Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.419
Filter
1.
Braz. j. med. biol. res ; 54(2): e10394, 2021. tab, graf
Article in English | LILACS | ID: biblio-1153512

ABSTRACT

MicroRNAs (miRNAs) have been indicated to be frequently dysregulated in various cancers and promising biomarkers for colon cancer. The present study aimed to assess the prognostic significance and biological function of miR-1273a in colon cancer. The expression levels of miR-1273a was estimated using quantitative real-time polymerase chain reaction. Kaplan-Meier survival curves and Cox regression analysis were used to evaluate the prognostic value of miR-1273a in patients of colon cancer. The effects of miR-1273a on cell proliferation, migration, and invasion were investigated by cell experiments. The expression of miR-1273a was downregulated in colon cancer tissues and tumor cell lines compared with the normal controls (all P<0.001). The aberrant expression of miR-1273a was associated with vascular invasion (P=0.005), differentiation (P=0.023), lymph node metastasis (P=0.021), and TNM stage (P=0.004). The patients with low miR-1273a expression had low overall survival compared with the patients with high miR-1273a expression (log-rank P=0.002). miR-1273a was detected to be an independent prognostic biomarker for patients. Furthermore, the results of cell experiments revealed that miR-1273a downregulation promoted, while miR-1273a upregulation suppressed the cell proliferation, migration, and invasion. In conclusion, all data indicated that a downregulated expression of miR-1273a predicted poor prognosis for colon cancer and enhanced tumor cell proliferation, migration, and invasion. Thus, we suggest that methods to promote miR-1273a expression may serve as novel therapeutic strategies in colon cancer.


Subject(s)
Humans , Male , Female , Middle Aged , Colonic Neoplasms/diagnosis , MicroRNAs/genetics , Biomarkers, Tumor/genetics , Cell Movement/genetics , Colonic Neoplasms/genetics , Cell Proliferation/genetics , Neoplasm Invasiveness
2.
Braz. j. med. biol. res ; 54(2): e9161, 2021. graf
Article in English | LILACS | ID: biblio-1153511

ABSTRACT

Patients with osteosarcoma (OS) usually have poor overall survival because of frequent metastasis. Long non-coding RNAs (lncRNAs) have been reported to be associated with tumorigenesis and metastasis. In this study, we investigated the expression and roles of lncRNA human histocompatibility leukocyte antigen (HLA) complex P5 (HCP5) in OS, aiming to provide a novel molecular mechanism for OS. HCP5 was up-regulated both in OS tissues and cell lines and high expression of HCP5 was associated to low survival in OS patients. Down-regulation of HCP5 inhibited cell proliferation, migration, and invasion, suggesting its carcinogenic role in OS. miR-101 was targeted by HCP5 and its expression was decreased in OS. The inhibitor of miR-101 reversed the impact of HCP5 down-regulation on cell proliferation, apoptosis, and metastasis in OS. Ephrin receptor 7 (EPHA7) was proved to be a target of miR-101 and had ability to recover the effects of miR-101 inhibitor in OS. In conclusion, lncRNA HCP5 knockdown suppressed cell proliferation, migration, and invasion, and induced apoptosis through depleting the expression of EPHA7 by binding to miR-101, providing a potential therapeutic strategy of HCP5 in OS.


Subject(s)
Humans , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Osteosarcoma/genetics , Osteosarcoma/pathology , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , Down-Regulation , Gene Expression Regulation, Neoplastic , Cell Movement , Receptor, EphA7/metabolism , Cell Line, Tumor , Cell Proliferation , Neoplasm Invasiveness
3.
Braz. j. med. biol. res ; 54(10): e10837, 2021. tab, graf
Article in English | LILACS | ID: biblio-1285644

ABSTRACT

Circular RNAs (circRNAs) have been extensively elucidated with regard to their significant implications in oral squamous cell carcinoma (OSCC). This study performed the functional investigation of circRNA dehydrogenase E1 and transketolase domain containing 1 (circDHTKD1) in OSCC. RNA expression levels of different molecules were measured via quantitative real-time polymerase chain reaction (qRT-PCR). Cellular behaviors were detected by 3-(4, 5-dimethylthiazol-2-y1)-2,5-diphenyl tetrazolium bromide (MTT) for cell viability, colony formation assay for clonal capacity, flow cytometry for cell apoptosis, wound healing assay for migration, and transwell assay for migration/invasion. Western blot was used for analyzing protein expression. RNA pull-down and dual-luciferase reporter assays were applied to assess the binding between targets. A xenograft tumor model was established in nude mice for in vivo experiments. Our expression analysis revealed that circDHTKD1 was upregulated in OSCC tissues and cells. circDHTKD1 knockdown was shown to impede OSCC cell growth and metastasis but motivate apoptosis. Additionally, circDHTKD1 served as a microRNA-326 (miR-326) sponge and the function of circDHTKD1 was achieved by sponging miR-326 in OSCC cells. Also, miR-326 inhibited OSCC development via targeting GRB2-associated-binding protein 1 (GAB1). circDHTKD1 could sponge miR-326 to alter GAB1 expression. Furthermore, circDHTKD1 contributed to OSCC progression in vivo via the miR-326/GAB1 axis. These data disclosed a specific circDHTKD1/miR-326/GAB1 signal axis in governing the malignant progression of OSCC, showing the considerable possibility of circDHTKD1 as a predictive and therapeutic target for clinical diagnosis and treatment of OSCC.


Subject(s)
Animals , Rabbits , Mouth Neoplasms/genetics , Carcinoma, Squamous Cell/genetics , MicroRNAs/genetics , Head and Neck Neoplasms , Cell Movement , Adaptor Proteins, Signal Transducing/genetics , Cell Proliferation , Squamous Cell Carcinoma of Head and Neck , Mice, Nude
4.
J. appl. oral sci ; 29: e20210209, 2021. graf
Article in English | LILACS | ID: biblio-1340103

ABSTRACT

Abstract Objective Oral squamous cell carcinoma (OSCC) is one of the common type of cancer that leads to death; and is becoming a global concern. Due to the lack of efficient chemotherapeutic agents for patients with oral cancer, the prognosis remains poor. 6-shogaol, a bioactive compound of ginger, has a broad spectrum of bioactivities and has been widely used to relieve many diseases. However, its effects on human oral cancer have not yet been fully evaluated. In our study, we investigated the anticancer effects of 6-shogaol on the proliferation, migration, invasion, apoptosis, and underlying mechanisms within human OSCC cell lines. Methodology We investigated the effect of 6-shogaol on the growth of OSCC cells by cell viability and soft agar colony formation assay. Migration and invasion assays were conducted to confirm the effect 6-shogaol on OSCC cell metastasis. Apoptosis was detected by flow cytometry and the underlying mechanism on the antigrowth effect of 6-shogaol in OSCC cells was assessed using western blotting. Results In our results, 6-shogaol not only suppressed proliferation and anchorage-independent cell growth in OSCC cells, but also induced apoptosis by regulating the apoptosis-associated factors such as p53, Bax, Bcl-2, and cleaved caspase-3. Migration and invasion of OSCC cells were inhibited following the regulation of E-cadherin and N-cadherin by 6-shogaol. Additionally, 6-shogaol treatment significantly inhibited the PI3K/AKT signaling pathway. Conclusion Therefore, our results may provide critical evidence that 6-shogaol can be a potential new therapeutic candidate for oral cancer.


Subject(s)
Humans , Mouth Neoplasms/metabolism , Catechols/pharmacology , Squamous Cell Carcinoma of Head and Neck/metabolism , Signal Transduction , Cell Movement , Apoptosis , Phosphatidylinositol 3-Kinases/metabolism , Cell Line, Tumor , Cell Proliferation , Proto-Oncogene Proteins c-akt/metabolism
5.
Acta odontol. Colomb. (En linea) ; 11(2): 25-38, 2021. ilus, ilus, ilus, ilus
Article in Spanish | LILACS, COLNAL | ID: biblio-1281693

ABSTRACT

Objetivo: identificar, describir y diferenciar las características fenotípicas de los fibroblastos gingivales (FGs) en pacientes con hiperplasia gingival idiopática (HGI) e individuos periodontalmente sanos. Métodos: los FGs fueron aislados a partir de tejido gingival de individuos periodontalmente sanos (n=2) y pacientes con HGI (n=2). Los FGs se cultivaron en el medio DMEM (Dulbecco's Modified of Eagle Medium) a 37°C con 5% de CO2. La identificación y localización de la actina, vimentina y mitocondrias en FGs fue realizada y evaluada microscópicamente mediante inmunofluorescencia con anticuerpos monoclonales. La capacidad de migración de los FGs en los pacientes con HGI e individuos sanos también fue estudiada. Resultados: todos los FGs fueron mononucleares, fusiformes y con prolongaciones citoplasmáticas visibles. La faloidina permitió identificar una densa red de actina en los FGs de pacientes con HGI, contrariamente a los FGs de individuos periodontalmente sanos. La vimentina y mitocondrias fueron identificadas en los FGs de individuos sanos y pacientes con HGI sin ninguna alteración en su expresión y localización. La migración de la monocapa de los FGs indicó una actividad de migración celular importante en los FGs de los pacientes con HGI, en relación a los FGs de los individuos periodontalmente sanos. Conclusión: los FGs de pacientes con HGI conservan características fenotípicas celulares similares a los FGs de individuos periodontalmente sanos. Sin embargo, los FGs de pacientes con HGI simulan tener una mayor capacidad migratoria que amerita ser explorada en futuros trabajos de investigación.


