Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.190
Filter
1.
Braz. j. biol ; 84: e251336, 2024. graf
Article in English | LILACS, VETINDEX | ID: biblio-1355879

ABSTRACT

Abstract Bulbine natalensis and Chorophytum comosum are potential medicinal source for the treatment of cancers. Chronic myeloid leukaemia is a hematopoietic stem cells disorder treated by tyrosine kinase inhibitors but often cause recurrence of the leukaemia after cessation of therapy, hence require alternative treatment. This study determines the anti-cancer effect of leaf, root and bulb methanolic and aqueous extracts of B. natalensis and C. comosum in chronic human myelogenous leukaemia (K562) cell line by MTT, Hoechst bis-benzimide nuclear and annexin V stain assays. The root methanolic extract of B. natalensis and C. comosum showed a high cytotoxicity of 8.6% and 16.7% respectively on the K562 cell line at 1,000 μg/ml concentration. Morphological loss of cell membrane integrity causing degradation of the cell and fragmentation were observed in the root methanolic extract of both plants. A high apoptosis (p < 0.0001) was induced in the K562 cells by both leaf and root extracts of the C. comosum compared to the B. natalensis. This study shows both plants possess apoptotic effect against in vitro myelogenous leukaemia which contributes to the overall anti-cancer properties of B. natalensis and C. comosum to justify future therapeutic applications against chronic myelogenous leukaemia blood cancer.


Resumo Bulbine natalensis Baker e Chorophytum comosum (Thunb.) Jacques são potenciais fontes medicinais para o tratamento de cânceres. A Leucemia Mieloide Crônica (LMC) é um distúrbio das células-tronco hematopoiéticas que é tratado com inibidores da tirosina quinase, mas frequentemente, causa recorrência da leucemia após a interrupção da terapia, portanto, requer um tratamento alternativo. Este estudo determinou o efeito anticancerígeno de extratos metanólicos e aquosos de folha, raiz e bulbo de B. natalensis e C. comosum na linhagem celular de leucemia mieloide humana crônica (K562) por ensaios de MTT, Hoechst bis-benzimida nuclear e anexina V. O extrato metanólico da raiz de B. natalensis e C. comosum apresentou alta citotoxidade de 8,6% e 16,7% respectivamente, na linhagem celular K562 com a concentração de 1,000 μg / ml. Perda morfológica da integridade da membrana celular causando degradação dos núcleos, citoplasma e encolhimento celular foi observada no extrato metanólico da raiz de ambas as plantas. Uma alta apoptose (p <0,0001) foi induzida nas células K562 por extratos de folhas e raízes de C. comosum em comparação com B. natalensis. Este estudo mostrou que ambas as plantas possuem efeito apoptótico contra leucemia mieloide in vitro que contribui para as propriedades anticâncer gerais de B. natalensis e C. comosum para justificar futuras aplicações terapêuticas contra câncer de sangue de LMC.


Subject(s)
Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Xanthorrhoeaceae , Apoptosis , K562 Cells
2.
Article in Chinese | WPRIM | ID: wpr-936371

ABSTRACT

OBJECTIVE@#To investigate the effect of metformin on the proliferation and apoptosis of HER-2-positive breast cancer cell line SKBR3 and explore the possible mechanism of its action.@*METHODS@#SKBR3 cells were treated with different concentrations (20-120 μmol/L) of metformin, and the changes in cell proliferation and colony formation ability were assessed using CCK-8 assay and crystal violet staining, respectively. Flow cytometry was performed to analyze cell apoptosis and cell cycle changes. Real-time fluorescent quantitative PCR (qRT-PCR) was used to detect mRNA expressions of YAP, TAZ, EGFR, CTGF, CYR61, E-cadherin, N-cadherin, vimentin and fibronectin in the treated cells, and the protein expressions of YAP and TAZ were detected using Western blotting; immunofluorescence assay was used to observe YAP/TAZ nuclear translocation in the cells.@*RESULTS@#Metformin treatment significantly inhibited the proliferation of SKBR3 cells (P < 0.05) in a concentration- and time-dependent manner. The results of flow cytometry showed that metformin significantly promoted apoptosis and caused cell cycle arrest at G1 phase in SKBR3 cells. Metformin treatment significantly down-regulated the mRNA expressions of YAP, TAZ, EGFR, CTGF and CYR61, N-cadherin, vimentin and fibronectin (P < 0.05) and up-regulated the expression of E-cadherin (P < 0.05); Western blotting results showed that YAP and TAZ protein expressions were significantly down-regulated in the cells after metformin treatment (P < 0.05). Immunofluorescence assay revealed that metformin treatment caused the concentration of YAP and TAZ in the cytoplasm, and significantly reduced their amount in the cell nucleus.@*CONCLUSION@#Metformin can inhibit proliferation and promote apoptosis and epithelal-mesenchymal transition of HER-2 positive breast cancer cells possibly by that inhibing YAP and TAZ expression and their nuclear localization.


