ABSTRACT
OBJECTIVE@#To Investigate the effects of lithocholic acid (LCA) on the balance between osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs).@*METHODS@#Twelve 10-week-old SPF C57BL/6J female mice were randomly divided into an experimental group (undergoing bilateral ovariectomy) and a control group (only removing the same volume of adipose tissue around the ovaries), with 6 mice in each group. The body mass was measured every week after operation. After 4 weeks post-surgery, the weight of mouse uterus was measured, femur specimens of the mice were taken for micro-CT scanning and three-dimensional reconstruction to analyze changes in bone mass. Tibia specimens were taken for HE staining to calculate the number and area of bone marrow adipocytes in the marrow cavity area. ELISA was used to detect the expression of bone turnover markers in the serum. Liver samples were subjected to real-time fluorescence quantitative PCR (RT-qPCR) to detect the expression of key genes related to bile acid metabolism, including cyp7a1, cyp7b1, cyp8b1, and cyp27a1. BMSCs were isolated by centrifugation from 2 C57BL/6J female mice (10-week-old). The third-generation cells were exposed to 0, 1, 10, and 100 μmol/L LCA, following which cell viability was evaluated using the cell counting kit 8 assay. Subsequently, alkaline phosphatase (ALP) staining and oil red O staining were conducted after 7 days of osteogenic and adipogenic induction. RT-qPCR was employed to analyze the expressions of osteogenic-related genes, namely ALP, Runt-related transcription factor 2 (Runx2), and osteocalcin (OCN), as well as adipogenic-related genes including Adiponectin (Adipoq), fatty acid binding protein 4 (FABP4), and peroxisome proliferator-activated receptor γ (PPARγ).@*RESULTS@#Compared with the control group, the body mass of the mice in the experimental group increased, the uterus atrophied, the bone mass decreased, the bone marrow fat expanded, and the bone metabolism showed a high bone turnover state. RT-qPCR showed that the expressions of cyp7a1, cyp8b1, and cyp27a1, which were related to the key enzymes of bile acid metabolism in the liver, decreased significantly ( P<0.05), while the expression of cyp7b1 had no significant difference ( P>0.05). Intervention with LCA at concentrations of 1, 10, and 100 μmol/L did not demonstrate any apparent toxic effects on BMSCs. Furthermore, LCA inhibited the expressions of osteogenic-related genes (ALP, Runx2, and OCN) in a dose-dependent manner, resulting in a reduction in ALP staining positive area. Concurrently, LCA promoted the expressions of adipogenic-related genes (Adipoq, FABP4, and PPARγ), and an increase in oil red O staining positive area.@*CONCLUSION@#After menopause, the metabolism of bile acids is altered, and secondary bile acid LCA interferes with the balance of osteogenic and adipogenic differentiation of BMSCs, thereby affecting bone remodelling.
Subject(s)
Female , Mice , Animals , Core Binding Factor Alpha 1 Subunit/pharmacology , PPAR gamma/metabolism , Steroid 12-alpha-Hydroxylase/metabolism , Mice, Inbred C57BL , Cell Differentiation , Osteogenesis , Mesenchymal Stem Cells , Bile Acids and Salts/pharmacology , Bone Marrow Cells , Cells, Cultured , Azo CompoundsABSTRACT
La ortobiología está emergiendo como una nueva subespecialidad de la Ortopedia, con una aceptación gradual. Si bien el primer impulso del uso masivo de las terapias biológicas en Ortopedia vino de la mano del plasma rico en plaquetas y el concentrado de médula ósea por su elaboración y aplicación fáciles; en la última década, se han producido avances importantes y ha surgido numerosa evidencia clínica sobre los resultados de otras terapias biológicas prometedoras, como el lisado plaquetario, las células mesenquimales derivadas del tejido adiposo y los cultivos celulares. Este artículo tiene como objetivo describir las terapias biológicas más utilizadas actualmente en Ortopedia, con especial énfasis en su proceso de elaboración, su composición y mecanismo de acción. Nivel de Evidencia: V
Orthobiologics is emerging as a new subspecialty of orthopedics, with gradual acceptance. While platelet-rich plasma (PRP) and bone marrow concentrate (BMC) provided the initial catalyst for the widespread use of biological therapies in orthopedics due to their ease of preparation and application, there have been significant advances in the last decade, with numerous clinical evidence emerging on the outcomes of other promising biological therapies such as platelet lysate, adipose-derived stromal vascular fraction cells (SVF), and cell cultures. The following article aims to describe the most widely used biological therapies currently used in orthopedics, with special emphasis on their manufacturing process, composition, and mechanism of action. Level of Evidence: V
