ABSTRACT
Se estima que entre el 25 % y el 40 % de los niños sanos presentan algún síntoma de dificultad alimentaria (DA) durante su crecimiento y desarrollo, y muchas veces no son adecuadamente diagnosticadas. El propósito de este trabajo consistió en realizar una revisión narrativa que reuniera la información disponible sobre las dificultades alimentarias. Se desarrollaron algoritmos de evaluación y abordaje a partir de la evidencia en la literatura. La mayoría de los problemas de alimentación en los niños pequeños (selectividad alimentaria, falta de apetito, miedo a la alimentación) a menudo coexisten y es necesario evaluar el riesgo clínico para planificar una intervención individualizada. Contar con definiciones estandarizadas y terminología común para abordar estas dificultades de manera adecuada y multidisciplinaria es uno de los caminos para optimizar su tratamiento. Involucrar a los diferentes profesionales de la salud y a los padres es fundamental para abordar las dificultades alimentarias.
It has been estimated that between 25% and 40% of healthy children show symptoms of feeding difficulties (FDs) during their growth and development; many times, these are not adequately diagnosed. The objective of this study was to conduct a narrative review that collected the available information on fee ding difficulties. Assessment and management algorithms were developed based on the bibliographic evidence. Most feeding problems in young children (feeding selectivity, loss of appetite, fear of feeding) are often con current, and a clinical risk assessment is necessary to plan an individualized intervention. Having standardized definitions and common terms to address these difficulties in an appropriate and multidisciplinary manner is one of the ways to optimize their treatment. The involvement of different health care providers and parents is critical to address feeding difficulties.
Subject(s)
Humans , Child, Preschool , Child , Feeding and Eating Disorders of Childhood/diagnosis , Feeding and Eating Disorders of Childhood/etiology , Feeding and Eating Disorders of Childhood/therapy , Algorithms , Risk AssessmentABSTRACT
SUMMARY: Since machine learning algorithms give more reliable results, they have been used in the field of health in recent years. The orbital variables give very successful results in classifying sex correctly. This research has focused on sex determination using certain variables obtained from the orbital images of the computerized tomography (CT) by using machine learning algorithms (ML). In this study 12 variables determined on 600 orbital images of 300 individuals (150 men and 150 women) were tested with different ML. Decision tree (DT), K-Nearest Neighbour (KNN), Logistic Regression (LR), Random Forest (RF), Linear Discriminant Analysis (LDA), and Naive Bayes (NB) algorithms of ML were used for unsupervised learning. Statistical analyses of the variables were conducted with Minitab® 21.2 (64-bit) program. ACC rate of NB, DT, KNN, and LR algorithms was found as % 83 while the ACC rate of LDA and RFC algorithms was determined as % 85. According to Shap analysis, the variable with the highest degree of effect was found as BOW. The study has determined the sex with high accuracy at the ratios of 0.83 and 0.85 through using the variables of the orbital CT images, and the related morphometric data of the population under question was acquired, emphasizing the racial variation.
Dado que los algoritmos de aprendizaje automático dan resultados más fiables, en los últimos años han sido utilizados en el campo de la salud. Las variables orbitales dan resultados muy exitosos a la hora de clasificar correctamente el sexo. Esta investigación se ha centrado en la determinación del sexo utilizando determinadas variables obtenidas a partir de las imágenes orbitales de la tomografía computarizada (TC) mediante el uso de algoritmos de aprendizaje automático (AA). En este estudio se probaron 12 variables determinadas en 600 imágenes orbitales de 300 individuos (150 hombres y 150 mujeres) con diferentes AA. Se utilizaron algoritmos de AA de árbol de decisión (DT), K-Nearest Neighbour, regresión logística (RL), Random Forest (RF), análisis discriminante lineal (ADL) y Naive Bayes (NB) para el aprendizaje no supervisado. Los análisis estadísticos de las variables se realizaron con el programa Minitab® 21.2 (64 bits). La tasa de ACC de los algoritmos NB, DT, KNN y RL se encontró en % 83, mientras que la tasa de ACC de los algoritmos ADL y RFC se determinó en % 85. Según el análisis de Sharp, la variable con el mayor grado de efecto se encontró como BOW. El estudio determinó el sexo con alta precisión en las proporciones de 0,83 y 0,85 mediante el uso de las variables de las imágenes de TC orbitales, y se adquirieron los datos morfométricos relacionados de la población en cuestión, enfatizando la variación racial.