Objective: To identify and to describe the phenotypic characteristics of gingival fibroblasts from patients with idiopathic gingival hyperplasia (IGH) and periodontally healthy individuals. Methods: Gingival fibroblasts (GFs) were isolated from gingival tissue from periodontally healthy individuals (n=2) and patients with IGH (n=2). The GFs were grown in DMEM (Dulbecco's Modified of Eagle Medium) at 37°C with 5% CO2. The identification and location of actin, vimentin and mitochondria in GFs were performed and evaluated microscopically by immunofluorescence with monoclonal antibodies. The migration capacity of GFs from IGH and healthy individuals was also studied. Results: All the GFs were mononuclear, fusiform and with visible cytoplasmic extensions. The phalloidin allowed to identify a dense actin network in the GFs of patients with IGH, contrary to the GFs of periodontally healthy individuals. Vimentin and mitochondria were identified in the GFs of healthy individuals and patients with IGH without any alteration in their expression and location. Monolayer migration of GFs indicates significant cell migration activity in the GFs of patients with IGH in relation to the GFs of periodontally healthy individuals. Conclusion: GFs from patients with IGH retain cellular phenotypic characteristic similar to GFs from periodontally healthy individuals. However, the GFs of patients with IGH simulate having a greater migratory capacity that deserves to be explored in future research works.


Subject(s)
Humans , Fibroblasts/physiology , Gingival Hyperplasia , Patients , Cell Movement , Fluorescent Antibody Technique, Indirect , Healthy Volunteers
6.
Braz. j. med. biol. res ; 54(8): e10940, 2021. graf
Article in English | LILACS | ID: biblio-1285675

ABSTRACT

Recently, an increasing number of studies have reported that dysregulation of circular RNA (circRNA) expression plays critical roles in the progression of several cancers, including colorectal cancer (CRC). However, the detailed molecular mechanisms of circRNAs involvement in CRC remain largely unknown. Here, we confirmed that the level of circEGFR was significantly increased in CRC tissues compared to matched adjacent non-tumor tissues, and a high level of circEGFR was correlated with poor clinicopathological characteristics and poor prognosis in patients with CRC. Moreover, increased circEGFR expression promoted CRC cell proliferation, migration, and invasion in vitro. Mechanistically, circEGFR acted as a ceRNA for miR-106a-5p to relieve the repressive effect of miR-106a-5p on DDX5 mRNA. Moreover, circEGFR enhanced DDX5 expression, thereby upregulating p-AKT levels. Together, these findings showed that circEGFR promoted CRC cell proliferation, migration, and invasion through the miR-106a-5p/DDX5/AKT axis, and may serve as a promising diagnostic marker and therapeutic target for CRC patients.


Subject(s)
Humans , Colorectal Neoplasms/genetics , MicroRNAs/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Cell Line, Tumor , Cell Proliferation/genetics , DEAD-box RNA Helicases , RNA, Circular
7.
Braz. j. med. biol. res ; 54(8): e9695, 2021. tab, graf
Article in English | LILACS | ID: biblio-1249332

ABSTRACT

Altered expression of miR-182 has been observed in various types of human cancer. The purpose of this study was to investigate the expression of miR-182 and its role in prostate cancer (PCa). Expression of miR-182 and ST6GALNAC5 in tumor tissues and the Du145 PCa cell line was analyzed. Cell proliferation assay, colony formation assay, transwell assay, and wound healing assay were performed. The impact of miR-182 on tumor growth was investigated using a xenograft model. The results indicated that expression of miR-182 was higher in PCa tissues and cell lines, while ST6GALNAC5 was decreased. Downregulating miR-182 significantly inhibited the capacities of proliferation and invasion of PC3 and Du145 cells. ST6GALNAC5 was demonstrated to be a target of miR-182 by luciferase assay, and western blot results indicated PI3K/Akt pathway was involved in miR-182 associated effects on PC3 and Du145 cells. The animal experiment suggested that knockdown of miR-182 inhibited tumor growth. Our study proved that miR-182 participated in the proliferation and invasion of PCa cells via mediating expression of ST6GALNAC5 and established a miR-182/ST6GALNAC5/PI3K/AKT axis in regulation of tumor progression. Our investigation provided a basis for further exploration of the application of miR-182 or ST6GALNAC5-associated therapies for PCa patients.


Subject(s)
Humans , Animals , Male , Prostatic Neoplasms/genetics , MicroRNAs/genetics , Sialyltransferases , Gene Expression Regulation, Neoplastic , Cell Movement , Phosphatidylinositol 3-Kinases , Cell Line, Tumor , Cell Proliferation
8.
Braz. j. med. biol. res ; 54(2): e9017, 2021. graf
Article in English | ColecionaSUS, LILACS, ColecionaSUS | ID: biblio-1142574

ABSTRACT

The purpose of this study was to investigate the anti-cancer effect of melittin on growth, migration, invasion, and apoptosis of non-small-cell lung cancer (NSCLC) cells. This study also explored the potential anti-cancer mechanism of melittin in NSCLC cells. The results demonstrated that melittin suppressed growth, migration, and invasion, and induced apoptosis of NSCLC cells in vitro. Melittin increased pro-apoptotic caspase-3 and Apaf-1 gene expression. Melittin inhibited tumor growth factor (TGF)-β expression and phosphorylated ERK/total ERK (pERK/tERK) in NSCLC cells. However, TGF-β overexpression (pTGF-β) abolished melittin-decreased TGF-β expression and pERK/tERK in NSCLC cells. Treatment with melittin suppressed tumor growth and prolonged mouse survival during the 120-day observation in vivo. Treatment with melittin increased TUNEL-positive cells and decreased expression levels of TGF-β and ERK in tumor tissue compared to the control group. In conclusion, the findings of this study indicated that melittin inhibited growth, migration, and invasion, and induced apoptosis of NSCLC cells through down-regulation of TGF-β-mediated ERK signaling pathway, suggesting melittin may be a promising anti-cancer agent for NSCLC therapy.


Subject(s)
Animals , Rabbits , Apoptosis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , MAP Kinase Signaling System , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Melitten/pharmacology , Down-Regulation , Gene Expression Regulation, Neoplastic , Cell Movement , Transforming Growth Factor beta/metabolism , Cell Line, Tumor , Caspase 3 , Apoptotic Protease-Activating Factor 1 , Neoplasm Invasiveness
9.
Article in English | WPRIM | ID: wpr-888500

ABSTRACT

Atherosclerosis is a common pathological change in cardiovascular disease. Vascular smooth muscle cell is the main source of plaque cell and extracellular matrix, and nuclear factor-erythroid 2-related factor 2 (Nrf2) is a key transcription factor regulating the function of vascular smooth muscle cell. In the process of atherosclerosis, Nrf2 signaling pathway has the following regulatory effects on vascular smooth muscle cell: regulating the phenotype of vascular smooth muscle cell to change to the direction conducive to the alleviation of disease progression; inhibiting the proliferation and migration of vascular smooth muscle cell; mitigating the level of blood lipid; alleviating vascular smooth muscle cell calcification, aging and apoptosis process. This article reviews the specific mechanisms of Nrf2 regulating atherosclerosis, such as phenotypic transformation, proliferation and migration, lipid metabolism, calcification, aging and apoptosis in atherosclerosis, in order to provide a basis for understanding the molecular mechanism of atherosclerosis development and finding therapeutic targets.


Subject(s)
Atherosclerosis , Cell Movement , Cell Proliferation , Cells, Cultured , Humans , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , NF-E2-Related Factor 2/metabolism , Signal Transduction
10.
Braz. j. med. biol. res ; 54(8): e10062, 2021. tab, graf
Article in English | LILACS | ID: biblio-1249323

ABSTRACT

Long non-coding RNA (lncRNA) is an essential regulator of carcinogenesis and cancer progression. In the study, we explored the role of lncRNA DLGAP1-AS1 in gastric cancer (GC). qRT-PCR was carried out to detect DLGAP1-AS1 expression in GC tissues and cell lines. CCK-8 assay, EdU assay, and transwell experiments were employed to detect the malignant biological behaviors of GC cells with DLGAP1-AS1 knockdown or overexpression. Bioinformatics and dual-luciferase report assay were used to confirm the binding relationship between DLGAP1-AS1 and miR-515-5p. MARK4 expression was detected by western blot after DLGAP1-AS1/miR-515-5p was selectively regulated. DLGAP1-AS1 was up-regulated in GC tissues and cell lines, and its high expression was closely associated with larger tumor size, higher TNM stage, and lymph node metastasis. Furthermore, DLGAP1-AS1 overexpression enhanced cell proliferation, migration, and invasion, and miR-515-5p could reverse these effects. DLGAP1-AS1 participated in the regulation of the MARK4 signaling pathway by targeting miR-515-5p. DLGAP1-AS1 promoted GC progression through miR-515-5p/MARK4 signaling pathway.


Subject(s)
Humans , Stomach Neoplasms/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Protein-Serine-Threonine Kinases , Cell Line, Tumor
11.
Braz. j. med. biol. res ; 54(7): e10236, 2021. graf
Article in English | LILACS | ID: biblio-1249317

ABSTRACT

This work aimed to research the function of MARVEL domain-containing protein 1 (MARVELD1) in glioma as well as its functioning mode. Bioinformatics analysis was utilized to assess the MARVELD1 expression in glioma tissues and its relationship with grade and prognosis, based on The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Chinese Glioma Genome Atlas (CGGA) databases. Cell Counting Kit-8 (CCK-8), colony formation, and Transwell assays were carried out to determine the impact of MARVELD1 on malignant biological behavior of glioma, such as proliferation, invasion, and migration. qRT-PCR was carried out to test the mRNA level of MARVELD1. Western blot assay was performed to measure the protein expression of MARVELD1 and JAK/STAT pathway-related proteins. MARVELD1 was expressed at high levels in glioma tissues and cell lines. Kaplan-Meier survival analysis revealed that the higher MARVELD1 expression, the shorter the survival time of patients with glioma. Also, the MARVELD1 expression in WHO IV was significantly enhanced compared to that in WHO II and WHO III. Furthermore, the functional analysis of MARVELD1 in vitro revealed that knockdown of MARVELD1 in U251 cells restrained cell proliferation, migration, and invasion, while up-regulation of MARVELD1 in U87 cells presented opposite outcomes. Finally, we found that JAK/STAT signaling pathway mediated the function of MARVELD1 in glioma. MARVELD1 contributed to promoting the malignant progression of glioma, which is the key driver of activation of JAK/STAT signaling pathway in gliomas.


Subject(s)
Humans , Animals , Rats , Brain Neoplasms , Glioma , Phenotype , Signal Transduction , Gene Expression Regulation, Neoplastic , Up-Regulation , Cell Movement , Cell Line, Tumor , Cell Proliferation , MARVEL Domain-Containing Proteins , Membrane Proteins , Mice, Nude , Microtubule-Associated Proteins
12.
Braz. j. med. biol. res ; 54(6): e10754, 2021. tab, graf
Article in English | LILACS | ID: biblio-1285670

ABSTRACT

Epidermal growth factor receptor (EGFR) signaling and components of the fibrinolytic system, including urokinase-type plasminogen activator (uPA) and thrombomodulin (TM), have been implicated in tumor progression. In the present study, we employed cBioPortal platform (http://www.cbioportal.org/), cancer cell lines, and an in vivo model of immunocompromised mice to evaluate a possible cooperation between EGFR signaling, uPA, and TM expression/function in the context of cervical cancer. cBioPortal analysis revealed that EGFR, uPA, and TM are positively correlated in tumor samples of cervical cancer patients, showing a negative prognostic impact. Aggressive human cervical cancer cells (CASKI) presented higher gene expression levels of EGFR, uPA, and TM compared to its less aggressive counterpart (C-33A cells). EGFR induces uPA expression in CASKI cells through both PI3K-Akt and MEK1/2-ERK1/2 downstream effectors, whereas TM expression induced by EGFR was dependent on PI3K/Akt signaling alone. uPA induced cell-morphology modifications and cell migration in an EGFR-dependent and -independent manner, respectively. Finally, treatment with cetuximab reduced in vivo CASKI xenografted-tumor growth in nude mice, and decreased intratumoral uPA expression, while TM expression was unaltered. In conclusion, we showed that EGFR signaling regulated expression of the fibrinolytic system component uPA in both in vitro and in vivo settings, while uPA also participated in cell-morphology modifications and migration in a human cervical cancer model.


Subject(s)
Humans , Animals , Female , Rats , Uterine Cervical Neoplasms/drug therapy , Phosphatidylinositol 3-Kinases , Prognosis , Cell Movement , Cell Line, Tumor , ErbB Receptors , Mice, Nude
13.
Braz. j. med. biol. res ; 54(6): e10474, 2021. tab, graf
Article in English | LILACS | ID: biblio-1285667

ABSTRACT

Osteosarcoma is a highly malignant tumor that occurs in the bone. Previous studies have shown that multiple microRNAs (miRNAs) regulate the development of osteosarcoma. This study aimed to explore the role of miR-629-5p and its target gene, caveolin 1 (CAV1), in osteosarcoma development. To analyze the expression of miR-629-5p and CAV1 mRNA in osteosarcoma tissues and cell lines, qRT-PCR analysis was performed. Dual-luciferase reporter experiments were subsequently performed to validate the relationship between CAV1 and miR-629-5p. CCK8 assay was used to measure osteosarcoma cell proliferation, and wound-healing assay was performed to study their migratory phenotype. Our findings revealed that miR-629-5p was overexpressed in osteosarcoma tissues and cells, and thereby enhanced cell proliferation and migration. Further, we validated that miR-629-5p targets CAV1 mRNA directly. CAV1 expression, which was negatively correlated with miR-629-5p expression, was found to be downregulated in osteosarcoma tissue samples. Moreover, our data showed that an increase in CAV1 level led to a decline in osteosarcoma cell proliferation and migration, which could be rescued by miR-629-5p upregulation. Overall, our study confirmed that miR-629-5p promoted osteosarcoma proliferation and migration by directly inhibiting CAV1.


Subject(s)
Humans , Bone Neoplasms/genetics , Osteosarcoma/genetics , MicroRNAs/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Caveolin 1/genetics
14.
Braz. j. med. biol. res ; 54(5): e9700, 2021. tab, graf
Article in English | LILACS | ID: biblio-1180737

ABSTRACT

Lung adenocarcinomas are usually sensitive to radiation therapy, but some develop resistance. Radiation resistance can lead to poor patient prognosis. Studies have shown that lung adenocarcinoma cells (H1299 cells) can develop radioresistance through epithelial-mesenchymal transition (EMT), and this process is regulated by miRNAs. However, it is unclear which miRNAs are involved in the process of EMT. In our present study, we found that miR-183 expression was increased in a radioresistant lung adenocarcinoma cell line (H1299R cells). We then explored the regulatory mechanism of miR-183 and found that it may be involved in the regulation of zinc finger E-box-binding homeobox 1 (ZEB1) expression and mediate EMT in lung adenocarcinoma cells. qPCR results showed that miR-183, ZEB1, and vimentin were highly expressed in H1299R cells, whereas no difference was observed in E-cadherin expression. Western blot results showed that ZEB1 and vimentin were highly expressed in H1299R cells, while E-cadherin expression was decreased. When miR-183 expression was inhibited in H1299R cells, radiation resistance, proliferation, and cell migration were decreased. The expression of ZEB1 and vimentin in H1299R cells was decreased, while the expression of E-cadherin was increased. Moreover, miR-183 overexpression in H1299 cells enhanced radiation resistance, proliferative capacity, and cell migration ability. The expression of ZEB1 and vimentin in H1299 cells was increased, while that of E-cadherin was decreased. In conclusion, miR-183 may promote EMT and radioresistance in H1299 cells, and targeting the miR-183-ZEB1 signaling pathway may be a promising approach for lung cancer treatment.


Subject(s)
Humans , MicroRNAs/genetics , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/radiotherapy , Lung Neoplasms/genetics , Lung Neoplasms/radiotherapy , Gene Expression Regulation, Neoplastic , Cell Movement , Cell Line, Tumor , Epithelial-Mesenchymal Transition
15.
Article in English | WPRIM | ID: wpr-922764

ABSTRACT

Cervical cancer (CC) is recognized as the most common neoplasm in the female reproductive system worldwide. The lack of chemotherapeutic agents with outstanding effectiveness and safety severely compromises the anti-cipated prognosis of patients. Aloperine (ALO) is a natural quinolizidine alkaloid with marked anti-cancer effects on multiple malignancies as well as favorable activity in relieving inflammation, allergies and infection. However, its therapeutic efficacy and underlying mechanism in CC are still unclear. In the current study, MTT assay was employed to evaluate the viability of HeLa cells exposed to ALO to preliminarily estimate the effectiveness of ALO in CC. Then, the effects of ALO on the proliferation and apoptosis of HeLa cells were further investigated by plate colony formation and flow cytometry, respectively, while the migration and invasion of ALO-treated HeLa cells were evaluated using Transwell assay. Moreover, nude mice were subcutaneously inoculated with HeLa cells to demonstrate the anti-CC properties of ALO in vivo. The molecular mechanisms underlying these effects of ALO were evaluated by Western blot and immunohistochemical analysis. This study experimentally demonstrated that ALO inhibited the proliferation of HeLa cells via G2 phase cell cycle arrest. Simultaneously, ALO promoted an increase in the percentage of apoptotic HeLa cells by increasing the Bax/Bcl-2 ratio. Additionally, the migration and invasion of HeLa cells were attenuated by ALO treatment, which was considered to result from inhibition of epithelial-to-mesenchymal transition. For molecular mechanisms, the expression and activation of the IL-6-JAK1-STAT3 feedback loop were markedly suppressed by ALO treatment. This study indicated that ALO markedly suppresses the proliferation, migration and invasion and enhances the apoptosis of HeLa cells. In addition, these prominent anti-CC properties of ALO are associated with repression of the IL-6-JAK1-STAT3 feedback loop.


Subject(s)
Animals , Apoptosis , Cell Line, Tumor , Cell Movement , Cell Proliferation , Feedback , Female , HeLa Cells , Humans , Interleukin-6/genetics , Janus Kinase 1 , Mice , Mice, Nude , Quinolizidines , STAT3 Transcription Factor/genetics , Signal Transduction , Uterine Cervical Neoplasms/drug therapy
16.
Article in English | WPRIM | ID: wpr-922757

ABSTRACT

During the pathogensis of rheumatoid arthritis (RA), activated RA fibroblast-like synoviocytes (RA-FLSs) combines similar proliferative features as tumor and inflammatory features as osteoarthritis, which eventually leads to joint erosion. Therefore, it is imperative to research and develop new compounds, which can effectively inhibit abnormal activation of RA-FLSs and retard RA progression. Neohesperidin (Neo) is a major active component of flavonoid compounds with anti-inflammation and anti-oxidant properties. In this study, the anti-inflammation, anti-migration, anti-invasion, anti-oxidant and apoptosis-induced effects of Neo on RA-FLSs were explored to investigate the underlying mechanism. The results suggested that Neo decreased the levels of interleukin IL-1β, IL-6, IL-8, TNF-α, MMP-3, MMP-9 and MMP-13 in FLSs. Moreover, Neo blocked the activation of the MAPK signaling pathway. Furthermore, treatment with Neo induced the apoptosis of FLSs, and inhibited the migration of FLSs. It was also found that Neo reduced the accumulation of reactive oxygen species (ROS) induced by TNF-α. Taken together, our results highlighted that Neo may act as a potential and promising therapeutic drug for the management of RA.


Subject(s)
Arthritis, Rheumatoid/drug therapy , Cell Movement , Cell Proliferation , Cells, Cultured , Fibroblasts , Hesperidin/analogs & derivatives , Humans , Synoviocytes , Tumor Necrosis Factor-alpha/genetics
17.
Article in English | WPRIM | ID: wpr-922584

ABSTRACT

OBJECTIVES@#To explore the molecular mechanism for thyroid cancer metastasis via analyzing the role of microRNA (miR)-21-5p and its target gene recombinant sclerostin domain containing protein 1 (SOSTDC1) in thyroid cancer.@*METHODS@#The target miR-21-5p was screened through bioinformatics analysis and cell verification, and the thyroid cancer cell lines was transfected with miR-21-5p inhibitor. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) test, flow cytometry, and cell scratch test were used to detect the proliferation, apoptosis and migration of thyroid cancer cells in the miR-21-5p inhibitor group and the inhibitor control group, respectively. The luciferase report experiment was used to verify the relationship between miR-21-5p and SOSTDC1, Western blotting was used to detect the expression levels and phosphorylation levels of SOSTDC1,phosphatidylinositol 3 kinase (PI3K), protein kinase B (Akt) and mitogen-activated protein kinases (MAPK), extracellular regulated protein kinases (ERK) in thyroid cancer cells.@*RESULTS@#MiR-21-5p was significantly increased in thyroid cancer cells,which was negatively correlated with SOSTDC1 (@*CONCLUSIONS@#MiR-21-5p in thyroid cancer cells can target the expression of SOSTDC1 and affect the activities of PI3K/Akt and MAPK/ERK, thereby inhibiting the apoptosis of thyroid cancer cells and promoting cell proliferation and migration.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Humans , MicroRNAs/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Thyroid Neoplasms/genetics
18.
Protein & Cell ; (12): 788-809, 2021.
Article in English | WPRIM | ID: wpr-922475

ABSTRACT

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is the fourth-leading cause of cancer-related deaths worldwide. HCC is refractory to many standard cancer treatments and the prognosis is often poor, highlighting a pressing need to identify biomarkers of aggressiveness and potential targets for future treatments. Kinesin family member 2C (KIF2C) is reported to be highly expressed in several human tumors. Nevertheless, the molecular mechanisms underlying the role of KIF2C in tumor development and progression have not been investigated. In this study, we found that KIF2C expression was significantly upregulated in HCC, and that KIF2C up-regulation was associated with a poor prognosis. Utilizing both gain and loss of function assays, we showed that KIF2C promoted HCC cell proliferation, migration, invasion, and metastasis both in vitro and in vivo. Mechanistically, we identified TBC1D7 as a binding partner of KIF2C, and this interaction disrupts the formation of the TSC complex, resulting in the enhancement of mammalian target of rapamycin complex1 (mTORC1) signal transduction. Additionally, we found that KIF2C is a direct target of the Wnt/β-catenin pathway, and acts as a key factor in mediating the crosstalk between Wnt/β-catenin and mTORC1 signaling. Thus, the results of our study establish a link between Wnt/β-catenin and mTORC1 signaling, which highlights the potential of KIF2C as a therapeutic target for the treatment of HCC.


Subject(s)
Adult , Aged , Animals , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins/metabolism , /metabolism , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Middle Aged , Neoplasm Staging , Prognosis , Protein Binding , RNA, Small Interfering/metabolism , Survival Analysis , Tumor Burden , Wnt Signaling Pathway , Xenograft Model Antitumor Assays , beta Catenin/metabolism
19.
Article in English | WPRIM | ID: wpr-922261

ABSTRACT

To investigate the molecular mechanism of resveratrol inhibiting the metastasis of liver cancer . HepG2 and Huh7 cells were treated with different concentrations of resveratrol, and the cell viability was determined by CCK-8 assay to determine the optimal concentration of resveratrol for subsequent experiments. The expressions of miR-186-5p in liver cancer tissues and liver cancer cells were determined by quantitative real-time RT-PCR. The migration and invasion of HepG2 and Huh7 cells were detected by wound healing assay and Transwell assay, and the expression levels of epithelial-mesenchymal transition (EMT) related proteins were determined by Western blotting. Resveratrol with concentration of had no effect on the viability of HepG2 and Huh7 cells, so the concentration of resveratrol in subsequent experiments was 6.25 μmol/L. Resveratrol inhibited the wound healing and invasion of liver cancer cells; increased the expression of E-cadherin, and decreased the expression of vimentin and Twist1. The expression of miR-186-5p was significantly down-regulated in liver cancer tissues and cells compared with the adjacent tissues and normal liver cells (both <0.05). Furthermore, resveratrol induced the expression of miR-186-5p in liver cancer cells (both <0.01). Overexpression of miR-186-5p suppressed the migration, invasion and EMT of liver cancer cells. Knockdown of miR-186-5p blocked the inhibition effects of resveratrol on the migration, invasion and EMT of liver cancer cells. Resveratrol could inhibit the metastasis of liver cancer , which might be associated with up-regulating miR-186-5p.


Subject(s)
Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Hep G2 Cells , Humans , Liver Neoplasms/genetics , MicroRNAs/genetics , Neoplasm Invasiveness/genetics , Resveratrol/pharmacology
20.
Chinese Journal of Lung Cancer ; (12): 829-837, 2021.
Article in Chinese | WPRIM | ID: wpr-922136

ABSTRACT

BACKGROUND@#The anti-tumor effect of pigment epithelium-derived factor (PEDF) has been widely confirmed. However, the anti-tumor effect of its peptides is rarely reported. This study aims to investigate the effects of PEDF and its peptides on the apoptosis and migration of non-small cell lung cancer (NSCLC).@*METHODS@#In this study, A549 cells and H1299 cells were selected as the research object, and the cells were divided into normal group, PEDF treatment group, 34 peptide treatment group, 44 peptide treatment group and 34+44 peptide treatment group by administering different drugs at the same concentration to the cells. The proliferation activity of cells in each group was detected by CCK-8 method; the migration ability of cells was detected by scratch test; the expression levels of apoptosis related proteins such as protein kinase 3 (RIP3) and cleaved-caspase-3 were detected by Western blot; the expression levels of epithelial mesenchymal transition (EMT) markers in each group, such as cadherin (E-cadherin) and α-smooth muscle actin (α-SMA) were detected by Western blot; the apoptosis rate of each group was detected by flow cytometry.@*RESULTS@#The results of CCK-8 showed that PEDF and its peptides could inhibit cell proliferation, and the inhibitory effect of 34+44 peptide was the strongest (P<0.05); Observation under the microscope found that PEDF and its peptides can inhibit the proliferation and mesenchymal transformation of A549 cells and H1299 cells, and the inhibitory effect of the 34+44 peptide group is the most obvious; Western blot indicated that compared with other groups, the expressions of cleaved-caspase-3 and RIP3 in 34+44 peptide group were significantly higher (P<0.05), and the expressions of EMT protein E-cadherin were higher, the expression of α-SMA decreased (P<0.05); The results of flow cytometry showed that the apoptosis rate of 34+44 peptide group was significantly higher than those of other groups (P<0.05); The scratch test showed that compared with all the other groups, the healing rate of 34+44 peptide group was the lowest (P<0.05).@*CONCLUSIONS@#34+44 combination peptide can better promote the apoptosis of NSCLC, inhibit the migration of NSCLC, and thereby inhibit the growth of NSCLC.


Subject(s)
Apoptosis , Cadherins/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Caspase 3 , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Eye Proteins , Humans , Lung Neoplasms/genetics , Nerve Growth Factors , Peptides/pharmacology , Serpins , Sincalide
SELECTION OF CITATIONS
SEARCH DETAIL