase 14/Forkhead Box O 3A (MAPK14/FOXO3A) signaling pathway, was analyzed.@*RESULTS@#FFD reduced organ damage and inflammation in LPS-induced septic mice and suppressed LPS-induced macrophage apoptosis and inflammation in vitro (P<0.05). Network pharmacology analysis showed that FFD could regulate the MAPK14/FOXO signaling pathway during sepsis. As confirmed by in vitro cell experiments, FFD inhibited the MAPK14 signaling pathway or FOXO3A expression to relieve LPS-induced macrophage apoptosis and inflammation (P<0.05). Furthermore, FFD inhibited the MAPK14/FOXO3A signaling pathway to inhibit LPS-induced macrophage apoptosis in the lung tissue of septic mice (P<0.05).@*CONCLUSION@#FFD could ameliorate the LPS-induced inflammatory response in septic mice by inhibiting the MAPK14/FOXO3A signaling pathway.


Subject(s)
Mice , Animals , Mitogen-Activated Protein Kinase 14/metabolism , Wolfiporia , Lipopolysaccharides/pharmacology , Sepsis/complications , Signal Transduction , Inflammation/drug therapy , Oxygen Radioisotopes
11.
Article in English | WPRIM | ID: wpr-1010331

ABSTRACT

As a serious cardiovascular disease, atherosclerosis (AS) causes chronic inflammation and oxidative stress in the body and poses a threat to human health. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a member of the phospholipase A2 (PLA2) family, and its elevated levels have been shown to contribute to AS. Lp-PLA2 is closely related to a variety of lipoproteins, and its role in promoting inflammatory responses and oxidative stress in AS is mainly achieved by hydrolyzing oxidized phosphatidylcholine (oxPC) to produce lysophosphatidylcholine (lysoPC). Moreover, macrophage apoptosis within plaque is promoted by localized Lp-PLA2 which also promotes plaque instability. This paper reviews those researches of Chinese medicine in treating AS via reducing Lp-PLA2 levels to guide future experimental studies and clinical applications related to AS.


Subject(s)
Humans , 1-Alkyl-2-acetylglycerophosphocholine Esterase , Medicine, Chinese Traditional , Atherosclerosis/drug therapy , Lipoproteins , Plaque, Atherosclerotic , Biomarkers
12.
Article in Chinese | WPRIM | ID: wpr-1006271

ABSTRACT

ObjectiveThe antitumor activity of sesquiterpenoid M36 isolated from Myrrha against human hepatoma HepG2 cells was investigated in this study. MethodHepG2 cells were treated with M36 at different concentrations (0, 2, 4, 6, 8, 10 μmol·L-1). Firstly, the effects of M36 on the proliferation of human hepatoma HepG2 cells were detected by methyl thiazolyl tetrazolium (MTT), colony formation assay, and EdU proliferation assay. Hoechst staining, flow cytometry analysis, and Western blot were used to explore the effect of M36 on the apoptosis of human hepatoma HepG2 cells. Acridine orange staining and western blotting were used to examine the effect of M36 on autophagy in HepG2 cells. Finally, Western blot was used to detect protein expression of cancer-related signaling pathways. ResultCompared with the blank group, M36 treatment significantly inhibited the proliferation of human hepatoma HepG2 cells (P<0.01), and the half inhibitory concentration (IC50) value of M36 for 48 h was 5.03 μmol·L-1, in a dose- and time-dependent manner. M36 was also able to induce apoptosis and autophagy in human hepatoma HepG2 cells. After treatment with 8 μmol·L-1 M36 for 48 hours, the apoptosis rate of HepG2 cells was (42.03±9.65)% (P<0.01). Compared with the blank group, HepG2 cells treated with 4 and 8 μmol·L-1 M36 for 48 h had a significant increase in cleaved poly ADP-ribose polymerase (cleaved-PARP) protein levels (P<0.01). Acridine orange staining showed that autophagy was significantly activated in HepG2 cells treated with 4 and 8 μmol·L-1 M36 for 48 h compared with the blank group (P<0.01), which was further verified by the up-regulation of microtubule-associated protein 1 light chain 3 Ⅱ (LC3 Ⅱ). Western blot results showed that compared with the blank group, the levels of phosphorylated extracellular regulated protein kinase (p-ERK), phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK), phosphorylated c-Jun N-terminal kinase (p-JNK), and its downstream nuclear transcription factors c-Jun and p-c-Jun protein were significantly increased in M36 group (P<0.05, P<0.01). The mechanism may be related to the up-regulation of MAPK signaling pathway. ConclusionThe sesquiterpenoid M36 isolated from Myrrha inhibits the proliferation of human hepatoma HepG2 cells and promotes apoptosis and autophagy, which may be related to the activation of the MAPK signaling pathway.