Subject(s)
Humans , Male , Female , Orbit/diagnostic imaging , Tomography, X-Ray Computed , Sex Determination by Skeleton , Machine Learning , Orbit/anatomy & histology , Algorithms , Logistic Models , Forensic Anthropology , Imaging, Three-DimensionalABSTRACT
OBJECTIVE@#To investigate a new noninvasive diagnostic model for nonalcoholic fatty liver disease (NAFLD) based on features of tongue images.@*METHODS@#Healthy controls and volunteers confirmed to have NAFLD by liver ultrasound were recruited from China-Japan Friendship Hospital between September 2018 and May 2019, then the anthropometric indexes and sampled tongue images were measured. The tongue images were labeled by features, based on a brief protocol, without knowing any other clinical data, after a series of corrections and data cleaning. The algorithm was trained on images using labels and several anthropometric indexes for inputs, utilizing machine learning technology. Finally, a logistic regression algorithm and a decision tree model were constructed as 2 diagnostic models for NAFLD.@*RESULTS@#A total of 720 subjects were enrolled in this study, including 432 patients with NAFLD and 288 healthy volunteers. Of them, 482 were randomly allocated into the training set and 238 into the validation set. The diagnostic model based on logistic regression exhibited excellent performance: in validation set, it achieved an accuracy of 86.98%, sensitivity of 91.43%, and specificity of 80.61%; with an area under the curve (AUC) of 0.93 [95% confidence interval (CI) 0.68-0.98]. The decision tree model achieved an accuracy of 81.09%, sensitivity of 91.43%, and specificity of 66.33%; with an AUC of 0.89 (95% CI 0.66-0.92) in validation set.@*CONCLUSIONS@#The features of tongue images were associated with NAFLD. Both the 2 diagnostic models, which would be convenient, noninvasive, lightweight, rapid, and inexpensive technical references for early screening, can accurately distinguish NAFLD and are worth further study.
Subject(s)
Humans , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Ultrasonography , Anthropometry , Algorithms , ChinaABSTRACT
RESUMO Objetivo: Obter imagens de fundoscopia por meio de equipamento portátil e de baixo custo e, usando inteligência artificial, avaliar a presença de retinopatia diabética. Métodos: Por meio de um smartphone acoplado a um dispositivo com lente de 20D, foram obtidas imagens de fundo de olhos de pacientes diabéticos; usando a inteligência artificial, a presença de retinopatia diabética foi classificada por algoritmo binário. Resultados: Foram avaliadas 97 imagens da fundoscopia ocular (45 normais e 52 com retinopatia diabética). Com auxílio da inteligência artificial, houve acurácia diagnóstica em torno de 70 a 100% na classificação da presença de retinopatia diabética. Conclusão: A abordagem usando dispositivo portátil de baixo custo apresentou eficácia satisfatória na triagem de pacientes diabéticos com ou sem retinopatia diabética, sendo útil para locais sem condições de infraestrutura.
ABSTRACT Introduction: To obtain fundoscopy images through portable and low-cost equipment using artificial intelligence to assess the presence of DR. Methods: Fundus images of diabetic patients' eyes were obtained by using a smartphone coupled to a device with a 20D lens. By using artificial intelligence (AI), the presence of DR was classified by a binary algorithm. Results: 97 ocular fundoscopy images were evaluated (45 normal and 52 with DR). Through AI diagnostic accuracy around was 70% to 100% in the classification of the presence of DR. Conclusion: The approach using a low-cost portable device showed satisfactory efficacy in the screening of diabetic patients with or without diabetic retinopathy, being useful for places without infrastructure conditions.