Subject(s)
Orthopedics , Bone Marrow Cells , Regenerative Medicine , Platelet-Rich Plasma , Mesenchymal Stem CellsABSTRACT
OBJECTIVE@#To observe the effect of wheat-grain moxibustion at "Dazhui" (GV 14), "Zusanli" (ST 36) and "Sanyinjiao" (SP 6) on Wnt/β-catenin signaling pathway in bone marrow cell in mice with bone marrow inhibition, and to explore the possible mechanism of wheat-grain moxibustion in treating bone marrow inhibition.@*METHODS@#Forty-five SPF male CD1(ICR) mice were randomly divided into a blank group, a model group and a wheat-grain moxibustion group, 15 mice in each group. The bone marrow inhibition model was established by intraperitoneal injection of 80 mg/kg of cyclophosphamide (CTX). The mice in the wheat-grain moxibustion group were treated with wheat-grain moxibustion at "Dazhui" (GV 14), "Zusanli" (ST 36) and "Sanyinjiao" (SP 6), 3 moxa cones per acupoint, 30 s per moxa cone, once a day, for 7 consecutive days. The white blood cell count (WBC) was measured before modeling, before intervention and 3, 5 d and 7 d into intervention. After intervention, the general situation of mice was observed; the number of nucleated cells in bone marrow was detected; the serum levels of interleukin-3 (IL-3), interleukin-6 (IL-6) and granulocyte macrophage colony stimulating factor (GM-CSF) were measured by ELISA; the protein and mRNA expression of β-catenin, cyclinD1 and C-Myc in bone marrow cells was measured by Western blot and real-time PCR method.@*RESULTS@#Compared with the blank group, the mice in the model group showed sluggish reaction, unstable gait, decreased body weight, and the WBC, number of nucleated cells in bone marrow as well as serum levels of IL-3, IL-6, GM-CSF were decreased (P<0.01), and the protein and mRNA expression of β-catenin, cyclinD1 and C-Myc was decreased (P<0.01). Compared with the model group, the mice in the wheat-grain moxibustion group showed better general condition, and WBC, the number of nucleated cells in bone marrow as well as serum levels of IL-3, IL-6, GM-CSF were increased (P<0.01, P<0.05), and the protein and mRNA expression of β-catenin, cyclinD1 and C-Myc was increased (P<0.05).@*CONCLUSION@#Wheat-grain moxibustion shows therapeutic effect on bone marrow inhibition, and its mechanism may be related to activating Wnt/β-catenin signaling pathway in bone marrow cells, improving bone medullary hematopoiesis microenvironment and promoting bone marrow cell proliferation.
Subject(s)
Animals , Male , Mice , beta Catenin/metabolism , Bone Marrow/physiopathology , Bone Marrow Cells/physiology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Interleukin-3/metabolism , Interleukin-6/metabolism , Mice, Inbred ICR , Moxibustion/methods , RNA, Messenger/metabolism , Triticum , Wnt Signaling Pathway , HematopoiesisABSTRACT
BACKGROUND@#Imatinib mesylate (IM) resistance is an emerging problem for chronic myeloid leukemia (CML). Previous studies found that connexin 43 (Cx43) deficiency in the hematopoietic microenvironment (HM) protects minimal residual disease (MRD), but the mechanism remains unknown.@*METHODS@#Immunohistochemistry assays were employed to compare the expression of Cx43 and hypoxia-inducible factor 1α (HIF-1α) in bone marrow (BM) biopsies of CML patients and healthy donors. A coculture system of K562 cells and several Cx43-modified bone marrow stromal cells (BMSCs) was established under IM treatment. Proliferation, cell cycle, apoptosis, and other indicators of K562 cells in different groups were detected to investigate the function and possible mechanism of Cx43. We assessed the Ca 2+ -related pathway by Western blotting. Tumor-bearing models were also established to validate the causal role of Cx43 in reversing IM resistance.@*RESULTS@#Low levels of Cx43 in BMs were observed in CML patients, and Cx43 expression was negatively correlated with HIF-1α. We also observed that K562 cells cocultured with BMSCs transfected with adenovirus-short hairpin RNA of Cx43 (BMSCs-shCx43) had a lower apoptosis rate and that their cell cycle was blocked in G0/G1 phase, while the result was the opposite in the Cx43-overexpression setting. Cx43 mediates gap junction intercellular communication (GJIC) through direct contact, and Ca 2+ is the key factor mediating the downstream apoptotic pathway. In animal experiments, mice bearing K562, and BMSCs-Cx43 had the smallest tumor volume and spleen, which was consistent with the in vitro experiments.@*CONCLUSIONS@#Cx43 deficiency exists in CML patients, promoting the generation of MRD and inducing drug resistance. Enhancing Cx43 expression and GJIC function in the HM may be a novel strategy to reverse drug resistance and promote IM efficacy.