13.
Article in Chinese | WPRIM | ID: wpr-1006288

ABSTRACT

Atherosclerosis (AS) is a chronic inflammatory pathological process in which lipid and/or fibrous substances are deposited in the intima of arteries, and it is one of the pathological bases of many cardiovascular and cerebrovascular diseases. Endoplasmic reticulum stress (ERS) is a protective mechanism of cell adaptation. Moderate ERS can reduce abnormal protein aggregation and increase the degradation of misfolded proteins to repair and stabilize the internal environment, while excessive ERS can cause unfolded protein reaction, activate inflammation, oxidative stress, apoptosis, autophagy, and other downstream pathways, and lead to cell damage, or even apoptosis. A large number of studies have shown that ERS mediates a variety of pathological processes related to AS, affects endothelial cells, smooth muscle cells, macrophages, endothelial progenitor cells, and other cell components closely related to its occurrence and development, influences the progress of AS by regulating cell function, and promotes the formation of AS plaque, the transformation of stable plaque to unstable plaque, and the rupture of unstable plaque. Regulation of ERS may be a key target for the prevention and treatment of AS, and it is a research hotspot at present. Traditional Chinese medicine (TCM) believes that the origin of AS is the imbalance of Yin and Yang, the disharmony of Zangfu organs, and the abnormal operation of Qi, blood, and body fluid, which leads to the accumulation of phlegm, blood stasis, and other pathological products in the pulse channels, making the blood flow blocked or misfunction and causing the disease, which belongs to the syndrome of deficiency in origin and excess in superficiality. As the pathogenesis of AS is complex, and the symptoms are diverse, TCM has significant advantages in treating AS because of its multiple targets, multiple pathways, stable efficacy, strong individualization, and high safety. This paper systematically elaborated on the role of ERS in the occurrence and development of AS and summarized the mechanism research on the regulation and control of ERS by Chinese herbal monomer, Chinese herbal extract, Chinese herbal compound, and proprietary medicine, so as to provide a theoretical basis for clinical research and drug development in the prevention and treatment of AS.

14.
Herald of Medicine ; (12): 19-25, 2024.
Article in Chinese | WPRIM | ID: wpr-1023673

ABSTRACT

Objective To investigate the effects of icariin on high glucose-induced autophagy and apoptosis of podocytes,and the regulating effects on mammalian target of rapamycin(mTOR)/serine-threonine kinase(Akt)/cyclic adenosine monophosphate response element binding protein(CREB)pathway.Methods The mouse podocytes MPC5 were taken and divided into five groups:normal control group(5.5 mmol·L-1 glucose),high glucose group(30 mmol·L-1 glucose),icariin group(30 mmol·L-1glucose+5 μmol·L-1icariin),GDC-0349 group(30 mmol·L-1glucose+50 μmol·L-1 GDC-0349),icariin+GDC-0349 group(30 mmol·L-1 glucose+5 μmol·L-1 icariin+50 μmol·L-1 GDC-0349).Cultured for 48 hours,the tetramethylazozolium salt method was used to detect the viability of MPC5 cells;acridine orange staining was used to observe the autophagy of MPC5 cells;apoptosis of MPC5 cells was detected by flow cytometry;Western blotting was used to detect the expression of autophagy[microtubule associated protein one light chain 3(LC3)II,LC3Ⅰ,autophagy-related protein(Beclin-1)],apoptosis[Bcl-2 related X protein(Bax),B cell lymphoma-2(Bcl-2)]and mTOR/Akt/CREB pathway-related proteins of MPC5 cells.Results Compared with the normal control group,the cell viability,expression levels of Bcl-2,phosphorylated mTOR(p-mTOR)/mTOR,phosphorylated Akt(p-Akt)/Akt,phosphorylated CREB(p-CREB)/CREB protein of MPC5 cells in the high glucose group were significantly decreased(P<0.05),the autophagy ability was enhanced,the autophagosome showed orange fluorescence,and the apoptosis rate,LC3Ⅱ/LC3Ⅰ,Beclin-1,Bax protein expression levels were significantly increased(P<0.05).Compared with the high glucose group,the cell viability,LC3Ⅱ/LC3Ⅰ,Beclin-1,Bcl-2,p-mTOR/mTOR,p-Akt/Akt,p-CREB/CREB protein expression levels of MPC5 cells in icariin group were significantly increased,the autophagy ability was further enhanced,the number of autophagosomes was increased,the autophagosomes showed brick red fluorescence(P<0.05),the apoptosis rate and Bax protein expression level were significantly decreased(P<0.05),and the cell viability,LC3Ⅱ/LC3Ⅰ,Beclin-1,Bcl-2,p-mTOR/mTOR,p-Akt/Akt and p-CREB/CREB proteins expression levels of MPC5 cells in GDC-0349 group were significantly decreased,the autophagy ability was weakened,the number of autophagosomes was reduced,the autophagosomes showed orange fluorescence(P<0.05),and the apoptosis rate and Bax protein expression level were significantly increased(P<0.05);icariin+GDC-0349 could reverse the effect of icariin on high glucose induced MPC5 cells(P<0.05).Conclusion Icariin promotes elevated glucose-induced podocyte autophagy and inhibits apoptosis by activating the mTOR/Akt/CREB pathway.