Subject(s)
Humans , Male , Female , Adolescent , Adult , Middle Aged , Aged , Algorithms , Artificial Intelligence , Diabetic Retinopathy/diagnostic imaging , Photograph/instrumentation , Fundus Oculi , Ophthalmoscopy/methods , Retina/diagnostic imaging , Mass Screening , Neural Networks, Computer , Diagnostic Techniques, Ophthalmological/instrumentation , Machine Learning , Smartphone , Deep LearningABSTRACT
Objetivo:Relatar a experiência de uma equipe de enfermeiros estomaterapeutas na construção de um algoritmo para a indicação de equipamento coletor para estomias de eliminação. Método: Relato de experiência, do período de janeiro de 2018 a setembro de 2019, sobre o processo de construção de um algoritmo para indicação de equipamento coletor para estomias de eliminação. Resultados: A partir de determinadas características clínicas (parâmetros de avaliação) e da categorização dos equipamentos coletores (solução), foi desenvolvido um algoritmo para indicação de equipamento coletor para estomias de eliminação. Conclusão: Espera-se que esse instrumento possa auxiliar os enfermeiros na sua prática profissional quanto à escolha do equipamento coletor e na construção de protocolos clínicos.
Objective:To report the experience of a team of enterostomal therapists in the construction of an algorithm for the indication of collecting equipment for elimination stomas. Method: Experience report, from January 2018 to September 2019, on the process of building an algorithm to indicate collecting equipment for elimination stomas. Results: Based on certain clinical characteristics (assessment parameters) and the categorization of collecting equipment (solution), an algorithm was developed to indicate collecting equipment for elimination stomas. Conclusion: It is expected that this instrument can help nurses in their professional practice regarding the choice of collecting equipment and the construction of clinical protocols.
Objetivo:Relatar la experiencia de un equipo de enfermeros estomaterapeutas en la construcción de un algoritmo para la indicación de equipos recolectores para estomas de eliminación. Método: Informe de experiencia, de enero de 2018 a septiembre de 2019, sobre el proceso de construcción de un algoritmo para indicar equipos colectores para estomas de eliminación. Resultado: A partir de ciertas características clínicas (parámetros de evaluación) y la categorización de los equipos colectores (solución), se desarrolló un algoritmo para indicar equipos colectores para estomas de eliminación. Conclusión: Se espera que este instrumento pueda ayudar a los enfermeros en su práctica profesional en cuanto a la elección de equipos de recolección y la construcción de protocolos clínicos.
Subject(s)
Humans , Algorithms , Ostomy/instrumentation , Ostomy/nursing , Nurse Specialists , Enterostomal TherapyABSTRACT
INTRODUCCIÓN: La inmunoquimioluminiscencia de micropartículas (CMIA), no es recomendada en el día de hoy para el tamizaje ni confirmación de sífilis en pacientes, las guías chilenas recomiendan tamizaje con V.D.R.L y confirmación con hemaglutinación. OBJETIVO: Determinar la especificidad, sensibilidad y correlación diagnóstica de esta técnica respecto a la prueba treponémica de uso habitual. MATERIALES Y MÉTODOS: De 815 muestras obtenidas en un periodo de 6 meses, a todas las cuales se les aplicó las pruebas de VDRL, MHA-TP y CMIA, 484 muestras fueron positivas para MHA-TP. Se determinó el rendimiento, se graficaron las curvas ROC, índice de correlación y punto de corte óptimo. RESULTADOS: La CMIA. demostró una sensibilidad de 100%, especificidad: 94,6%, VPN: 100% y VPP: 96.4% y una eficiencia de 97,8% con respecto al MHA-TP, con un índice de correlación: 0,97 y un punto de corte de 7.665, de modo que toda muestra con una CMIA. sobre este valor no necesitaría de una segunda prueba treponémica para su confirmación. El 7,11% tuvo valores intermedios de CMIA (1.0 a 7.664). CONCLUSIÓN: La CMIA. es una técnica automatizada altamente sensible y específica, equiparable al MHA-TP. Aplicada como prueba inicial de testeo para sífilis incrementa la certeza diagnóstica y podría permitir el diagnóstico precoz de la enfermedad.