Subject(s)
Animals , Humans , Mice , Apoptosis , Bone Marrow Cells , Cell Communication , Connexin 43/genetics , Gap Junctions/metabolism , Imatinib Mesylate/therapeutic use , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mesenchymal Stem Cells/metabolism , Tumor Microenvironment , Calcium/metabolismABSTRACT
OBJECTIVE@#To investigate the effect of adipocytes in the bone marrow microenvironment of patients with multiple myeloma (MM) on the pathogenesis of MM.@*METHODS@#Bone marrow adipocytes (BMA) in bone marrow smears of health donors (HD) and newly diagnosed MM (ND-MM) patients were evaluated with oil red O staining. The mesenchymal stem cells (MSC) from HD and ND-MM patients were isolated, and in vitro co-culture assay was used to explore the effects of MM cells on the adipogenic differentiation of MSC and the role of BMA in the survival and drug resistance of MM cells. The expression of adipogenic/osteogenic differentiation-related genes PPAR-γ, DLK1, DGAT1, FABP4, FASN and ALP both in MSC and MSC-derived adipocytes was determined with real-time quantitative PCR. The Western blot was employed to detect the expression levels of IL-6, IL-10, SDF-1α, TNF-α and IGF-1 in the supernatant with or without PPAR-γ inhibitor.@*RESULTS@#The results of oil red O staining of bone marrow smears showed that BMA increased significantly in patients of ND-MM compared with the normal control group, and the BMA content was related to the disease status. The content of BMA decreased in the patients with effective chemotherapy. MM cells up-regulated the expression of MSC adipogenic differentiation-related genes PPAR-γ, DLK1, DGAT1, FABP4 and FASN, but the expression of osteogenic differentiation-related gene ALP was significantly down-regulated. This means that the direct consequence of the interaction between MM cells and MSC in the bone marrow microenvironment is to promote the differentiation of MSC into adipocytes at the expense of osteoblasts, and the cytokines detected in supernatant changed. PPAR-γ inhibitor G3335 could partially reverse the release of cytokines by BMA. Those results confirmed that BMA regulated the release of cytokines via PPAR-γ signal, and PPAR-γ inhibitor G3335 could distort PPAR-γ mediated BMA maturation and cytokines release. The increased BMA and related cytokines effectively promoted the proliferation, migration and drug resistance of MM cells.@*CONCLUSION@#The BMA and its associated cytokines are the promoting factors in the survival, proliferation and migration of MM cells. BMA can protect MM cells from drug-induced apoptosis and plays an important role in MM treatment failure and disease progression.
Subject(s)
Humans , Osteogenesis/genetics , Bone Marrow/metabolism , Multiple Myeloma/metabolism , Drug Resistance, Neoplasm , Peroxisome Proliferator-Activated Receptors/pharmacology , Cell Differentiation , Adipogenesis , Cytokines/metabolism , Adipocytes/metabolism , Bone Marrow Cells/metabolism , Cells, Cultured , PPAR gamma/pharmacology , Tumor MicroenvironmentABSTRACT
OBJECTIVE@#To investigate the expression of pyruvate kinase M2 (PKM2) in bone marrow mesenchymal stem cells (BMSCs) in myeloma bone disease (MBD) and its effect on osteogenic and adipogenic differentiation of BMSCs.@*METHODS@#BMSCs were isolated from bone marrow of five patients with multiple myeloma (MM) (MM group) and five with iron deficiency anemia (control group) for culture and identification. The expression of PKM2 protein were compared between the two groups. The differences between osteogenic and adipogenic differentiation of BMSCs were assessed by using alkaline phosphatase (ALP) and oil red O staining, and detecting marker genes of osteogenesis and adipogenesis. The effect of MM cell line (RPMI-8226) and BMSCs co-culture on the expression of PKM2 was explored. Functional analysis was performed to investigate the correlations of PKM2 expression of MM-derived BMSCs with osteogenic and adipogenic differentiation by employing PKM2 activator and inhibitor. The role of orlistat was explored in regulating PKM2 expression, osteogenic and adipogenic differentiation of MM-derived BMSCs.@*RESULTS@#Compared with control, MM-originated BMSCs possessed the ability of increased adipogenic and decreased osteogenic differentiation, and higher level of PKM2 protein. Co-culture of MM cells with BMSCs markedly up-regulated the expression of PKM2 of BMSCs. Up-regulation of PKM2 expression could promote adipogenic differentiation and inhibit osteogenic differentiation of MM-derived BMSCs, while down-regulation of PKM2 showed opposite effect. Orlistat significantly promoted osteogenic differentiation in MM-derived BMSCs via inhibiting the expression of PKM2.@*CONCLUSION@#The overexpression of PKM2 can induce the inhibition of osteogenic differentiation of BMSCs in MBD. Orlistat can promote the osteogenic differentiation of BMSCs via inhibiting the expression of PKM2, indicating a potential novel agent of anti-MBD therapy.
Subject(s)
Humans , Adipogenesis , Bone Diseases/metabolism , Bone Marrow Cells , Cell Differentiation , Cells, Cultured , Mesenchymal Stem Cells/physiology , Multiple Myeloma/metabolism , Orlistat/pharmacology , Osteogenesis/geneticsABSTRACT
OBJECTIVE@#To investigate the expression and its relative mechanism of hypoxia-inducible factor-1α(HIF-1α) in bone marrow(BM) of mice during G-CSF mobilization of hematopoietic stem cells (HSC) .@*METHODS@#Flow cytometry was used to detect the proportion of Lin-Sca-1+ c-kit+ (LSK) cells in peripheral blood of C57BL/6J mice before and after G-CSF mobilization. And the expression of HIF-1α and osteocalcin (OCN) mRNA and protein were detected by RQ-PCR and immunohistochemistry. The number of osteoblasts in bone marrow specimens of mice was counted under the microscope.@*RESULTS@#The proportion of LSK cells in peripheral blood began to increase at day 4 of G-CSF mobilization, and reached the peak at day 5, which was significantly higher than that of control group (P<0.05). There was no distinct difference in the expression of HIF-1α mRNA between bone marrow nucleated cells and osteoblasts of steady-state mice (P=0.073), while OCN mRNA was mainly expressed in osteoblasts, which was higher than that in bone marrow nucleated cells (P=0.034). After mobilization, the expression level of HIF-1α increased, but OCN decreased, and the number of endosteum osteoblasts decreased. The change of HIF-1α expression was later than that of OCN and was consistent with the proportion of LSK cells in peripheral blood.@*CONCLUSION@#The expression of HIF-1α in bone marrow was increased during the mobilization of HSC mediated by G-CSF, and one of the mechanisms may be related to the peripheral migration of HSC induced by osteoblasts inhibition.