Subject(s)
Apoptosis , Cadherins , Cell Proliferation , ErbB Receptors , Fibronectins , Metformin/pharmacology , Neoplasms , Protein Serine-Threonine Kinases , RNA, Messenger , Transcription Factors/metabolism , Vimentin
3.
Article in Chinese | WPRIM | ID: wpr-936351

ABSTRACT

OBJECTIVE@#To explore the effect of inhibiting polyribonucleotide nucleotidyl-transferase 1 (PNPT1) on oxygen-glucose deprivation (OGD)-induced apoptosis of mouse atrial myocytes.@*METHODS@#Cultured mouse atrial myocytes (HL-1 cells) with or without OGD were transfected with PNPT1-siRNA or a negative control siRNA (NC-siRNA group), and the cell survival rate was detected using CCK-8 assay. The expression levels of ACTB and TUBA mRNA were detected with qPCR, and the protein expression of PNPT1 was detected with Western blotting. The apoptosis rate of the treated cells was determined with flow cytometry, the mitochondrial membrane potential was detected using JC-1 kit, and the mitochondrial morphology was observed using transmission electron microscope.@*RESULTS@#With the extension of OGD time, the protein expression levels of PNPT1 increased progressively in the cytoplasm of HL-1 cells (P < 0.05). Transfection with PNPT1-siRNA significantly reduced PNPT1 expression in HL-1 cells (P < 0.05). Exposure to OGD significantly enhanced degradation of ACTB and TUBA mRNA (P < 0.05) and markedly increased the apoptosis rate of HL-1 cells (P < 0.05), and these changes were significantly inhibited by transfection with PNPT1-siRNA (P < 0.05), which obviously increased mitochondrial membrane potential and improved mitochondrial morphology of HL-1 cells exposed to OGD.@*CONCLUSION@#Inhibition of PNPT1 improves mitochondrial damage and reduces degradation of apoptotic-associated mRNAs to alleviate OGD-induced apoptosis of mouse atrial myocyte.


Subject(s)
Animals , Apoptosis , Cell Survival , Glucose/pharmacology , Mice , Myocytes, Cardiac , Oxygen/metabolism , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism
4.
Article in Chinese | WPRIM | ID: wpr-936349

ABSTRACT

OBJECTIVE@#To investigate the molecular mechanism by which miR-20a-5p regulates HOXB13 gene expression and inhibits lung cancer cell proliferation.@*METHODS@#The expression levels of HOXB13 mRNA and protein in lung cancer A549 cells transfected with HOXB13 overexpression plasmid or HOXB13 siRNA were detected with real-time fluorescence quantitative PCR (qRT-PCR) and Western blotting. CCK-8 and EdU assays were used to examine the effect of modulation of HOXB13 expression on cell proliferation. We screened possible binding miRNAs of HOXB13 by bioinformatics analysis. In A549 cells transfected with miR-20a-5p mimic or miR-20a-5p inhibitor, the expression level of miR-20a-5p was detected by qRT-PCR and the protein expression of HOXB13 was determined with Western blotting. CCK-8 and EdU assays were used to assess the effect of miR-20a-5p overexpression on the proliferation of A549 cells. miR-20a-5p mimic and HOXB13 overexpression plasmids were co-transfected into A549 cells, and the changes in cell proliferation were evaluated with CCK-8 and EdU assays.@*RESULTS@#HOXB13 overexpression obviously promoted the proliferation of A549 cells (P < 0.05). miR-20a-5p was identified as the potential binding miRNA of HOXB13. Overexpression of miR-20a-5p in A549 cells significantly decreased the expression of HOXB13 protein (P < 0.05), while interference of miR-20a-5p obviously increased HOXB13 expression (P < 0.05). The results of cell proliferation experiment showed that miR-20a-5p and HOXB13 had opposite effects on cell proliferation, and the cells overexpressing both miR-20a-5p and HOXB13 showed a lower proliferation activity than the cells overexpressing HOXB13 but higher than the cells overexpressing miR-20a-5p alone (P < 0.05).@*CONCLUSION@#miR-20a-5p inhibits proliferation of lung cancer cells by down-regulating the expression of HOXB13.


Subject(s)
A549 Cells , Apoptosis , Cell Line, Tumor , Cell Proliferation , Homeodomain Proteins/genetics , Humans , Lung Neoplasms/genetics , MicroRNAs/genetics , Sincalide
5.
Article in Chinese | WPRIM | ID: wpr-936302

ABSTRACT

OBJECTIVE@#To investigate the molecular mechanism by which a novel naphthalene allyl trifluoromethyl benzocyclopentanone XX0335 inhibits the proliferation and induces apoptosis of lung cancer A549 cells.@*METHODS@#Lung cancer A549 cells were treated with 0.1% DMSO (control) or different concentrations (6.25, 12.5, and 25 μg/mL) of XX0335, and the changes in cell viability, cell cycle, proliferation and apoptosis were assessed with CCK-8 assay, EdU experiment, and flow cytometry. The effects of different concentrations of XX0335 on phosphorylation levels of proliferation-related proteins Akt, mTOR, Akt/mTOR and the expressions of cleaved PARP and cyclin D1 were determined using Western blotting. We also assessed the effect of XX0335 on tumor growth in a mouse model bearing A945 cell xenograft.@*RESULTS@#Treatment with XX0335 reduced the viability of A549 cells in a dose-dependent manner (P < 0.01) and significantly inhibited cell proliferation (P < 0.001). Flow cytometry showed that XX0335 treatment promoted apoptosis of the cells (P < 0.01) and caused an obvious increase of the number of G1-phase cells. Compared with DMSO, XX0335 significantly inhibited the phosphorylation of Akt and mTOR, increased the expression of cleaved PARP, and lowered the protein expression of cyclin D1. In the tumor-bearing mouse models, injection of XX0335 significantly decreased the tumor volume (P < 0.01).@*CONCLUSION@#XX0335 inhibits the proliferation, cycle and induces apoptosis of lung cancer A549 cells possibly by inhibiting the Akt/mTOR signal pathway.