BACKGROUND: The chemiluminescent microparticle immunoassay (CMIA) is not recommended for screening or confirmation of syphilis in patients, Chilean guidelines recommend screening with VDRL and confirmation with hemagglutination. AIM: To determine the specificity, sensitivity, and diagnostic correlation of this technique compared to the usual treponemal test. METHODS: Of the 815 samples obtained over a period of 6 months, all of which were subjected to VDRL, MHATP, and CMIA. testing, 484 samples were positive for MHA-TP. The performance was determined, ROC curves were graphed, correlation index and optimal cutoff point were determined. RESULTS: CMIA showed a sensitivity of 100%, specificity of 94.6%, NPV of 100%, PPV of 96.4%, and an efficiency of 97.8% compared to MHA-TP, with a correlation index of 0.97 and a cutoff point of 7.665, such that any sample with a CMIA. value above this value would not require a second treponemal test for confirmation. 7.11% had intermediate CMIA. values (1.0 to 7.664). CONCLUSION: CMIA. is a highly sensitive and specific automated technique comparable to MHA-TP. When applied as an initial screening test for syphilis, it increases diagnostic certainty and may allow for early diagnosis of the disease.
Subject(s)
Humans , Male , Female , Child, Preschool , Child , Adolescent , Adult , Middle Aged , Aged , Aged, 80 and over , Young Adult , Immunoassay , Syphilis/diagnosis , Luminescent Measurements/methods , Algorithms , Hemagglutination Tests , Syphilis Serodiagnosis , Predictive Value of Tests , ROC Curve , Sensitivity and Specificity , False Positive ReactionsABSTRACT
La fantasía que impera en este film plantea la ilusión de encontrar un ser complementario que se adapte a nuestras preferencias y nos haga plenos. "Mi algoritmo está diseñado para hacerte feliz" dice el humanoide. Ilusión de que alguien tendría la posibilidad de ser complementario, de saber exactamente lo que el otro requiere. Estamos en las antípodas de la famosa fórmula de Lacan:" (Le Séminaire, Encore, 1975) "No hay relación sexual" (o sea, no hay complementariedad). No habría resto, el sujeto no estaría atravesado por la castración simbólica. La IA compite con Zeus. La fantasía del Uno, organismo previo a la separación del andrógino por parte de Zeus, se podría materializar con la IA
The fantasy that prevails in this film, raises the illusion of finding a complementary being that adapts to our preferences and makes us full. "My algorithm is designed to make you happy," says the humanoid. Illusion that someone would have the possibility of being complementary, of knowing exactly what the other requires. We are at the antipodes of Lacan's famous formula: "(Le Séminaire, Encore, 1975) "There is no sexual intercourse" (that is, there is no complementarity). There would be no rest, the subject would not be pierced by symbolic castration. AI competes with Zeus. The fantasy of the One, an organism prior to the separation of the androgynous by Zeus, could materialize with AI.
Subject(s)
Humans , Artificial Intelligence , Sentiment Analysis , Algorithms , Motion PicturesABSTRACT
SUMMARY: In the study, it was aimed to predict sex from hand measurements using machine learning algorithms (MLA). Measurements were made on MR images of 60 men and 60 women. Determined parameters; hand length (HL), palm length (PL), hand width (HW), wrist width (EBG), metacarpal I length (MIL), metacarpal I width (MIW), metacarpal II length (MIIL), metacarpal II width (MIIW), metacarpal III length (MIIL), metacarpal III width (MIIIW), metacarpal IV length (MIVL), metacarpal IV width (MIVW), metacarpal V length (MVL), metacarpal V width (MVW), phalanx I length (PILL), measured as phalanx II length (PIIL), phalanx III length (PIIL), phalanx IV length (PIVL), phalanx V length (PVL). In addition, the hand index (HI) was calculated. Logistic Regression (LR), Random Forest (RF), Linear Discriminant Analysis (LDA), K-nearest neighbour (KNN) and Naive Bayes (NB) were used as MLAs. In the study, the KNN algorithm's Accuracy, SEN, F1 and Specificity ratios were determined as 88 %. In this study using MLA, it is understood that the highest accuracy belongs to the KNN algorithm. Except for the hand's MIIW, MIIIW, MIVW, MVW, HI variables, other variables were statistically significant in terms of sex difference.