Subject(s)
Mice , Animals , Hematopoietic Stem Cell Mobilization , Granulocyte Colony-Stimulating Factor/pharmacology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice, Inbred C57BL , Bone Marrow Cells/metabolism , Osteocalcin/metabolism , RNA, Messenger/metabolismABSTRACT
BACKGROUND@#Osteopenia has been well documented in adolescent idiopathic scoliosis (AIS). Bone marrow stem cells (BMSCs) are a crucial regulator of bone homeostasis. Our previous study revealed a decreased osteogenic ability of BMSCs in AIS-related osteopenia, but the underlying mechanism of this phenomenon remains unclear.@*METHODS@#A total of 22 AIS patients and 18 age-matched controls were recruited for this study. Anthropometry and bone mass were measured in all participants. Bone marrow blood was collected for BMSC isolation and culture. Osteogenic and adipogenic induction were performed to observe the differences in the differentiation of BMSCs between the AIS-related osteopenia group and the control group. Furthermore, a total RNA was extracted from isolated BMSCs to perform RNA sequencing and subsequent analysis.@*RESULTS@#A lower osteogenic capacity and increased adipogenic capacity of BMSCs in AIS-related osteopenia were revealed. Differences in mRNA expression levels between the AIS-related osteopenia group and the control group were identified, including differences in the expression of LRRC17 , DCLK1 , PCDH7 , TSPAN5 , NHSL2 , and CPT1B . Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed several biological processes involved in the regulation of autophagy and mitophagy. The Western blotting results of autophagy markers in BMSCs suggested impaired autophagic activity in BMSCs in the AIS-related osteopenia group.@*CONCLUSION@#Our study revealed that BMSCs from AIS-related osteopenia patients have lower autophagic activity, which may be related to the lower osteogenic capacity and higher adipogenic capacity of BMSCs and consequently lead to the lower bone mass in AIS patients.
Subject(s)
Humans , Adolescent , Scoliosis/genetics , Cell Differentiation/physiology , Osteogenesis/genetics , Bone Diseases, Metabolic/genetics , Kyphosis , Autophagy/genetics , Bone Marrow Cells , Cells, Cultured , Doublecortin-Like KinasesABSTRACT
BACKGROUND@#Perturbations in bone marrow mesenchymal stem cell (BMSC) differentiation play an important role in steroid-induced osteonecrosis of the femoral head (SONFH). At present, studies on SONFH concentrate upon the balance within BMSC osteogenic and adipogenic differentiation. However, BMSC apoptosis as well as proliferation are important prerequisites in their differentiation. The hedgehog (HH) signaling pathway regulates bone cell apoptosis. Baicalin (BA), a well-known compound in traditional Chinese medicine, can affect the proliferation and apoptosis of numerous cell types via HH signaling. However, the potential role and mechanisms of BA on BMSCs are unclear. Thus, we aimed to explore the role of BA in dexamethasone (Dex)-induced BMSC apoptosis in this study.@*METHODS@#Primary BMSCs were treated with 10 -6 mol/L Dex alone or with 5.0 μmol/L, 10.0 μmol/L, or 50.0 μmol/L BA for 24 hours followed by co-treatment with 5.0 μmol/L, 10.0 μmol/L, or 50.0 μmol/L BA and 10 -6 mol/L Dex. Cell viability was assayed through the Cell Counting Kit-8 (CCK-8). Cell apoptosis was evaluated using Annexin V-fluorescein isothiocyanate/propidium iodide (PI) staining followed by flow cytometry. The imaging and counting, respectively, of Hochest 33342/PI-stained cells were used to assess the morphological characteristics and proportion of apoptotic cells. To quantify the apoptosis-related proteins (e.g., apoptosis regulator BAX [Bax], B-cell lymphoma 2 [Bcl-2], caspase-3, and cleaved caspase-3) and HH signaling pathway proteins, western blotting was used. A HH-signaling pathway inhibitor was used to demonstrate that BA exerts its anti-apoptotic effects via the HH signaling pathway.@*RESULTS@#The results of CCK-8, Hoechst 33342/PI-staining, and flow cytometry showed that BA did not significantly promote cell proliferation (CCK-8: 0 μmol/L, 100%; 2.5 μmol/L, 98.58%; 5.0 μmol/L, 95.18%; 10.0 μmol/L, 98.11%; 50.0 μmol/L, 99.38%, F = 2.33, P > 0.05), but it did attenuate the effect of Dex on apoptosis (Hoechst 33342/PI-staining: Dex+ 50.0 μmol/L BA, 12.27% vs. Dex, 39.27%, t = 20.62; flow cytometry: Dex + 50.0 μmol/L BA, 12.68% vs. Dex, 37.43%, t = 11.56; Both P < 0.05). The results of western blotting analysis showed that BA reversed Dex-induced apoptosis by activating the HH signaling pathway, which down-regulated the expression of Bax, cleaved-caspase 3, and suppressor of fused (SUFU) while up-regulating Bcl-2, sonic hedgehog (SHH), and zinc finger protein GLI-1 (GLI-1) expression (Bax/Bcl-2: Dex+ 50.0 μmol/L BA, 1.09 vs. Dex, 2.76, t = 35.12; cleaved caspase-3/caspase-3: Dex + 50.0 μmol/L BA, 0.38 vs . Dex, 0.73, t = 10.62; SHH: Dex + 50.0 μmol/L BA, 0.50 vs . Dex, 0.12, t = 34.01; SUFU: Dex+ 50.0 μmol/L BA, 0.75 vs . Dex, 1.19, t = 10.78; GLI-1: Dex+ 50.0 μmol/L BA, 0.40 vs . Dex, 0.11, t = 30.68. All P < 0.05).@*CONCLUSIONS@#BA antagonizes Dex-induced apoptosis of human BMSCs by activating the HH signaling pathway. It is a potential candidate for preventing SONFH.