Subject(s)
A549 Cells , Animals , Apoptosis , Cell Proliferation , Humans , Lung Neoplasms/metabolism , Mice , Naphthalenes/pharmacology
6.
Article in Chinese | WPRIM | ID: wpr-936296

ABSTRACT

OBJECTIVE@#To explore the expression of microRNA-132 (miR-132) and its potential role in the development of atherosclerosis (AS).@*METHODS@#Thirty AS samples and 30 samples of normal peripheral vessels were collected from atherosclerotic patients undergoing peripheral angiostomy in our hospital for detecting the expression level of miR-132 using RT-qPCR. The expression of miR-132 in human umbilical vein endothelial cells (HUVEC) was up-regulated by liposome transfection, and intracellular reactive oxygen species (ROS), localization relationship between ROS and mitochondria, functional changes of mitochondrial reactive oxygen superoxide species (mtROS), mitochondrial membrane potential (MMP) and opening of mitochondrial permeability transition pore (mPTP) were analyzed by flow cytometry and laser confocal microscopy. The activity of mitochondrial redox respiratory chain complex (type I, II, III, IV and V) in HUVECs was detected using ELISA, and the expression levels of key iron death proteins were detected with Western blotting.@*RESULTS@#RT-qPCR results showed that miR-132 was significantly up-regulated in atherosclerotic plaques compared with normal vascular samples (P < 0.001). Compared with control HUVECs, HUVECs overexpressing miR-132 showed a significantly increased level of intracellular ROS (P < 0.001), and most of ROS was colocalized with mitochondria. HUVECs overexpressing miR-132 also showed significantly decreased MMP (P < 0.001) and obviously increased mtROS (P < 0.001) and opening of mPTP (P < 0.001), which led to mitochondrial REDOX respiratory chain stress disorder. The key iron death protein GPX4 was significantly down-regulated and the oxidized protein NOX4 was significantly increased in miR-132-overexpressing HUVECs (P < 0.001).@*CONCLUSION@#MiR-132 promotes atherosclerosis by inducing mitochondrial oxidative stress-mediated ferroptosis, which may serve as a promising therapeutic target for AS.


Subject(s)
Apoptosis , Atherosclerosis/genetics , Ferroptosis , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Membrane Potential, Mitochondrial , MicroRNAs/metabolism , Mitochondria/metabolism , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species/metabolism
7.
Article in Chinese | WPRIM | ID: wpr-936285

ABSTRACT

OBJECTIVE@#To investigate the inhibitory effect of 27-P-coumayl-ursolic acid (27-P-CAUA), the active ingredient in triterpenoids from the leaves of Ilex latifolia Thunb, against breast cancer cells and explore the underlying mechanism.@*METHODS@#CCK-8 assay was used to assess the changes in viability of breast cancer HCC-1806 cells after 27-P-CAUA treatment for 24, 48, or 72 h. The inhibitory effect of 27-P-CAUA on proliferation of the cells was determined by clonogenic assay. JC-1 was used to detect the changes in mitochondrial membrane potential and flow cytometry was performed for analyzing cell apoptosis following 27-P-CAUA treatment. Immunofluorescence assay was used to observe the expression of cl-caspase-3 and P62 in the treated cells. Western blotting was performed to observe the effect of 27-P-CAUA and chloroquine pretreatment on the expressions of LC3I/II, P62 and HER2 signaling pathway proteins in the cells.@*RESULTS@#The results of CCK-8 and clonogenic assays showed that 27-P-CAUA treatment significantly inhibited the proliferation of HCC-1806 cells (P < 0.01) with IC50 values of 81.473, 48.392 and 18.467 μmol/L at 24, 48, and 72 h, respectively. 27-P-CAUA treatment also caused obvious changes in mitochondrial membrane potential (P < 0.01) and induced cell apoptosis in HCC-1806 cells with a 3.34% increase of the early apoptosis rate. Immunofluorescence assay revealed a significant increase of cl-caspase3 expression in 27-P-CAUA-treated HCC-1806 cells, and treatment with 40 μmol/L 27-P-CAUA resulted in significant cell apoptosis (P < 0.01). 27-P-CAUA obviously reduced the expression of LC3II, caused P62 degradation and induced autophagy in HCC-1806 cells. Chloroquine pretreatment obviously blocked the autophagy-inducing effect of 27-P-CAUA. 27-P-CAUA treatment also inhibited the phosphorylation of HER2 and AKT proteins and progressively lowered the expressions of HER2 and phosphorylated AKT protein in HCC-1806 cells (P < 0.01).@*CONCLUSION@#27-P-CAUA can inhibit the proliferation and induce mitochondrial autophagy and apoptosis of HCC-1806 cells by inhibiting the HER2/PI3K/AKT signaling pathway.