En el estudio, el objetivo era predecir el sexo a partir de mediciones manuales utilizando algoritmos de aprendizaje automático (MLA). Las mediciones se realizaron en imágenes de RM de 60 hombres y 60 mujeres. Parámetros determinados; longitud de la mano (HL), longitud de la palma (PL), ancho de la mano (HW), ancho de la muñeca (EBG), longitud del metacarpiano I (MIL), ancho del metacarpiano I (MIW), longitud del metacarpiano II (MIIL), ancho del metacarpiano II (MIIW), longitud del metacarpiano III (MIIL), ancho del metacarpiano III (MIIIW), longitud del metacarpiano IV (MIVL), ancho del metacarpiano IV (MIVW), longitud del metacarpiano V (MVL), ancho del metacarpiano V (MVW), longitud de la falange I (PILL), medido como longitud de la falange II (PIIL), longitud de la falange III (PIIL), longitud de la falange IV (PIVL), longitud de la falange V (PVL). Además, se calculó el índice de la mano (HI). Regresión logística (LR), Random Forest (RF), Análisis discriminante lineal (LDA), K-vecino más cercano (KNN) y Naive Bayes (NB) se utilizaron como MLA. En el estudio, las proporciones de precisión, SEN, F1 y especificidad del algoritmo KNN se determinaron en un 88 %. En este estudio que utiliza MLA, se entiende que la mayor precisión pertenece al algoritmo KNN. Excepto por las variables MIIW, MIIIW, MIVW, MVW, HI de la mano, otras variables fueron estadísticamente significativas en términos de diferencia de sexo.
Subject(s)
Humans , Male , Female , Carpal Bones/diagnostic imaging , Finger Phalanges/diagnostic imaging , Metacarpal Bones/diagnostic imaging , Sex Determination by Skeleton/methods , Algorithms , Magnetic Resonance Imaging , Carpal Bones/anatomy & histology , Discriminant Analysis , Logistic Models , Finger Phalanges/anatomy & histology , Metacarpal Bones/anatomy & histology , Machine Learning , Random ForestABSTRACT
Durante estos años, condicionados por los efectos de una pandemia y la situación económica global, la incorporación oportuna de los resultados científico-técnicos es necesidad y responsabilidad de la comunidad científica. En este trabajo se expone una experiencia en la introducción de resultados científicos desde la formación doctoral, dirigida al área de la atención inicial al paciente con traumatismo maxilofacial. La importancia de esta práctica radica en los aportes social, científico y profesional y en la formación de recursos humanos para lograr la transformación y el mejoramiento de la realidad.
During these years, conditioned by the effects of a pandemic and the global economic situation, the opportune incorporation of the scientific technical results is necessity and responsibility of scientific community. An experience in the introduction of scientific results from the doctoral training, directed to the area of initial care to the patient with maxillofacial traumatism, is presented in this work. The importance of this practice resides in the social, scientific, professional contributions and in the formation of human resources to achieve the transformation and improvement of reality.
Subject(s)
Biomedical Research , Algorithms , Clinical Protocols , Maxillofacial InjuriesABSTRACT
La leucemia mieloide aguda es una neoplasia con una elevada letalidad, con resultados inferiores en nuestro país respecto a la experiencia internacional publicada, posicionándola como una prioridad desde el punto de vista de salud pública oncológica. Actualmente, para su diagnóstico y estratificación se dispone de citología, inmunofenotipo, cariograma y escasas traslocaciones/mutaciones por biología molecular. Esta aproximación diagnóstica es insuficiente, ya que nos permite clasificar menos del 50% de los pacientes en un grupo específico y, por lo tanto, la elección de la terapia de consolidación se realiza con escasa información biológica. El rol de la morfología y de la citogenética progresivamente pierden relevancia pronóstica con respecto a la biología molecular, y la secuenciación de siguiente generación se ha posicionado como un elemento clave para el diagnóstico y estratificación de riesgo de estos pacientes. Además, la pesquisa de mutaciones germinales ha ido adquiriendo mayor relevancia, aumentando su frecuencia de detección e influyendo en la toma de decisiones respecto al tratamiento y en la selección de donante emparentado para un trasplante alogénico. En esta revisión se realiza una actualización del diagnóstico integrado de pacientes con leucemia mieloide aguda, a la luz de las nuevas clasificaciones diagnósticas (OMS 2022 e ICC 2022) y pronósticas (ELN 2022) y se propone un algoritmo a considerar para su implementación. Es perentorio como país invertir en nuevas tecnologías diagnósticas para mejorar el pronóstico de nuestros pacientes.