15.
Herald of Medicine ; (12): 334-345, 2024.
Article in Chinese | WPRIM | ID: wpr-1023717

ABSTRACT

Objective To investigate the inhibitory effects and mechanisms of α-hederin,an active ingredient in Fruc-tus Akebiae,on hepatocellular carcinoma(HCC)cells.Methods HCC cells were divided into four groups and treated with α-hederin(0,10,20,and 30 μmol·L-1)for 24 h and 48 h,respectively.MTT assays were used to detect the cell proliferation rate,flow cytometry(FCM)was used to detect the apoptotic rate,transcriptomics was used to screen signaling pathways in α-hederin-treated HCC cells,RNA interference was exploited to verify the underlying signaling pathway,and real-time quantitative PCR(qRT-PCR)and Western blotting(WB)were used to detect expression changes of the mRNA and protein of TP53(p53),PMAIP1(Noxa),and apoptosis-associated proteins,Caspase9 and Caspase3.Results α-Hederin induced apoptosis by activa-ting apoptosis-associated proteins,PARP,Caspase9 and Caspase3.Transcriptomics,qRT-PCR,and WB results also showed that α-hederin increased the mRNA and protein expression of p53 and Noxa.Furthermore,α-hederin inhibited the protein degradation of p53 and Noxa,reversing the apoptosis decrease in p53/Noxa siRNA-knocked-down HCC cells.In vivo results showed that α-hederin inhibited the growth of HCC tumors.Conclusion α-hederin may induce the apoptosis of HCC cells by activating and stabilizing the p53/Noxa signaling pathway.

16.
Article in Chinese | WPRIM | ID: wpr-1023873

ABSTRACT

AIM:To investigate the role and molecular mechanism of long noncoding RNA LINC00987 in the apoptosis of acute myeloid leukemia(AML)cells induced by antitumor drugs.METHODS:The LINC00987 expression in AML was detected by RT-qPCR.The Molm13 cells with stable knockdown of LINC00987 gene(shLINC00987)were constructed,and the effect of low LINC00987 expression on the apoptosis of AML cells induced by cytarabine was detected by annexin V/PI staining.Signaling pathway enrichment of LINC00987-coexpressed genes was performed to analyze the ef-fect of LINC00987 expression on cytochrome family genes.RESULTS:Compared with healthy individual group,the ex-pression of LINC00987 was significantly down-regulated in AML cell lines and patients,but highly up-regulated in the complete remission group after anti-AML treatment.In addition,low LINC00987 expression was associated with poor prog-nosis among the patients with AML.The LINC00987 expression in AML cell lines Molm13 and MV411 was significantly induced by antitumor drugs such as cytarabine,doxorubicin,arsenic trioxide,and venetoclax.Meanwhile,LINC00987 down-regulation could inhibit the apoptosis of Molm13 cells induced by cytarabine.The LINC00987-coexpressed genes were enriched in cytochrome P450(CYP450)-mediated oxidative stress pathways,and the LINC00987 expression was positively correlated with the expression of CYP450 family genes CYP11B1,CYP2U1 and CYP2C9.Down-regulation of LINC00987 could inhibit the mRNA expression of CYP11B1,CYP2U1 and CYP2C9 induced by cytarabine.CONCLU-SION:Long noncoding RNA LINC00987 can be used as a prognostic marker for AML and may promote cytarabine-in-duced AML cell apoptosis through CYP450-mediated oxidative stress pathways.

17.
Article in Chinese | WPRIM | ID: wpr-1023887

ABSTRACT

AIM:To explore the synergistic sensitization effect of human umbilical cord mesenchymal stem cell culture supernatant(hUMSC-CM)combined with temozolomide(TMZ)on various glioma cell lines,and to elucidate the underlying mechanisms.METHODS:The hUMSC-CM was harvested using two different serum deprivation tech-niques at 24 and 48 h,and was converted into freeze-dried powder,which was then given to rat malignant glioma cell line RG-2,human astrocytoma cell line U251 and human glioblastoma cell line LN-428 at 5 concentrations(0,1,3,6 and 9 g/L).The effectiveness and sensitivity of hUMSC-CM for inhibiting growth of glioma cells at 24,48 and 72 h were as-sessed using CCK-8 assay.Hematoxylin-eosin(HE)staining combined with CCK-8 assay was employed to evaluate the chemotherapy sensitivity of glioma cells after 48 h of treatment with TMZ at 6 concentrations(0,25,50,100,200 and 400 μmol/L).Two concentrations(3 and 9 g/L)of hUMSC-CM and 3 concentrations(50,100 and 200 μmol/L)of TMZ were chosen for concurrent treatment of glioma cells to assess the proliferation and pathological alterations.TUNEL staining was utilized to detect apoptosis.Flow cytometry was utilized to analyze cell cycle modifications.The expression alterations of apoptosis-inducing proteins,cleaved caspase-3,cleaved caspase-8 and cleaved PARP1,as well as autophagy-inducing proteins beclin-1 and LC3,were examined using Western blot to investigate the synergistic sensitization mechanism of hUMSC-CM combined with TMZ in vitro.RESULTS:The susceptibility of glioma cell lines to hUMSC-CM and TMZ varied,with RG-2 showing the highest sensitivity,followed by U251,and then LN-428.The inhibitory effect of hUMSC-CM(3 and 9 g/L)and TMZ(50,100 and 200 μmol/L)combined treatment on glioma cells was significantly greater than that that of single-agent treatments(P<0.05),demonstrating a dose-and concentration-dependent enhancement.Notably,the combination of 9 g/L hUMSC-CM(C9)with 50 μmol/L TMZ(T50)effectively suppressed glioma cell growth.CCK-8 as-say indicated a significant reduction of cell viability in C9+T50 group compared with either C9 or T50 alone(P<0.05).HE staining and TUNEL staining revealed pronounced morphological changes and significant apoptotic features in glioma cells treated with C9+T50.Flow cytometric analysis confirmed that C9+T50 induced cell cycle arrest in glioma cells.Fur-thermore,compared with control group,the levels of cleaved caspase-3,cleaved caspase-8,cleaved PARP1,beclin-1,and LC3-Ⅱ/LC3-Ⅰ were significantly elevated in the C9+T50-treated glioma cells(P<0.01).CONCLUSION:(1)The concomitant administration of hUMSC-CM and TMZ exerts a broad inhibitory effect on glioma cells,with a synergistic sen-sitization observed across different cell lines.(2)The enhancement of glioma cell sensitivity to TMZ by hUMSC-CM may be attributed to the modulation of caspase-8/caspase-3/PARP1 signaling pathway and the induction of both apoptosis and autophagy in glioma cells.

18.
Article in Chinese | WPRIM | ID: wpr-1023888

ABSTRACT

AIM:To investigate the role of Ywhab in the growth of mouse B-cell lymphoma,and to explore the potential underlying mechanisms.METHODS:The correlation between Ywhab and human diffuse large B-cell lymphoma(DLBCL)was investigated by bioinformatics analysis.Infection with retroviral vector was performed to establish stable mouse B-cell lymphoma 38B9 cell line with overexpression of Ywhab gene,which was verified by RT-qPCR and Western blot.The impact of Ywhab overexpression on 38B9 cell growth both in vitro and in vivo was detected by cell counting,CCK-8 assay,and subcutaneous tumor loading experiments.The expression of apoptosis-related proteins was detected by RT-qPCR and Western blot.Co-immunoprecipitation combined with mass spectrometry(CoIP-MS)was employed to search for proteins specifically binding to Ywhab gene product 14-3-3β,which was confirmed by Western blot and molecu-lar docking analysis.RESULTS:The Ywhab gene exhibited low expression in DLBCL,which was correlated with poor clinical prognosis of DLBCL patients.Compared with normal mouse bone marrow B cells,Ywhab expression was low in 38B9 cells.Overexpression of Ywhab induced apoptosis of 38B9 cells both in vitro and in vivo,promoted the expression of pro-apoptotic proteins Puma,Noxa and Bax at both mRNA and protein levels,and inhibited the mRNA and protein expres-sion of anti-apoptotic protein Bcl2(P<0.05).The 14-3-3β protein specifically bound to Hsp90aa1 and reduced Hsp90aa1 protein levels,thereby suppressing the growth of 38B9 cells.CONCLUSION:Ywhab promotes the apoptosis of B-cell lymphoma cells by binding to Hsp90aa1 and thereby inhibiting the function of Hsp90aa1.

19.
Article in Chinese | WPRIM | ID: wpr-1023898

ABSTRACT

AIM:The objective of this study is to examine the expression of profilin 1(PFN1)in mice with di-abetic nephropathy and determine its association with immune cell infiltration.METHODS:This study presents an analy-sis of PFN1 expression and immune cell infiltration in patients with diabetic nephropathy,utilizing transcriptome expres-sion data from kidney tissue microarray.Additionally,the findings were validated in a diabetic nephropathy mouse model.Sixteen C57BL/6 mice were randomly assigned into two groups,namely the normal group and the model group,in an equal manner.The model group underwent the establishment of the diabetic nephropathy model through intraperitoneal injection of streptozotocin.Subsequently,the expression levels of CD11b,F4/80,CC chemokine receptor 4(CCR4),interleukin-1 receptor type I(IL-1R1),B-cell lymphoma-2(Bcl-2),Bcl-2-associated X protein(Bax)and caspase-3 in kidney tissue were assessed upon successful establishment of the diabetic nephropathy model.Furthermore,the overexpression of PFN1 was observed in a cellular model of diabetic nephropathy,and the protein expression levels of monocyte chemotactic pro-tein-1(MCP-1)and caspase-3 were assessed.RESULTS:The expression of PFN1 was found to be significantly in-creased in the GSE30122 dataset of transcriptome expression in kidney tissues affected by diabetic nephropathy(P<0.01).This increase in PFN1 expression was found to be correlated with the presence of macrophages and T cells.Fur-thermore,the renal tissue of the diabetic nephropathy model group exhibited significant pathological changes.In this mod-el group,the expression levels of PFN1,CD11b,F4/80,CCR4,IL-1R1,Bax,Bcl-2,and caspase-3 were all significant-ly increased(P<0.01).Overexpression of PFN1 could enhance the expression of MCP-1 and caspase-3 proteins.CON-CLUSION:Macrophages and Th17 cells were identified within the renal tissue of mice with diabetic nephropathy,con-comitant with an up-regulation in the expression of PFN1.This up-regulation was observed to facilitate the induction of apoptosis in the context of diabetic nephropathy.

20.
Article in Chinese | WPRIM | ID: wpr-1023903

ABSTRACT

AIM:To investigate the therapeutic effect of mitochondrial fission inhibitor-1(Mdivi-1)on experi-mental autoimmune encephalomyelitis(EAE)in mice,and to explore its mechanism.METHODS:The mice immunized with myelin oligodendrocyte glycoprotein peptide fragment 35-55(MOG35-55)were randomly divided into DMSO model group and Mdivi-1 intervention group.All mice were sacrificed on the 28th day after the first immunization.The demyelination was analyzed by Luxol fast blue staining.The protective mechanism of Mdivi-1 in the spinal cord tissue was investigated by immunofluorescence staining,TUNEL staining and the in vitro experiment with MO3.13 oligodendrocytes treated with staurosporine.The mitochondrial depolarization was detected by JC-1 staining,the cell injury was checked by LDH leakage,and the viability of MO3.13 oligodendrocytes was determined by MTT assay.RESULTS:Compared with DMSO model group,the demyelinating injury was alleviated and the proportion of apoptotic CC1+ oligodendrocytes in Mdivi-1 group was decreased.The cleaved caspase-3,caspase-9,cytochrome C and Bax protein expression levels in the spinal cord of Mdivi-1-treated mice was also attenuated.The in vitro MO3.13 cell experiments suggested that Mdivi-1 inhibited MO3.13 cell mitochondrial depolarization,attenuated the cell damage and increased the cell viability.CONCLUSION:Mdivi-1 pro-tects against the myelin injury in EAE mice,which may be related to the suppression of oligodendrocyte apoptosis.

SELECTION OF CITATIONS
SEARCH DETAIL