Subject(s)
Apoptosis , Autophagy , Breast Neoplasms , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Proliferation , Female , Humans , Liver Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
8.
Article in English | WPRIM | ID: wpr-929266

ABSTRACT

Currently, chemoresistance seriously attenuates the curative outcome of liver cancer. The purpose of our work was to investigate the influence of 6-shogaol on the inhibition of 5-fluorouracil (5-FU) in liver cancer. The cell viability of cancer cells was determined by MTT assay. Liver cancer cell apoptosis and the cell cycle were examined utilizing flow cytometry. Moreover, qRT-PCR and western blotting was used to analyse the mRNA and protein expression levels, respectively. Immunohistochemistry assays were used to examine multidrug resistance protein 1 (MRP1) expression in tumour tissues. In liver cancer cells, we found that 6-shogaol-5-FU combination treatment inhibited cell viability, facilitated G0/G1 cell cycle arrest, and accelerated apoptosis compared with 6-shogaol or 5-FU treatment alone. In cancer cells cotreated with 6-shogaol and 5-FU, AKT/mTOR pathway- and cell cycle-related protein expression levels were inhibited, and MRP1 expression was downregulated. AKT activation or MRP1 increase reversed the influence of combination treatment on liver cancer cell viability, apoptosis and cell cycle arrest. The inhibition of AKT activation to the anticancer effect of 6-shogaol-5-FU could be reversed by MRP1 silencing. Moreover, our results showed that 6-shogaol-5-FU combination treatment notably inhibited tumour growth in vivo. In summary, our data demonstrated that 6-shogaol contributed to the curative outcome of 5-FU in liver cancer by inhibiting the AKT/mTOR/MRP1 signalling pathway.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Apoptosis , Catechols , Cell Cycle , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , Fluorouracil/pharmacology , Humans , Liver Neoplasms/genetics , Multidrug Resistance-Associated Proteins , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
9.
Article in English | WPRIM | ID: wpr-929261

ABSTRACT

Catechins have been proven to exert antitumor effects in different kinds of cancers. However, the underlying mechanisms have not been completely clarified yet. This study aimed to assess the effects and mechanisms of (-)-epigallocatechin-3-gallate (EGCG) and (-)-epicatechin-3-gallate (ECG) on human melanoma skin A375 cells. Results showed that EGCG and ECG inhibited the proliferation of A375 cells and ECG showed better inhibitory effect. Flow cytometry analysis had shown that EGCG and ECG induced apoptosis and led to cell cycle arrest. EGCG and ECG decreased Bcl-2 expression and upregulated Caspase-3 protein level, indicating the development of apoptosis. Furthermore, EGCG and ECG could decreased mitochondrial membrane potential of A375 cells. In addition, the expression of Beclin-1, LC3 and Sirt3 were downregulated at protein levels, which known to be associated with autophagy. After autophagy was increased by rapamycin, the apoptotic trend was not change, indicating that apoptosis and autophagy are independent. Mechanistically, EGCG and ECG treatments decreased phosphorylated-AMPK (p-AMPK) and increased the ratios of p-PI3K, p-AKT and p-mTOR in melanoma cells. Conclusively, EGCG and ECG induced apoptosis via mitochondrial signaling pathway, downregulated autophagy through modulating the AMPK/mTOR and PI3K/AKT/mTOR signaling pathway. It indicated that EGCG and ECG may be utilized in human melanoma treatment.


Subject(s)
AMP-Activated Protein Kinases/genetics , Apoptosis , Autophagy , Catechin/analogs & derivatives , Electrocardiography , Humans , Melanoma/drug therapy , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
10.
Article in English | WPRIM | ID: wpr-929239

ABSTRACT

β-Elemene is an effective anti-cancer ingredient extracted from the genus Curcuma (Zingiberaceae familiy). In the present study, we demonstrated that β-elemene inhibited the proliferation of colorectal cancer cells and induced cell cycle arrest in the G2/M phase. In addition, β-elemene induced nuclear chromatin condensation and cell membrane phosphatidylserine eversion, decreased cell mitochondrial membrane potential, and promoted the cleavage of caspase-3, caspase-9 and PARP proteins, indicating apoptosis in colorectal cancer cells. At the same time, β-elemene induced autophagy response, and the treated cells showed autophagic vesicle bilayer membrane structure, which was accompanied by up-regulation of the expression of LC3B and SQSTM1. Furthermore, β-elemene increased ROS levels in colorectal cancer cells, promoted phosphorylation of AMPK protein, and inhibited mTOR protein phosphorylation. In the experiments in vivo, β-elemene inhibited the tumor size and induced apoptosis and autophagy in nude mice. In summary, β-elemene inhibited the occurrence and development of colon cancer xenografts in nude mice, and significantly induced apoptosis and autophagy in colorectal cancer cells in vitro. These effects were associated with regulation of the ROS/AMPK/mTOR signaling. We offered a molecular basis for the development of β-elemene as a promising anti-tumor drug candidate for colorectal cancer.


Subject(s)
AMP-Activated Protein Kinases/genetics , Animals , Apoptosis , Autophagy , Cell Line, Tumor , Colorectal Neoplasms/genetics , Humans , Mice , Mice, Nude , Reactive Oxygen Species , Sesquiterpenes , TOR Serine-Threonine Kinases/genetics
11.
Article in English | WPRIM | ID: wpr-929237

ABSTRACT

Chemical investigation of the culture extract of an endophytic Penicillium citrinum from Dendrobium officinale, afforded nine citrinin derivatives (1-9) and one peptide-polyketide hybrid GKK1032B (10). The structures of these compounds were determined by spectroscopic methods. The absolute configurations of 1 and 2 were determined for the first time by calculation of electronic circular dichroism (ECD) data. Among them, GKK1032B (10) showed significant cytotoxicity against human osteosarcoma cell line MG63 with an IC50 value of 3.49 μmol·L-1, and a primary mechanistic study revealed that it induced the apoptosis of MG63 cellsvia caspase pathway activation.