Subject(s)
Humans , Hedgehog Proteins/metabolism , bcl-2-Associated X Protein , Caspase 3/metabolism , Signal Transduction/physiology , Apoptosis , Apoptosis Regulatory Proteins/pharmacology , Dexamethasone/pharmacology , Mesenchymal Stem Cells/metabolism , Bone Marrow CellsABSTRACT
OBJECTIVE@#To explore the effect of basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), and the combination of bFGF and EGF in the neural differentiation of human bone marrow mesenchymal stem cells (hBMSCs), and the role of Wnt/β-catenin signaling pathway in this process.@*METHODS@#The identified 4th-generation hBMSCs were divided into five groups according to different induction conditions, namely control group (group A), EGF induction group (group B), bFGF induction group (group C), EGF and bFGF combined induction group (group D), and EGF, bFGF, and Dickkopf-related protein 1 (DKK-1) combined induction group (group E). After 7 days of continuous induction, the cell morphology was observed by inverted fluorescence phase contrast microscopy, levels of genes that were related to neural cells [Nestin, neuron-specific enolase (NSE), microtubule-associated protein 2 (MAP-2), and glial fibrillary acidic protein (GFAP)] and key components of the Wnt/β-catenin signaling pathway (β-catenin and Cyclin D1) were detected by RT-PCR, and the levels of proteins that were related to neural cells (Nestin and GFAP) as well as genes that were involved in Wnt/β-catenin signaling pathway [β-catenin, phosphorylation β-catenin (P-β-catenin), Cytoplasmic β-catenin, and Nuclear β-catenin] were explored by cellular immunofluorescence staining and Western blot.@*RESULTS@#When compared to groups A and B, the typical neuro-like cell changes were observed in groups C-E, and most obviously in group D. RT-PCR showed that the relative expressions of Nestin, NSE, and MAP-2 genes in groups C-E, the relative expressions of GFAP gene in groups D and E, the relative expression of NSE gene in group B, the relative expressions of β-catenin gene in groups C and D, and the relative expressions of Cyclin D1 gene in groups B-D significantly increased when compared with group A ( P<0.05). Compared with group E, the relative expressions of Nestin, NSE, MAP-2, GFAP, β-catenin, and CyclinD1 genes significantly increased in group D ( P<0.05); compared with group C, the relative expression of Nestin gene in group D significantly decreased ( P<0.05), while NSE, MAP-2, and GFAP genes significantly increased ( P<0.05). The cellular immunofluorescence staining showed that the ratio of NSE- and GFAP-positive cells significantly increased in groups C-E than in group A, in group D than in groups C and E ( P<0.05). Western blot assay showed that the relative expression of NSE protein was significantly higher in groups C and D than in group A and in group D than in groups C and E ( P<0.05). In addition, the relative expression of GFAP protein was significantly higher in groups C-E than in group A and in group D than in group E ( P<0.05). Besides, the relative expressions of β-catenin, Cytoplasmic β-catenin, Nuclear β-catenin, and the ratio of Nuclear β-catenin to Cytoplasmic β-catenin were significantly higher in groups C and D than in group A and in group D than in group E ( P<0.05), whereas the relative expression of P-β-catenin protein was significantly lower in groups C and D than in group A and in group D than in group E ( P<0.05).@*CONCLUSION@#Different from EGF, bFGF can induce neural differentiation of hBMSCs. In addition, EGF can enhance the hBMSCs neural differentiation of bFGF, while the Wnt/β-catenin signaling pathway may play a positive regulatory role in these processes.
Subject(s)
Humans , beta Catenin/metabolism , Bone Marrow Cells , Cell Differentiation , Cells, Cultured , Epidermal Growth Factor/metabolism , Mesenchymal Stem Cells , Wnt Signaling Pathway , Neurons , Fibroblast Growth Factor 2/metabolismABSTRACT
Multiple myeloma (MM) is a malignant proliferative disease of plasma cells. Bone marrow mesenchymal stem cells (MSC) play an important role in the progression of MM. Compared with normal donor derived MSC (ND-MSC), MM patients derived MSC (MM-MSC) exhibit abnormalities in genes, signaling pathways, protein expression levels and cytokines secreted by themselves. Moreover, the exosomes of MM-MSC can interact with the bone marrow microenvironment. The above reasons can lead to MM cell proliferation, chemoresistance, impaired osteogenic differentiation of MM-MSC, and affect the immunomodulatory capacity of MM patients. In order to further understand the pathogenesis and related influencing factors of MM, this paper reviews the latest research progress of MM-MSC.
Subject(s)
Humans , Multiple Myeloma/pathology , Osteogenesis , Mesenchymal Stem Cells , Cell Differentiation , Bone Marrow/metabolism , Bone Marrow Cells/metabolism , Tumor MicroenvironmentABSTRACT
OBJECTIVE@#To explore the effect of human bone marrow mesenchymal stem cells (MSCs) with ectopic high OCT4 expression on T-cell proliferation, activation and secretion in vitro.@*METHODS@#Peripheral blood mononuclear cells were isolated from healthy children. Anti-CD3 and anti-CD28 monoclonal antibodies were used to activate T lymphocytes, which were stimulated by interleukin (IL)-2 for one week in vitro. Then MSCs with ectopic high OCT4 expression (MSC-OCT4) were co-cultured with activated T lymphocytes. After one week of co-culture, the supernatant was collected and the levels of Th1/Th2 cytokines [IL-2, IL-4, IL-6, IL-10, tumor necrosis factor (TNF)-α and interferon (IFN)-γ] were determined by flow cytometry. The lymphocytes after one week of co-culture were collected and counted by Countstar software. After the proportions of activated/inactivated T cell subsets were determined by flow cytometry, the absolute lymphocyte counts were calculated and expressed as mean ± standard deviation.@*RESULTS@#Compared with control T cell alone culture group, the proliferation of CD3+ T cells, CD3+CD4+ T cells, and CD3+CD8+ T cells were significantly inhibited in MSC group and MSC-OCT4 group. Compared with MSC, MSC-OCT4 could inhibit CD3+CD8+ T cell proliferation better (P =0.049), and mainly inhibited early T cell activation. Compared with control T cell alone culture group, the levels of IL-2 and INF-γ were significantly down-regulated both in MSC group and MSC-OCT4 group.After co-culture with T cells for one week, the level of IL-6 significantly increased in MSC group and MSC-OCT4 group compared with that before co-culture. Compared with control MSC group, MSC-OCT4 group had higher viable cell numbers after 1 week of co-culture (P =0.019), and could resist the inhibition of proliferation by higher concentration of mitomycin C.@*CONCLUSION@#Both MSC and MSC-OCT4 can inhibit the proliferation and activation of IL-2-stimulated T cells in vitro. After overexpression of OCT4, MSC has better proliferation ability in vitro and can inhibit the proliferation of CD3+CD8+ T cells more effectively, which may have a better and more lasting immunosuppressive ability to regulate the balance of Th1/Th2.
Subject(s)
Child , Humans , Bone Marrow Cells , CD8-Positive T-Lymphocytes/metabolism , Cell Proliferation , Cells, Cultured , Interleukin-2 , Interleukin-6/metabolism , Leukocytes, Mononuclear/metabolism , Lymphocyte Activation , Mesenchymal Stem Cells , Tumor Necrosis Factor-alpha/metabolismABSTRACT
Objective To investigate the effects of miR-877-3p on migration and apoptotic T lymphocytes of bone mesenchymal stem cells (BMSCs). Methods The model of osteoporosis induced by bilateral ovariectomy (OVX) and sham operation was established. At 8 weeks after operation, the bone parameters of the two groups were detected by micro-CT. The levels of monocyte chemotactic protein 1(MCP-1) in BMSCs were detected by ELISA. BMSC in OVX group and sham group were co-cultured with T lymphocytes, respectively. The migration ability of T lymphocytes in the two groups was observed by TranswellTM assay with PKH26 staining and apoptosis of T lymphocytes were detected by flow cytometry. Reverse transcription PCR was used to detect the expression of miR-877-3p in BMSCs. miR-877-3p was overexpressed or down-regulated by cell transfection. The level of MCP-1 secreted by BMSCs in each group was detected by ELISA. The migration and apoptosis of T lymphocytes were detected by the above methods. Results The number of trabecular bone and bone mineral density in OVX group were lower than those in sham group. The levels of MCP-1 secretion, chemotactic and apoptotic T lymphocyte ability of BMSCs in OVX group were also lower than those in sham group. The expression level of miR-877-3p in BMSC in OVX group was higher than that in sham group. After overexpression of BMSC miR-877-3p, the levels of MCP-1 secreted from BMSCs, and apoptotic T lymphocytes decreased, while the results were opposite after down-regulation of miR-877-3p. Conclusion miR-877-3p may be one of the causes of osteoporosis by inhibiting MCP-1 secretion of BMSCs and the migration and apoptosis of T lymphocytes.
Subject(s)
Animals , Female , Mice , Apoptosis/genetics , Bone Marrow Cells/metabolism , Cell Differentiation , Chemokine CCL2/metabolism , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , Osteogenesis , Osteoporosis/genetics , T-Lymphocytes/metabolismABSTRACT
OBJECTIVE@#To explore the chronic injury and its possible mechanism of ionizing radiation on multipotent hematopoietic progenitor cells (MPPs) by determining the related indicators of MPPs in bone marrow of mice post-radiation.@*METHODS@#Sixteen C57BL/6 adult mice were randomly divided into normal control and irradiation groups, 8 mice in each group. The mice in irradiation group were exposed to 6 Gy X-ray. The proportion of bone marrow MPPs, their apoptosis and proliferation 2 months after irradiation were detected by flow cytometry. Mitochondrial activity and levels of reactive oxygen species (ROS) in each MPPs population were detected by Mitotracker Red and DCFDA probes, and the senescent state of MPPs in the bone marrow was analyzed.@*RESULTS@#Ionizing radiation could reduce the proportion of MPPs in mouse bone marrow. The proportions and numbers of MPP1, MPP3 and MPP4 in the bone marrow were significantly decreased after whole-body irradiation with 6 Gy X-ray (P<0.05). In addition, radiation significantly reduced the colony-forming capacity of MPPs in bone marrow (P<0.05), the proportions of apoptotic cells in the MPP1 and MPP4 cell populations increased significantly in the bone marrow (P<0.05). The activity of mitochondria was significantly reduced in the bone marrow MPP2, MPP3 and MPP4 cell populations compared with that of the control group (P<0.05). It was also found that the radiation could significantly increase the ROS levels of MPPs in bone marrow, and the content of ROS in the MPP2, MPP3 and MPP4 cell population of the bone marrow was significantly increased(P<0.05). The senescent cells ratios of MPP1, MPP3 and MPP4 cells in the bone marrow after irradiation were significantly higher than those in the control group (P<0.05).@*CONCLUSION@#Ionizing radiation can cause chronic MPPs damage in mice, which is closely associated with persistent oxidative stress, cells apoptosis, and cellular senescence.
Subject(s)
Mice , Animals , Bone Marrow , Reactive Oxygen Species , Mice, Inbred C57BL , Hematopoietic Stem Cells , Whole-Body Irradiation , Radiation, Ionizing , Bone Marrow CellsABSTRACT
Acute lymphoblastic leukemia (ALL) is a kind of the most common hematopoietic malignancy, its recurrence and drug resistance are closely related to the bone marrow microenvironment. Bone marrow stromal cell (BMSC) is an important part of the bone marrow microenvironment and their interaction with leukemia cells cannot be ignored. BMSC participates in and regulate signaling pathways related to proliferation or apoptosis of ALL cells by secretes cytokines or extracellular matrix proteins, thus affecting the survival of ALL cells. In this review, the research advance of several signaling pathways of the interaction between BMSC and ALL cells was summarized briefly.
Subject(s)
Humans , Apoptosis , Bone Marrow , Bone Marrow Cells , Mesenchymal Stem Cells , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Stromal Cells , Tumor MicroenvironmentABSTRACT
OBJECTIVE@#To investigate the effect of acute myeloid leukemia cells in leukemia-microenvironment on proliferation and apoptosis of bone marrow-derived mesenchymal stromal cells (BM-MSC).@*METHODS@#Acute myeloid leukemia (AML) murine models overexpressing MLL-AF9 were established. The number of BM-MSC of wild type (WT) and AML-derived mice were analyzed by flow cytometry. Morphology and growth differences between WT and AML-derived BM-MSC were analyzed by inverted fluorescence microscope. Proliferation and apoptosis of BM-MSC between these two groups were detected by Brdu and Annexin V/PI.@*RESULTS@#Compared with WT-derived BM-MSC, the number and proliferation rate of AML-derived BM-MSC significantly increased (P<0.01, P<0.001), while apoptosis rate decreased (P<0.05). When cultured in vitro, BM-MSC grew faster under conditional medium.@*CONCLUSION@#AML cells can promote proliferation and inhibit apoptosis of BM-MSC.
Subject(s)
Animals , Humans , Mice , Apoptosis , Bone Marrow , Bone Marrow Cells , Cell Proliferation , Leukemia, Myeloid, Acute , Mesenchymal Stem Cells , Tumor MicroenvironmentABSTRACT
Objective: To establish an intramedullary transplantation model of primary megakaryocytes to evaluate the platelet-producing capacity of megakaryocytes and explore the underlying regulatory mechanisms. Methods: Donor megakaryocytes from GFP-transgenic mice bone marrow were enriched by magnetic beads. The platelet-producing model was established by intramedullary injection to recipient mice that underwent half-lethal dose irradiation 1 week in advance. Donor-derived megakaryocytes and platelets were detected by immunofluorescence staining and flow cytometry. Results: The proportion of megakaryocytes in the enriched sample for transplantation was 40 to 50 times higher than that in conventional bone marrow. After intramedullary transplantation, donor-derived megakaryocytes successfully implanted in the medullary cavity of the recipient and produce platelets, which showed similar expression of surface markers and morphology to recipient-derived platelets. Conclusion: We successfully established an in vivo platelet-producing model of primary megakaryocytes using magnetic-bead enrichment and intramedullary injection, which objectively reflects the platelet-producing capacity of megakaryocytes in the bone marrow.
Subject(s)
Animals , Humans , Mice , Blood Platelets , Bone Marrow , Bone Marrow Cells , Bone Marrow Transplantation , Megakaryocytes/metabolismABSTRACT
Jaw bone marrow mesenchymal stem cell (JBMMSC), which exists in the maxilla and mandible, is adult stem cells with strong proliferation ability and multiple differentiation potential. Pathological, physicochemical and biological factors can affect the biological characteristics of JBMMSC. Compared with bone marrow mesenchymal stem cells derived from long bone, the biological characteristics of JBMMSC are site-specific because of the different sources of tissue and osteogenesis of bone. The same influencing factors have different effects on these two kinds of cells. Besides, JBMMSC also has the advantages of easier access, less trauma and lower immunogenicity. It has broad application prospects in craniomaxillofacial defect repair, periodontal tissue regeneration, and improving the success rate after implantation and so on. It has attracted wide attention in the basic and clinical studies. However, the regulation mechanism of its proliferation and differentiation is not clear, which affects its application as seed cell. Therefore, this paper reviews the biological characteristics influencing factors of JBMMSC and application progress in clinical and basic research, aiming to provide reference for further research and clinical application.
Subject(s)
Bone Marrow Cells , Cell Differentiation , Cells, Cultured , Maxilla , Mesenchymal Stem Cells , OsteogenesisABSTRACT
OBJECTIVE@#To preliminarily investigate the role of long non-coding RNA (lncRNA) MIR4697 host gene (MIR4697HG) in regulating the adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs).@*METHODS@#For adipogenic differentiation, BMSCs were induced in adipogenic media for 10 days. The mRNA expression levels of lncRNA MIR4697HG and adipogenic marker genes including peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhanced binding protein α (CEBP/α) and adiponectin (ADIPQ) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) at different time points (0, 1, 2, 3, 5, 7, 10 days). The MIR4697HG stable knockdown-BMSC cell line was generated by infection of MIR4697HG shRNA-containing lentiviruses. To avoid off-target effect, two target sequences (shMIR4697HG-1, shMIR4697HG-2) were designed. And then cells were induced to differentiate in adipogenic medium. Oil red O staining, Western blot and qRT-PCR were used to detect the effect of MIR4697HG knockdown on adipogenic differentiation of BMSCs.@*RESULTS@#The mRNA expression level of MIR4697HG was significantly increased during adipogenic differentiation (P < 0.01), and adipogenic differentiation of BMSCs was evidenced by upregulated mRNA levels of specific adipogenesis-related genes including PPARγ, CEBP/α and ADIPQ. Observed by fluorescence microscopy, more than 90% transfected target cells expressed green fluorescent protein successfully after shMIR4697HG-1 group, shMIR4697HG-2 group and shNC group transfection for 72 h. And the transfection efficiency of MIR4697HG examined by qRT-PCR was above 60%. Then the BMSCs were treated with adipogenic media for 7 days and showed that the mRNA expression levels of adipogenesis-related genes including PPARγ, CEBP/α and ADIPQ were significantly decreased in the MIR4697HG knockdown group (P < 0.01), while the expression levels of PPARγ and CEBP/α proteins were decreased remarkably as well (P < 0.01). Consistently, MIR4697HG knockdown BMSCs formed less lipid droplets compared with the control BMSCs, which further demonstrated that MIR4697HG knockdown inhibited adipogenic differentiation of BMSCs.@*CONCLUSION@#lncRNA MIR4697HG played a crucial role in regulating the adipogenic differentiation of BMSCs, and MIR4697HG knockdown significantly inhibited the adipogenic differentiation of BMSCs. These data may suggest that lncRNA MIR4697HG could serve as a therapeutic potential target for the aberrant adipogenic differentiation-associated disorders including osteoporosis.
Subject(s)
Adipogenesis/genetics , Bone Marrow Cells/metabolism , Cell Differentiation , Cells, Cultured , Mesenchymal Stem Cells , Osteogenesis , PPAR gamma/pharmacology , RNA, Long Noncoding/genetics , RNA, Messenger/metabolismABSTRACT
OBJECTIVE@#To assess the efficacy of GelMA hydrogel loaded with bone marrow stem cell-derived exosomes for repairing injured rat knee articular cartilage.@*METHODS@#The supernatant of cultured bone marrow stem cells was subjected to ultracentrifugation separate and extract the exosomes, which were characterized by transmission electron microscopy, particle size analysis and Western blotting of the surface markers. The changes in rheology and electron microscopic features of GelMA hydrogel were examined after loading the exosomes. We assessed exosome release from the hydrogel was detected by BCA protein detection method, and labeled the exosomes with PKH26 red fluorescent dye to observe their phagocytosis by RAW264.7 cells. The effects of the exosomes alone, unloaded hydrogel, and exosome-loaded hydrogel on the polarization of RAW264.7 cells were detected by q-PCR and immunofluorescence assay. We further tested the effect of the exosome-loaded hydrogel on cartilage repair in a Transwell co-culture cell model of RAW264.7 cells and chondrocytes in a rat model of knee cartilage injury using q-PCR and immunofluorescence assay and HE and Masson staining.@*RESULTS@#GelMA hydrogel loaded with exosomes significantly promoted M2-type polarization of RAW264.7 cells (P < 0.05). In the Transwell co-culture model, the exosome-loaded GelMA hydrogel significantly promoted the repair of injured chondrocytes by regulating RAW264.7 cell transformation from M1 to M2 (P < 0.05). HE and Masson staining showed that the exosome-loaded hydrogel obviously promoted cartilage repair in the rat models damage.@*CONCLUSION@#GelMA hydrogel loaded with bone marrow stem cell-derived exosomes can significantly promote the repair of cartilage damage in rats by improving the immune microenvironment.