Acute myeloid leukemia is a neoplasm with a high lethality, with alarming results in our country, positioning it as a priority from the point of view of oncological public health. Cytology, immunophenotype, karyogram, and a few translocations/mutations by molecular biology are currently available for diagnosis and stratification. This diagnostic approach is insufficient since it allows classifying less than 50% of patients in a specific group. Therefore, consolidation therapy is selected with little biological information. The role of morphology and cytogenetics is progressively losing prognostic weight with respect to molecular biology, and next-generation sequencing has positioned itself as a key element for diagnosing our patients. In addition, the investigation of germline mutations is acquiring greater relevance, increasing its detection frequency and influencing decision-making regarding treatment and selecting a related donor for an allogeneic transplant. In this review, an update of the integrated diagnosis of patients with acute myeloid leukemia is carried out in light of the new diagnostic (WHO 2022 and ICC 2022), and prognostic classifications (ELN 2022). We propose an algorithm for integrated diagnosis to be considered for its implementation. It is imperative as a country to invest in new diagnostic technologies to improve the prognosis of our patients.
Subject(s)
Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Prognosis , AlgorithmsSubject(s)
Humans , Female , Vulvovaginitis/diagnosis , Vulvovaginitis/therapy , Algorithms , Decision MakingABSTRACT
BACKGROUND@#Sarcopenia is an age-related progressive skeletal muscle disorder involving the loss of muscle mass or strength and physiological function. Efficient and precise AI algorithms may play a significant role in the diagnosis of sarcopenia. In this study, we aimed to develop a machine learning model for sarcopenia diagnosis using clinical characteristics and laboratory indicators of aging cohorts.@*METHODS@#We developed models of sarcopenia using the baseline data from the West China Health and Aging Trend (WCHAT) study. For external validation, we used the Xiamen Aging Trend (XMAT) cohort. We compared the support vector machine (SVM), random forest (RF), eXtreme Gradient Boosting (XGB), and Wide and Deep (W&D) models. The area under the receiver operating curve (AUC) and accuracy (ACC) were used to evaluate the diagnostic efficiency of the models.@*RESULTS@#The WCHAT cohort, which included a total of 4057 participants for the training and testing datasets, and the XMAT cohort, which consisted of 553 participants for the external validation dataset, were enrolled in this study. Among the four models, W&D had the best performance (AUC = 0.916 ± 0.006, ACC = 0.882 ± 0.006), followed by SVM (AUC =0.907 ± 0.004, ACC = 0.877 ± 0.006), XGB (AUC = 0.877 ± 0.005, ACC = 0.868 ± 0.005), and RF (AUC = 0.843 ± 0.031, ACC = 0.836 ± 0.024) in the training dataset. Meanwhile, in the testing dataset, the diagnostic efficiency of the models from large to small was W&D (AUC = 0.881, ACC = 0.862), XGB (AUC = 0.858, ACC = 0.861), RF (AUC = 0.843, ACC = 0.836), and SVM (AUC = 0.829, ACC = 0.857). In the external validation dataset, the performance of W&D (AUC = 0.970, ACC = 0.911) was the best among the four models, followed by RF (AUC = 0.830, ACC = 0.769), SVM (AUC = 0.766, ACC = 0.738), and XGB (AUC = 0.722, ACC = 0.749).@*CONCLUSIONS@#The W&D model not only had excellent diagnostic performance for sarcopenia but also showed good economic efficiency and timeliness. It could be widely used in primary health care institutions or developing areas with an aging population.@*TRIAL REGISTRATION@#Chictr.org, ChiCTR 1800018895.
Subject(s)
Humans , Aged , Sarcopenia/diagnosis , Deep Learning , Aging , Algorithms , BiomarkersABSTRACT
Objective To evaluate the impact of deep learning reconstruction algorithm on the image quality of head and neck CT angiography (CTA) at 100 kVp. Methods CT scanning was performed at 100 kVp for the 37 patients who underwent head and neck CTA in PUMC Hospital from March to April in 2021.Four sets of images were reconstructed by three-dimensional adaptive iterative dose reduction (AIDR 3D) and advanced intelligent Clear-IQ engine (AiCE) (low,medium,and high intensity algorithms),respectively.The average CT value,standard deviation (SD),signal-to-noise ratio (SNR),and contrast-to-noise ratio (CNR) of the region of interest in the transverse section image were calculated.Furthermore,the four sets of sagittal maximum intensity projection images of the anterior cerebral artery were scored (1 point:poor,5 points:excellent). Results The SNR and CNR showed differences in the images reconstructed by AiCE (low,medium,and high intensity) and AIDR 3D (all P<0.01).The quality scores of the image reconstructed by AiCE (low,medium,and high intensity) and AIDR 3D were 4.78±0.41,4.92±0.27,4.97±0.16,and 3.92±0.27,respectively,which showed statistically significant differences (all P<0.001). Conclusion AiCE outperformed AIDR 3D in reconstructing the images of head and neck CTA at 100 kVp,being capable of improving image quality and applicable in clinical examinations.
Subject(s)
Humans , Computed Tomography Angiography/methods , Radiation Dosage , Deep Learning , Radiographic Image Interpretation, Computer-Assisted/methods , Signal-To-Noise Ratio , AlgorithmsABSTRACT
Bradyarrhythmias are commonly encountered in clinical practice. While there are several electrocardiographic criteria and algorithms for tachyarrhythmias, there is no algorithm for bradyarrhythmias to the best of our knowledge. In this article, we propose a diagnostic algorithm that uses simple concepts: (1) the presence or absence of P waves, (2) the relationship between the number of P waves and QRS complexes, and (3) the regularity of time intervals (PP, PR and RR intervals). We believe this straightforward, stepwise method provides a structured and thorough approach to the wide differential diagnosis of bradyarrhythmias, and in doing so, reduces misdiagnosis and mismanagement.
Subject(s)
Humans , Bradycardia/therapy , Algorithms , Diagnosis, Differential , ElectrocardiographyABSTRACT
BACKGROUND@#Breast cancer patients who are positive for hormone receptor typically exhibit a favorable prognosis. It is controversial whether chemotherapy is necessary for them after surgery. Our study aimed to establish a multigene model to predict the relapse of hormone receptor-positive early-stage Chinese breast cancer after surgery and direct individualized application of chemotherapy in breast cancer patients after surgery.@*METHODS@#In this study, differentially expressed genes (DEGs) were identified between relapse and nonrelapse breast cancer groups based on RNA sequencing. Gene set enrichment analysis (GSEA) was performed to identify potential relapse-relevant pathways. CIBERSORT and Microenvironment Cell Populations-counter algorithms were used to analyze immune infiltration. The least absolute shrinkage and selection operator (LASSO) regression, log-rank tests, and multiple Cox regression were performed to identify prognostic signatures. A predictive model was developed and validated based on Kaplan-Meier analysis, receiver operating characteristic curve (ROC).@*RESULTS@#A total of 234 out of 487 patients were enrolled in this study, and 1588 DEGs were identified between the relapse and nonrelapse groups. GSEA results showed that immune-related pathways were enriched in the nonrelapse group, whereas cell cycle- and metabolism-relevant pathways were enriched in the relapse group. A predictive model was developed using three genes ( CKMT1B , SMR3B , and OR11M1P ) generated from the LASSO regression. The model stratified breast cancer patients into high- and low-risk subgroups with significantly different prognostic statuses, and our model was independent of other clinical factors. Time-dependent ROC showed high predictive performance of the model.@*CONCLUSIONS@#A multigene model was established from RNA-sequencing data to direct risk classification and predict relapse of hormone receptor-positive breast cancer in Chinese patients. Utilization of the model could provide individualized evaluation of chemotherapy after surgery for breast cancer patients.
Subject(s)
Humans , Female , Breast Neoplasms/genetics , East Asian People , Neoplasm Recurrence, Local/genetics , Breast , Algorithms , Chronic Disease , Prognosis , Tumor MicroenvironmentABSTRACT
The manufacturing process of traditional Chinese medicine is subject to material fluctuation and other uncertain factors which usually cause non-optimal state and inconsistent product quality. Therefore, it is necessary to design and collect the quality-rela-ted physical parameters, process parameters, and equipment parameters in the whole manufacturing process of traditional Chinese medicine for digitization and modeling of the process. In this paper, a method for non-optimal state identification and self-recovering regulation was developed for active quality control in the manufacturing process of traditional Chinese medicine. Moreover, taking vacuum belt drying process as an example, a DQN algorithm-based intelligent decision model was established and verified and the implementation process was also discussed and studied. Thus, the process parameters-based self-optimization strategy discovery and path planning of optimal process control were rea-lized in this study. The results showed that the deep reinforcement learning-based artificial intelligence technology was helpful to improve the product quality consistency, reduce production cost, and increase benefit.
Subject(s)
Medicine, Chinese Traditional , Drugs, Chinese Herbal , Artificial Intelligence , Quality Control , AlgorithmsABSTRACT
In this study, rapid evaporative ionization mass spectrometry(REIMS) fingerprints of 388 samples of roots of Pulsatilla chinensis(PC) and its common counterfeits, roots of P. cernua and roots of Anemone tomentosa were analyzed based on REIMS combined with machine learning. The samples were determined by REIMS through dry burning, and the REIMS data underwent cluster analysis, similarity analysis(SA), and principal component analysis(PCA). After dimensionality reduction by PCA, the data were analyzed by similarity analysis and self-organizating map(SOM), followed by modeling. The results indicated that the REIMS fingerprints of the samples showed the characteristics of variety differences and the SOM model could accurately distinguish PC, P. cernua, and A. tomentosa. REIMS combined with machine learning algorithm has a broad application prospect in the field of traditional Chinese medicine.
Subject(s)
Medicine, Chinese Traditional , Algorithms , Anemone , Machine LearningABSTRACT
This study was aimed at identifying the bioactive components of the crude and stir-baked hawthorn for invigorating spleen and promoting digestion, respectively, to clarify the processing mechanism of hawthorn by applying the partial least squares(PLS) algorithm to build the spectrum-effect relationship model. Firstly, different polar fractions of crude and stir-baked hawthorn aqueous extracts and combinations of different fractions were prepared, respectively. Then, the contents of 24 chemical components were determined by ultra-high performance liquid chromatography-mass spectrometry. The effects of different polar fractions of crude hawthorn and stir-baked hawthorn aqueous extracts and combinations of different fractions were evaluated by measuring the gastric emptying rate and small intestinal propulsion rate. Finally, the PLS algorithm was used to establish the spectrum-effect relationship model. The results showed that there were significant differences in the contents of 24 chemical components for different polar fractions of crude and stir-baked hawthorn aqueous extracts and combinations of different fractions, and the gastric emptying rate and small intestinal propulsion rate of model rats were improved by administration of different polar fractions of crude and stir-baked hawthorn aqueous extracts and combinations of different fractions. The bioactive components of crude hawthorn identified by PLS models were vitexin-4″-O-glucoside, vitexin-2″-O-rhamnoside, neochlorogenic acid, rutin, gallic acid, vanillic acid, citric acid, malic acid, quinic acid and fumaric acid, while neochlorogenic acid, cryptochlorogenic acid, rutin, gallic acid, vanillic acid, citric acid, quinic acid and fumaric acid were the bioactive components of stir-baked hawthorn. This study provided data support and scientific basis for identifying the bioactive components of crude and stir-baked hawthorn, and clarifying the processing mechanism of hawthorn.