Subject(s)
Apoptosis , Bone Neoplasms , Caspases , Humans , Osteosarcoma/drug therapy , Penicillium
12.
Article in English | WPRIM | ID: wpr-929130

ABSTRACT

In vitro manipulation of induced pluripotent stem cells (iPSCs) by environmental factors is of great interest for three-dimensional (3D) tissue/organ induction. The effects of mechanical force depend on many factors, including force and cell type. However, information on such effects in iPSCs is lacking. The aim of this study was to identify a molecular mechanism in iPSCs responding to intermittent compressive force (ICF) by analyzing the global gene expression profile. Embryoid bodies of mouse iPSCs, attached on a tissue culture plate in 3D form, were subjected to ICF in serum-free culture medium for 24 h. Gene ontology analyses for RNA sequencing data demonstrated that genes differentially regulated by ICF were mainly associated with metabolic processes, membrane and protein binding. Topology-based analysis demonstrated that ICF induced genes in cell cycle categories and downregulated genes associated with metabolic processes. The Kyoto Encyclopedia of Genes and Genomes database revealed differentially regulated genes related to the p53 signaling pathway and cell cycle. qPCR analysis demonstrated significant upregulation of Ccnd1, Cdk6 and Ccng1. Flow cytometry showed that ICF induced cell cycle and proliferation, while reducing the number of apoptotic cells. ICF also upregulated transforming growth factor β1 (Tgfb1) at both mRNA and protein levels, and pretreatment with a TGF-β inhibitor (SB431542) prior to ICF abolished ICF-induced Ccnd1 and Cdk6 expression. Taken together, these findings show that TGF-β signaling in iPSCs enhances proliferation and decreases apoptosis in response to ICF, that could give rise to an efficient protocol to manipulate iPSCs for organoid fabrication.


Subject(s)
Animals , Apoptosis , Cell Cycle , Cell Differentiation , Embryoid Bodies , Induced Pluripotent Stem Cells/metabolism , Mice , Transforming Growth Factor beta/pharmacology
13.
Article in English | WPRIM | ID: wpr-929061

ABSTRACT

Toxoplasma gondii is a worldwide parasite that can infect almost all kinds of mammals and cause fatal toxoplasmosis in immunocompromised patients. Apoptosis is one of the principal strategies of host cells to clear pathogens and maintain organismal homeostasis, but the mechanism of cell apoptosis induced by T. gondii remains obscure. To explore the apoptosis influenced by T. gondii, Vero cells infected or uninfected with the parasite were subjected to apoptosis detection and subsequent dual RNA sequencing (RNA-seq). Using high-throughput Illumina sequencing and bioinformatics analysis, we found that pro-apoptosis genes such as DNA damage-inducible transcript 3 (DDIT3), growth arrest and DNA damage-inducible α (GADD45A), caspase-3 (CASP3), and high-temperature requirement protease A2 (HtrA2) were upregulated, and anti-apoptosis genes such as poly(adenosine diphosphate (ADP)-ribose) polymerase family member 3 (PARP3), B-cell lymphoma 2 (Bcl-2), and baculoviral inhibitor of apoptosis protein (IAP) repeat containing 5 (BIRC5) were downregulated. Besides, tumor necrosis factor (TNF) receptor-associated factor 1 (TRAF1), TRAF2, TNF receptor superfamily member 10b (TNFRSF10b), disabled homolog 2 (DAB2)‍-interacting protein (DAB2IP), and inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) were enriched in the upstream of TNF, TNF-related apoptosis-inducing ligand (TRAIL), and endoplasmic reticulum (ER) stress pathways, and TRAIL-receptor 2 (TRAIL-R2) was regarded as an important membrane receptor influenced by T. gondii that had not been previously considered. In conclusion, the T. gondii RH strain could promote and mediate apoptosis through multiple pathways mentioned above in Vero cells. Our findings improve the understanding of the T. gondii infection process through providing new insights into the related cellular apoptosis mechanisms.


Subject(s)
Animals , Apoptosis , Chlorocebus aethiops , Gene Expression Profiling , Humans , Mammals/genetics , Toxoplasma/genetics , Toxoplasmosis/pathology , Vero Cells , ras GTPase-Activating Proteins/genetics
14.
Article in English | WPRIM | ID: wpr-929052

ABSTRACT

It has been revealed that hypoxia is dynamic in hypertrophic scars; therefore, we considered that it may have different effects on hypoxia-inducible factor-1α (HIF-1α) and p53 expression. Herein, we aimed to confirm the presence of a teeterboard-like conversion between HIF-1α and p53, which is correlated with scar formation and regression. Thus, we obtained samples of normal skin and hypertrophic scars to identify the differences in HIF-1α and autophagy using immunohistochemistry and transmission electron microscopy. In addition, we used moderate hypoxia in vitro to simulate the proliferative scar, and silenced HIF-1α or p53 gene expression or triggered overexpression to investigate the changes of HIF-1α and p53 expression, autophagy, apoptosis, and cell proliferation under this condition. HIF-1α, p53, and autophagy-related proteins were assayed using western blotting and immunofluorescence, whereas apoptosis was detected using flow cytometry analysis, and cell proliferation was detected using cell counting kit-8 (CCK-8) and 5-bromo-2'-deoxyuridine (BrdU) staining. Furthermore, immunoprecipitation was performed to verify the binding of HIF-1α and p53 to transcription cofactor p300. Our results demonstrated that, in scar tissue, HIF-1α expression increased in parallel with autophagosome formation. Under hypoxia, HIF-1α expression and autophagy were upregulated, whereas p53 expression and apoptosis were downregulated in vitro. HIF-1α knockdown downregulated autophagy, proliferation, and p300-bound HIF-1α, and upregulated p53 expression, apoptosis, and p300-bound p53. Meanwhile, p53 knockdown induced the opposite effects and enhanced HIF-1α, whereas p53 overexpression resulted in the same effects and reduced HIF-1α. Our results suggest a teeterboard-like conversion between HIF-1α and p53, which is linked with scar hyperplasia and regression.


Subject(s)
Apoptosis , Autophagy , Cell Hypoxia , Fibroblasts/metabolism , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Tumor Suppressor Protein p53/metabolism
15.
Article in English | WPRIM | ID: wpr-929042

ABSTRACT

Cancer is the leading cause of death worldwide. Drugs play a pivotal role in cancer treatment, but the complex biological processes of cancer cells seriously limit the efficacy of various anticancer drugs. Autophagy, a self-degradative system that maintains cellular homeostasis, universally operates under normal and stress conditions in cancer cells. The roles of autophagy in cancer treatment are still controversial because both stimulation and inhibition of autophagy have been reported to enhance the effects of anticancer drugs. Thus, the important question arises as to whether we should try to strengthen or suppress autophagy during cancer therapy. Currently, autophagy can be divided into four main forms according to its different functions during cancer treatment: cytoprotective (cell survival), cytotoxic (cell death), cytostatic (growth arrest), and nonprotective (no contribution to cell death or survival). In addition, various cell death modes, such as apoptosis, necrosis, ferroptosis, senescence, and mitotic catastrophe, all contribute to the anticancer effects of drugs. The interaction between autophagy and these cell death modes is complex and can lead to anticancer drugs having different or even completely opposite effects on treatment. Therefore, it is important to understand the underlying contexts in which autophagy inhibition or activation will be beneficial or detrimental. That is, appropriate therapeutic strategies should be adopted in light of the different functions of autophagy. This review provides an overview of recent insights into the evolving relationship between autophagy and cancer treatment.


Subject(s)
Antineoplastic Agents/therapeutic use , Apoptosis , Autophagy/physiology , Humans , Necrosis/drug therapy , Neoplasms/therapy
16.
Article in English | WPRIM | ID: wpr-929020

ABSTRACT

OBJECTIVES@#Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily of ligand activated transcription factors and belongs to bile acid receptor. Studies have shown that the expression of FXR in renal tissue can reduce renal injury via regulation of glucose and lipid metabolism, inhibition of inflammatory response, reduction of oxidative stress and renal fibrosis. However, it is unclear whether FXR is involved in autophagy in renal diseases. This study aims to investigate the role of FXR in cisplatin-induced acute renal injury and whether its mechanism is related to autophagy regulation.@*METHODS@#Twelve male WT or FXR-KO mice at 12 weeks were randomly divided into a WT group, a WT+cisplatin group, a FXR-KO group, and a FXR-KO+cisplatin group, with 6 mice in each group. The WT+cisplatin group and the FXR-KO+cisplatin group were intraperitoneally injected with cisplatin (20 mg/kg), and the WT group and the FXR-KO group were intraperitoneally injected with equal volume of cisplatin solvent. Seventy-two hours later, the mice were killed and blood and renal tissue samples were collected. The levels of SCr and BUN were detected by immunoturbidimetry. After the staining, the pathological changes of renal tissue were observed under optical microscope. The protein levels of LC3 and p62 were detected by Western blotting and immunohistochemistry. The clearance of damaged mitochondria and the accumulation of lysosomal substrate were observed under electron microscope. The apoptosis of renal tubular epithelial cells was detected by TUNEL.@*RESULTS@#Compared with the WT group or the FXR-KO group, both SCr and BUN levels in the WT+cisplatin group or the FXR-KO+cisplatin group were significantly increased (P<0.01 or P<0.001), and SCr and BUN levels in the FXR-KO+cisplatin group were significantly higher than those in the WT+cisplatin group (both P<0.05). Under the light microscope, there were no obvious pathological changes in the renal tissue of mice in the WT group and the FXR-KO group. Both the WT+cisplatin group and the FXR-KO+cisplatin group had vacuolar or granular degeneration of renal tubular epithelial cells, flat cells, lumen expansion, brush edge falling off, and even exposed basement membrane and tubular formation. The scores of renal tubular injury in the WT+cisplatin group and the FXR-KO+cisplatin group were significantly higher than those in the WT group and the FXR-KO group, respectively (both P<0.001), and the score in the FXR-KO+cisplatin group was significantly higher than that in the WT+cisplatin group (P<0.05). Under the transmission electron microscope, the mitochondria of mouse tubular epithelial cell in the WT+cisplatin group and the FXR-KO+cisplatin group was swollen, round, vacuolated, cristae broken or disappeared; the lysosome was uneven and high-density clumps, and the change was more obvious in the FXR-KO+cisplatin group. Western blotting showed that the ratio of LC3-II to LC3-I was decreased and the expression of p62 was increased in the WT+cisplatin group compared with the WT group and the FXR-KO+cisplatin group compared with FXR-KO group (P<0.05 or P<0.01); compared with the FXR-KO group, the ratio of LC3-II to LC3-I was decreased and the expression of p62 was increased significantly in the FXR-KO+cisplatin group (both P<0.05). Immunohistochemistry results showed that the expression of total LC3 and p62 in renal cortex of the WT+cisplatin group and the FXR-KO+cisplatin group was increased significantly, especially in the FXR-KO+cisplatin group. TUNEL results showed that the mice in the WT group and the FXR-KO group had negative staining or only a few apoptotic tubular epithelial cells, and the number of apoptotic cells in the WT+cisplatin group and the FXR-KO+cisplatin group were increased. The apoptosis rates of renal tubular epithelial cells in the WT+cisplatin group and the FXR-KO+cisplatin group were significantly higher than those in the WT group and the FXR-KO group, respectively (both P<0.001), and the apoptosis rate in the FXR-KO+cisplatin group was significantly higher than that in the WT+cisplatin group (P<0.05).@*CONCLUSIONS@#Knockout of FXR gene aggravates cisplatin induced acute renal injury, and its mechanism may be related to inhibiting autophagy and promoting apoptosis.


Subject(s)
Acute Kidney Injury/pathology , Animals , Apoptosis/physiology , Cisplatin/adverse effects , Female , Humans , Kidney/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
17.
Article in English | WPRIM | ID: wpr-929000

ABSTRACT

OBJECTIVES@#Acute kidney injury (AKI) can be caused by ischemia/reperfusion (I/R), nephrotoxin, and sepsis, with poor prognosis and high mortality. Leptin is a protein molecule that regulates the body's energy metabolism and reproductive activities via binding to its specific receptor. Leptin can inhibit cardiomyocyte apoptosis caused by I/R, but its effect on I/R kidney injury and the underlying mechanisms are still unclear. This study aims to investigate the effect and mechanisms of leptin on renal function, renal histopathology, apoptosis, and autophagy during acute I/R kidney injury.@*METHODS@#Healthy adult male mice were randomly divided into 4 groups: a sham+wild-type mice (ob/+) group, a sham+leptin gene-deficient mice (ob/ob) group, an I/R+ob/+ group, and an I/R+ob/ob group (n=8 per group). For sham operation, a longitudinal incision was made on the back of the mice to expose and separate the bilateral kidneys and renal arteries, and no subsequent treatment was performed. I/R treatment was ischemia for 30 min and reperfusion for 48 h. The levels of BUN and SCr were detected to evaluate renal function; HE staining was used to observe the pathological changes of renal tissue; TUNEL staining was used to observe cell apoptosis, and apoptosis-positive cells were counted; Western blotting was used to detect levels of apoptosis-related proteins (caspase 3, caspase 9), autophagy-related proteins [mammalian target of rapamycin (mTOR), phosphorylated mTOR (p-mTOR), LC3 I, LC3 II], mTOR-dependent signaling pathway proteins [phosphate and tension homology (PTEN), adenosine monophosphate-activated protein kinase (AMPK), protein kinase B (AKT), extracellular regulated protein kinase (ERK), phosphorylated PTEN (p-PTEN), phosphorylated AMPK (p-AMPK), phosphorylated AKT (p-AKT), phosphorylated ERK (p-ERK)].@*RESULTS@#There was no significant difference in the levels of BUN and SCr between the sham+ob/+ group and the sham+ob/ob group (both P>0.05). The levels of BUN and SCr in the I/R+ob/+ group were significantly higher than those in the sham+ob/+ group (both P<0.05). Compared with the mice in the sham+ob/ob group or the I/R+ob/+ group, the levels of BUN and SCr in the I/R+ob/ob group were significantly increased (all P<0.05). There was no obvious damage to the renal tubules in the sham+ob/+ group and the sham+ob/ob group. Compared with sham+ob/+ group and sham+ob/ob group, both the I/R+ob/+ group and the I/R+ob/ob group had cell damage such as brush border shedding, vacuolar degeneration, and cast formation. Compared with the I/R+ob/+ group, the renal tubules of the mice in the I/R+ob/ob group were more severely damaged. The pathological score of renal tubular injury showed that the renal tubular injury was the most serious in the I/R+ob/ob group (P<0.05). Compared with the sham+ob/+ group, the protein levels of caspase 3, caspase 9, PTEN, and LC3 II were significantly up-regulated, the ratio of LC3 II to LC3 I was significantly increased, and the protein levels of p-mTOR, p-PTEN, p-AMPK, p-AKT, and p-ERK were significantly down-regulated in the I/R+ob/+ group (all P<0.05). Compared with the sham+ob/ob group, the protein levels of caspase 3, caspase 9, PTEN, and LC3 II were significantly up-regulated, and the ratio of LC3 II to LC3 I was significantly increased, while the protein levels of p-mTOR, p-PTEN, p-AMPK, p-AKT, and p-ERK were significantly down-regulated in the I/R+ob/ob group (all P<0.05). Compared with the I/R+ob/+ group, the levels of p-mTOR, p-PTEN, p-AMPK, p-AKT were more significantly down-regulated, while the levels of caspase 3, caspase 9, PTEN, and LC3 II were more significantly up-regulated, and the ratio of LC3 II to LC3 I was more significantly increase in the I/R+ob/ob group (all P<0.05).@*CONCLUSIONS@#Renal function and tubular damage, and elevated levels of apoptosis and autophagy are observed in mice kidneys after acute I/R. Leptin might relieve I/R induced AKI by inhibiting apoptosis and autophagy that through a complex network of interactions between mTOR-dependent signaling pathways.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Acute Kidney Injury/pathology , Animals , Apoptosis , Apoptosis Regulatory Proteins/pharmacology , Autophagy , Caspase 3/metabolism , Caspase 9/metabolism , Female , Humans , Ischemia , Kidney/pathology , Leptin/pharmacology , Male , Mammals/metabolism , Mice , Proto-Oncogene Proteins c-akt/metabolism , Reperfusion/adverse effects , Reperfusion Injury/metabolism , TOR Serine-Threonine Kinases/metabolism
18.
Article in English | WPRIM | ID: wpr-928962

ABSTRACT

Alzheimer's disease (AD) is one of the most common neurodegenerative diseases among the elderly and it accounts for nearly 80% of all dementias. The pathogenesis of AD is complicated and enigmatic thus far. The mitochondrial cascade hypothesis assumes that mitochondrial damage may mediate, drive, or contribute to a variety of AD pathologies and may be the main factor in late-onset AD. Currently, there are no widely recognized drugs able to attenuate mitochondrial damage in AD. Notably, increasing evidence supports the efficacy of acupuncture for improving the mitochondrial structure and protecting mitochondrial functions in AD. This review reports the mechanisms by which acupuncture regulates mitochondrial dynamics, energy metabolism, calcium homeostasis and apoptosis. In conclusion, these findings suggest that AD mitochondrial dysfunction represents a reasonable therapeutic target and acupuncture could play a significant role in preventing and treating AD.


Subject(s)
Acupuncture Therapy , Aged , Alzheimer Disease/drug therapy , Apoptosis , Humans , Mitochondria/metabolism
19.
Article in English | WPRIM | ID: wpr-928961

ABSTRACT

OBJECTIVE@#To determine whether salvianolic acid B (Sal B) exerts protective effects on diabetic peripheral neuropathy by attenuating apoptosis and pyroptosis.@*METHODS@#RSC96 cells were primarily cultured with DMEM (5.6 mmol/L glucose), hyperglycemia (HG, 125 mmol/L glucose) and Sal B (0.1, 1, and 10 µ mol/L). Cells proliferation was measured by 3-(4, 5-cimethylthiazol-2-yl)-2, 5-dilphenyltetrazolium bromide assay. Reactive oxygen species (ROS) generation and apoptosis rate were detected by flow cytometry analysis. Western blot was performed to analyze the expressions of poly ADP-ribose polymerase (PARP), cleaved-caspase 3, cleaved-caspase 9, Bcl-2, Bax, NLRP3, ASC, and interleukin (IL)-1β.@*RESULTS@#Treatment with HG at a concentration of 125 mmol/L attenuated cellular proliferation, while Sal B alleviated this injury (P<0.05). In addition, Sal B inhibited HG-induced ROS production and apoptosis rate (P<0.05). Furthermore, treatment with Sal B down-regulated HG-induced PARP, cleaved-caspase 3, cleaved-caspase 9, Bax, NLRP3, ASC, and IL-1β expression, but mitigated HG-mediated down-regulation of Bcl-2 expression (P<0.05).@*CONCLUSION@#Sal B may protect RSC96 cells against HG-induced cellular injury via the inhibition of apoptosis and pyroptosis activated by ROS.


Subject(s)
Apoptosis , Benzofurans/pharmacology , Oxidative Stress , Pyroptosis , Reactive Oxygen Species/metabolism
20.
Article in English | WPRIM | ID: wpr-928958

ABSTRACT

OBJECTIVE@#To explore the influences of andrographolide (Andro) on bladder cancer cell lines and a tumor xenograft mouse model bearing 5637 cells.@*METHODS@#For in vitro experiments, T24 cells were stimulated with Andro (0-40 µmol/L) and 5637 cells were stimulated with Andro (0 to 80 µmol/L). Cell growth, migration, and infiltration were assessed using cell counting kit-8, colony formation, wound healing, and transwell assays. Apoptosis rate was examined using flow cytometry. In in vivo study, the antitumor effect of Andro (10 mg/kg) was evaluated by 5637 tumor-bearing mice, and levels of nuclear factor κ B (NF- κ B) and phosphoinositide 3-kinase/AKT related-proteins were determined by immunoblotting.@*RESULTS@#Andro suppressed growth, migration, and infiltraion of bladder cancer cells (P⩽0.05 or P⩽0.01). Additionally, Andro induced intrinsic mitochondria-dependent apoptosis in bladder cancer cell lines. Furthermore, Andro inhibited bladder cancer growth in mice (P⩽0.01). The expression of p65, p-AKT were suppressed by Andro treatment in vitro and in vivo (P⩽0.05 or P⩽0.01).@*CONCLUSIONS@#Andrographolide inhibits proliferation and promotes apoptosis in bladder cancer cells by interfering with NF- κ B and PI3K/AKT signaling in vitro and in vivo.


Subject(s)
Animals , Apoptosis , Cell Line, Tumor , Cell Proliferation , Diterpenes/therapeutic use , Humans , Mice , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Urinary Bladder Neoplasms/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL