Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 7.448
Filter
1.
Braz. j. biol ; 84: e250151, 2024. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1350306

ABSTRACT

Abstract Mammals have a limited capacity to regenerate their tissues and organs. One of the mechanisms associated with natural regeneration is dedifferentiation. Several small molecules such as vitamin C and growth factors could improve reprogramming efficiency. In this study, the NTERA2-D1 (NT2) cells were induced towards differentiation (NT2-RA) with 10-5 M retinoic acid (RA) for three days and then subjected to various amounts of vitreous humor (VH). Results show that the growth rate of these cells was reduced, while this rate was partly restored upon treatment with VH (NT2-RA-VH). Cell cycle analysis with PI method also showed that the numbers of cells at the S phase of the cell cycle in these cells were increased. The levels of SSEA3 and TRA-1-81 antigens in NT2-RA were dropped but they increased in NT2- RA-VH to a level similar to the NT2 cells. The level of SSEA1 had an opposite pattern. Expression of OCT4 gene dropped after RA treatment, but it was recovered in NT2-RA-VH cells. In conclusion, we suggest VH as a potent mixture for improving the cellular reprogramming leading to dedifferentiation.


Resumo Os mamíferos têm uma capacidade limitada de regenerar seus tecidos e órgãos. Um dos mecanismos associados à regeneração natural é a desdiferenciação. Várias moléculas pequenas, como vitamina C e fatores de crescimento, podem melhorar a eficiência da reprogramação. Neste estudo, as células NTERA2-D1 (NT2) foram induzidas à diferenciação (NT2-RA) com ácido retinóico (RA) 10-5 M por três dias e depois submetidas a várias quantidades de humor vítreo (VH). Os resultados mostram que a taxa de crescimento dessas células foi reduzida, enquanto essa taxa foi parcialmente restaurada após o tratamento com VH (NT2-RA-VH). A análise do ciclo celular com o método PI também mostrou que o número de células na fase S do ciclo celular nessas células estava aumentado. Os níveis de antígenos SSEA3 e TRA-1-81 em NT2-RA diminuíram, mas aumentaram em NT2-RA-VH a um nível semelhante ao das células NT2. O nível de SSEA1 teve um padrão oposto. A expressão do gene OCT4 diminuiu após o tratamento com AR, mas foi recuperado em células NT2-RA-VH. Em conclusão, sugerimos o VH como uma mistura potente para melhorar a reprogramação celular levando à desdiferenciação.


Subject(s)
Humans , Vitreous Body , Cell Proliferation , Cell Dedifferentiation , Tretinoin , Tumor Cells, Cultured , Cell Differentiation , Cell Division , Cell Line
2.
Braz. j. biol ; 83: e246592, 2023. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1339408

ABSTRACT

Abstract Mesenchymal stem cells (MSCs) have great potential for application in cell therapy and tissue engineering procedures because of their plasticity and capacity to differentiate into different cell types. Given the widespread use of MSCs, it is necessary to better understand some properties related to osteogenic differentiation, particularly those linked to biomaterials used in tissue engineering. The aim of this study was to develop an analysis method using FT-Raman spectroscopy for the identification and quantification of biochemical components present in conditioned culture media derived from MSCs with or without induction of osteogenic differentiation. All experiments were performed between passages 3 and 5. For this analysis, MSCs were cultured on scaffolds composed of bioresorbable poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and poly(ε-caprolactone) (PCL) polymers. MSCs (GIBCO®) were inoculated onto the pure polymers and 75:25 PHBV/PCL blend (dense and porous samples). The plate itself was used as control. The cells were maintained in DMEM (with low glucose) containing GlutaMAX® and 10% FBS at 37oC with 5% CO2 for 21 days. The conditioned culture media were collected and analyzed to probe for functional groups, as well as possible molecular variations associated with cell differentiation and metabolism. The method permitted to identify functional groups of specific molecules in the conditioned medium such as cholesterol, phosphatidylinositol, triglycerides, beta-subunit polypeptides, amide regions and hydrogen bonds of proteins, in addition to DNA expression. In the present study, FT-Raman spectroscopy exhibited limited resolution since different molecules can express similar or even the same stretching vibrations, a fact that makes analysis difficult. There were no variations in the readings between the samples studied. In conclusion, FT-Raman spectroscopy did not meet expectations under the conditions studied.


Resumo As células-tronco mesenquimais (MSCs) possuem grande potencial para aplicação em procedimentos terapêuticos ligados a terapia celular e engenharia de tecidos, considerando-se a plasticidade e capacidade de formação em diferentes tipos celulares por elas. Dada a abrangência no emprego das MSCs, há necessidade de se compreender melhor algumas propriedades relacionadas à diferenciação osteogênica, particularmente liga à biomateriais usados em engenharia de tecidos. Este projeto objetiva o desenvolvimento de uma metodologia de análise empregando-se a FT-Raman para identificação e quantificação de componentes bioquímicos presentes em meios de cultura condicionados por MSCs, com ou sem indução à diferenciação osteogênica. Todos os experimentos foram realizados entre as passagens 3 e 5. Para essas análises, as MSCs foram cultivadas sobre arcabouços de polímeros biorreabsorvíveis de poli (hidroxibutirato-co-hidroxivalerato) (PHBV) e o poli (ε-caprolactona) (PCL). As MSCs (GIBCO®) foram inoculadas nos polímeros puros e na mistura 75:25 de PHBV / PCL (amostras densas e porosas). As células foram mantidas em DMEM (com baixa glicose) contendo GlutaMAX® e 10% de SFB a 37oC com 5% de CO2 por 21 dias. A própria placa foi usada como controle. Os meios de cultura condicionados foram coletados e analisadas em FT-Raman para sondagem de grupos funcionais, bem como possíveis variações moleculares associadas com a diferenciação e metabolismo celular. Foi possível discernir grupos funcionais de moléculas específicas no meio condicionado, como colesterol, fosfatidilinositol, triglicerídeos, forma Beta de polipeptídeos, regiões de amida e ligações de hidrogênio de proteínas, além da expressão de DNA. Na presente avaliação, a FT-Raman apresentou como uma técnica de resolução limitada, uma vez que modos vibracionais de estiramento próximos ou mesmo iguais podem ser expressos por moléculas diferente, dificultando a análise. Não houve variações nas leituras entre as amostras estudadas, concluindo-se que a FT-Raman não atendeu às expectativas nas condições estudadas.


Subject(s)
Animals , Rats , Mesenchymal Stem Cells , Osteogenesis , Polyesters , Spectrum Analysis, Raman , Culture Media, Conditioned , Cell Proliferation , Tissue Scaffolds
3.
Braz. j. biol ; 83: e248746, 2023. graf
Article in English | LILACS, VETINDEX | ID: biblio-1339351

ABSTRACT

Abstract Colorectal cancer (CRC) is one of the most common cancers leading to comorbidities and mortalities globally. The rational of current study was to evaluate the combined epigallocatechin gallate and quercetin as a potent antitumor agent as commentary agent for therapeutic protocol. The present study investigated the effect of epigallocatechin Gallate (EGCG) (150mg) and quercetin (200mg) at different proportions on proliferation and induction of apoptosis in human colon cancer cells (HCT-116). Cell growth, colonogenic, Annexin V in addition cell cycle were detected in response to phytomolecules. Data obtained showed that, the colony formation was inhibited significantly in CRC starting from the lowest concentration tested of 10 µg/mL resulting in no colonies as visualized by a phase-contrast microscope. Data showed a significant elevation in the annexin V at 100 µg/mL EGCG(25.85%) and 150 µg/mL quercetin (48.35%). Moreover, cell cycle analysis showed that this combination caused cell cycle arrest at the G1 phase at concentration of 100 µg/mL (72.7%) and 150 µg/mL (75.25%). The combined effect of epigallocatechin Gallate and quercetin exert antiproliferative activity against CRC, it is promising in alternative conventional chemotherapeutic agent.


Resumo O câncer colorretal (CCR) é um dos cânceres mais comuns, levando a comorbidades e mortalidade em todo o mundo. O racional do presente estudo foi avaliar a combinação de galato de epigalocatequina e quercetina como um agente antitumoral potente como agente de comentário para protocolo terapêutico. O presente estudo investigou o efeito de galato de epigalocatequina (EGCG) (150 mg) e quercetina (200 mg) em diferentes proporções na proliferação e indução de apoptose em células de câncer de cólon humano (HCT-116). O crescimento celular, colonogênico, anexina V, além do ciclo celular foram detectados em resposta a fitomoléculas. Os dados obtidos mostraram que a formação de colônias foi inibida significativamente no CRC a partir da concentração mais baixa testada de 10 µg/mL, resultando em nenhuma colônia conforme visualizado por um microscópio de contraste de fase. Os dados mostraram uma elevação significativa na anexina V a 100 µg/mL de EGCG (25,85%) e 150 µg/mL de quercetina (48,35%). Além disso, a análise do ciclo celular mostrou que essa combinação causou parada do ciclo celular na fase G1 na concentração de 100 µg/mL (72,7%) e 150 µg/mL (75,25%). O efeito combinado da epigalocatequina galato e quercetina exerce atividade antiproliferativa contra o CCR, é promissor como agente quimioterápico alternativo convencional.


Subject(s)
Humans , Colorectal Neoplasms/drug therapy , Catechin/analogs & derivatives , Catechin/pharmacology , Quercetin/pharmacology , Cell Cycle , Annexin A5 , Cell Line, Tumor , Cell Proliferation
4.
Article in Chinese | WPRIM | ID: wpr-936109

ABSTRACT

OBJECTIVE@#To investigate the effect of porous surface morphology of zirconia on the proliferation and differentiation of osteoblasts.@*METHODS@#According to different manufacturing and pore-forming methods, the zirconia specimens were divided into 4 groups, including milled sintering group (M-Ctrl), milled porous group (M-Porous), 3D printed sintering group (3D-Ctrl) and 3D printed porous group (3D-Porous). The surface micromorphology, surface roughness, contact angle and surface elements of specimens in each group were detected by scanning electron microscope (SEM), 3D laser microscope, contact angle measuring device and energy-dispersion X-ray analysis, respectively. MC3T3-E1 cells were cultured on 4 groups of zirconia discs. The cell morphology of MC3T3-E1 cells on zirconia discs was eva-luated on 1 and 7 days by SEM. The cell proliferation was detected on 1, 3 and 5 days by cell counting kit-8 (CCK-8). After osteogenic induction for 14 days, the relative mRNA expression of alkaline phosphatase (ALP), type Ⅰ collagen (Colla1), Runt-related transcription factor-2 (Runx2) and osteocalcin (OCN) in MC3T3-E1 cells were detected by real-time quantitative polymerase chain reaction.@*RESULTS@#The pore size [(419.72±6.99) μm] and pore depth [(560.38±8.55) μm] of 3D-Porous group were significantly larger than the pore size [(300.55±155.65) μm] and pore depth [(69.97±31.38) μm] of M-Porous group (P < 0.05). The surface of 3D-Porous group appeared with more regular round pores than that of M-Porous group. The contact angles of all the groups were less than 90°. The contact angles of 3D-Ctrl (73.83°±5.34°) and M-Porous group (72.7°±2.72°) were the largest, with no significant difference between them (P>0.05). Cells adhered inside the pores in M-Porous and 3D-Porous groups, and the proliferation activities of them were significantly higher than those of M-Ctrl and 3D-Ctrl groups after 3 and 5 days' culture (P < 0.05). After 14 days' incubation, ALP, Colla1, Runx2 and OCN mRNA expression in 3D-Porous groups were significantly lower than those of M-Ctrl and 3D-Ctrl groups (P < 0.05). Colla1, Runx2 and OCN mRNA expressions in M-Porous group were higher than those of 3D-Porous group (P < 0.05).@*CONCLUSION@#The porous surface morphology of zirconia can promote the proliferation and adhesion but inhibit the differentiation of MC3T3-E1 cells.


Subject(s)
Cell Differentiation , Cell Proliferation , Ceramics , Osteoblasts , Osteogenesis , Porosity , Zirconium
5.
Chinese Journal of Burns ; (6): 471-480, 2022.
Article in Chinese | WPRIM | ID: wpr-936034

ABSTRACT

Objective: To investigate the regulatory effects and signaling mechanism of sodium ferulate on the proliferation and apoptosis of human skin hypertrophic scar fibroblasts (HSFbs). Methods: The experimental research methods were used. The 4th-6th passage of HSFbs from human skin were used for the following experiments. HSFbs were co-cultured with sodium ferulate at final mass concentrations of 1, 1×10-1, 1×10-2, 1×10-3, 1×10-4, 1×10-5, and 1×10-6 mg/mL for 48 hours, and methyl thiazolyl tetrazolium method was used to determine the cell absorbance values and linear regression was used to analyze the half lethal concentration (LC50) of sodium ferulate (n=6). HSFbs were co-cultured with sodium ferulate at final mass concentrations of 0.1, 0.2, 0.3, and 0.4 mg/mL for 24, 48, 72, and 96 hours, and methyl thiazolyl tetrazolium method was used to determine the cell absorbance values and the cell proliferation inhibition rate was calculated (n=3). According to the random number table, the cells were divided into 0.300 mg/mL sodium ferulate group, 0.030 mg/mL sodium ferulate group, 0.003 mg/mL sodium ferulate group treated with sodium ferulate at corresponding final mass concentrations, and negative control group without any treatment. After 72 hours of culture, the cell absorbance values were determined by methyl thiazolyl tetrazolium method (n=5), the microscopic morphology of cells was observed by transmission electron microscope (n=3), the cell apoptosis was detected by TdT-mediated dUTP-biotin nick end labeling (TUNEL) assay and the apoptosis index was calculated (n=4), the protein expressions of B lymphocystoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), and cysteine aspartic acid specific protease-3 (caspase-3) were determined by immunohistochemistry (n=4), and the protein expressions of transformed growth factor β1 (TGF-β1), phosphorylated Smad2/3, phosphorylated Smad4, and phosphorylated Smad7 were detected by Western blotting (n=4). Data were statistically analyzed with one-way analysis of variance and Dunnett test. Results: The LC50 of sodium ferulate was 0.307 5 mg/mL. After being cultured for 24-96 hours, the cell proliferation inhibition rates of cells treated with sodium ferulate at four different mass concentrations tended to increase at first but decrease later, which reached the highest after 72 hours of culture, so 72 hours was chosen as the processing time for the subsequent experiments. After 72 hours of culture, the cell absorbance values in 0.003 mg/mL sodium ferulate group, 0.030 mg/mL sodium ferulate group, and 0.300 mg/mL sodium ferulate group were 0.57±0.06, 0.53±0.04, 0.45±0.05, respectively, which were significantly lower than 0.69±0.06 in negative control group (P<0.01). After 72 hours of culture, compared with those in negative control group, the cells in the three groups treated with sodium ferulate showed varying degrees of nuclear pyknosis, fracture, or lysis, and chromatin loss. In the cytoplasm, mitochondria were swollen, the rough endoplasmic reticulum was expanded, and local vacuolation gradually appeared. After 72 hours of culture, compared with that in negative control group, the apoptosis indexes of cells were increased significantly in 0.003 mg/mL sodium ferulate group, 0.030 mg/mL sodium ferulate group, and 0.300 mg/mL sodium ferulate group (P<0.05 or P<0.01). After 72 hours of culture, compared with those in negative control group, the protein expressions of Bcl-2 of cells in 0.300 mg/mL sodium ferulate group was significantly decreased (P<0.01), the protein expressions of Bax of cells in 0.030 mg/mL sodium ferulate group and 0.300 mg/mL sodium ferulate group were significantly increased (P<0.05), and the protein expression of caspase-3 of cells in 0.300 mg/mL sodium ferulate group was significantly increased (P<0.01). After 72 hours of culture, compared with those in negative control group, the protein expression levels of TGF-β1, phosphorylated Smad2/3, and phosphorylated Smad4 of cells in 0.030 mg/mL sodium ferulate group and 0.300 mg/mL sodium ferulate group were significantly decreased (P<0.05 or P<0.01), and the protein expression levels of phosphorylated Smad7 of cells in 0.003 mg/mL sodium ferulate group, 0.030 mg/mL sodium ferulate group, and 0.300 mg/mL sodium ferulate group were significantly increased (P<0.01). Conclusions: Sodium ferulate can inhibit the proliferation of HSFbs of human skin and promote the apoptosis of HSFbs of human skin by blocking the expression of key proteins on the TGF-β/Smad signaling pathway and synergistically activating the mitochon- drial apoptosis pathway.


Subject(s)
Apoptosis , Caspase 3/metabolism , Cell Proliferation , Cicatrix, Hypertrophic/metabolism , Coumaric Acids , Fibroblasts/metabolism , Humans , Signal Transduction , bcl-2-Associated X Protein/pharmacology
6.
Chinese Journal of Burns ; (6): 170-183, 2022.
Article in Chinese | WPRIM | ID: wpr-935992

ABSTRACT

Objective: To establish a high glucose senescent model of human dermal fibroblasts (HDFs), and to investigate the effects of exosomes derived from human decidua mesenchymal stem cells (dMSCs) on the proliferation, migration, and apoptosis of senescent HDFs and possible mechanism. Methods: The experimental research method was used. From January to March 2021, discarded foreskin tissue was collected for isolation and culture of primary HDFs from 4 male phimosis patients (aged 18-22 years) admitted for circumcision in the Fourth Medical Center of the PLA General Hospital. The 6th passage of HDFs were taken and divided into low glucose group and high glucose group according to the random number table, and subsequently cultured in low-glucose complete medium and high-glucose complete medium, respectively, with medium changed every 72 h without subculturing. After 10 days of culture, the cells were taken and measured for cellular senescence using the β-galactosidase kit at 24 h after seeding; the expression of senescence-related proteins p16 and p53 was assessed by Western blotting at 48 h after seeding; cell proliferation was detected at 24, 48, and 72 h after seeding using the cell counting kit 8 (CCK-8) method; the cell proliferation was evaluated by 5-ethynyl-2'-deoxyuridine (EdU) staining method, cell cycle and apoptosis were measured by flow cytometry after 48 h of seeding; Transwell experiment was used for the calculation of cell migration rate at 24 h after seeding. The human dMSCs were taken and cultured for 48-72 h from which the exosomes were extracted by differential high speed centrifugal method. The morphology of dMSC exosomes was observed by transmission electron microscopy, the particle size distribution of dMSC exosomes was measured by nanoparticle tracking analysis, and the expression of dMSC-exosomes marker proteins CD9 and tumor susceptibility gene101 (TSG101) were detected by Western blotting. The dMSC exosomes and high-glucose complete medium-induced senescent HDFs were co-cultured for 24 hours, then PKH67 kit was used to detect the uptake of exosomes by HDFs. High-glucose complete medium-induced senescent HDFs were taken and divided into high glucose alone group, high glucose+low concentration of exosomes group, and high glucose+high concentration of exosomes group according to the same method above. The high-glucose complete medium with equal volume of phosphate buffered saline, dMSC exosomes with final concentration of 50 μg/mL, and dMSC exosomes with final concentration of 100 μg/mL were added to the corresponding groups for conventional cell culture, respectively. After grouped, the cell proliferation, cell cycle and apoptosis as well as cell migration were detected by CCK-8 method and EdU staining method, flow cytometry, and Transwell experiment at the corresponding time points as before, respectively. Based on the previous results, high-glucose complete medium-induced senescent HDFs were taken and divided into high glucose alone group and high glucose+high concentration of exosomes group for the same treatment. After being grouped and cultured for 48 h, real-time fluorescent quantitative polymerase chain reaction was used to evaluate the mRNA expression of senescent-related microRNA (miR)-145-5p, miR-498, miR-503-5p, calcium/calmodulin dependent protein kinase 1D (CAMK1D), phosphates and tensin homologue deleted on chromosome ten (PTEN) gene, and Cyclin D1 in high glucose alone group and high glucose+high concentration of exosomes group. Data were statistically analyzed with analysis of variance for factorial design, one-way analysis of variance, least significant difference t test, and independent sample t test. Results: At 24 h after seeding, the rate of β-galactosidase-positive staining of HDF in high glucose group was (38.4±4.2)%, which was significantly higher than (16.5±2.2)% of low glucose group (t=4.65, P<0.01). At 48 h after seeding, the expression levels of senescence-related proteins p16 and p53 both were significantly higher in HDFs of high glucose group than those in low glucose group (with t values of 11.85 and 3.02, respectively, P<0.05 or P<0.01). At 0, 24, 48, and 72 h after seeding, the cell proliferation viability of HDFs in high glucose group was all significantly lower than in low glucose group (with t values of 4.13, 9.90, and 15.12, respectively, P<0.01). At 48 h after seeding, the rate of EdU-positive staining of HDFs in high glucose group was obviously lower than that of low glucose group (t=3.83, P<0.05). At 48 h after seeding, the percentage of G2/M+S subpopulations in three subpopulations (G0/G1, S, and G2/M) of HDF cycle was significantly lower in high glucose group than that in low glucose group (t=8.74, P<0.01). At 24 h after seeding, the number of HDFs migrated through the filter membrane to the lower chamber was 37±6 in high glucose group, which was significantly less than 74±7 in low glucose group (t=8.42, P<0.01). At 48 h after seeding, the HDF apoptosis rate was significantly higher in high glucose group than in low glucose group (t=8.48, P<0.01). The dMSC exosomes were cup-shaped or round vesicles with well-defined edges and uniform size distribution. The size of dMSC exosomes was basically in the range of 80-200 nm. Exosomal markers including CD9 and TSG101 were positively presented on the dMSC exosomes. After being co-cultured for 24 hours, the dMSC exosomes were taken up intracellularly by HDFs and mainly distributed around the nucleus of HDFs. After being grouped and cultured for 24, 48, and 72 h, the HDF proliferation viabilities in high glucose+low concentration of exosomes group and high glucose+high concentration of exosomes group were both significantly higher than in high glucose alone group (with t values of 6.36, 6.10, 7.76, 8.92, 12.17, and 10.74, respectively, P<0.01), the HDF proliferation viability in high glucose+high concentration of exosomes group was significantly higher than in high glucose+low concentration of exosomes group (with t values of 7.92, 4.82, and 4.72, respectively, P<0.01). After being grouped and cultured for 48 h, the percentages of EdU-positive HDFs in high glucose+low concentration of exosomes group and high glucose+high concentration of exosomes group were both significantly higher than in high glucose alone group (with t values of 5.32 and 9.88, respectively, P<0.01), the percentage of EdU-positive HDFs in high glucose+high concentration of exosomes group was notably higher than in high glucose+low concentration of exosomes group (t=5.27, P<0.01). After being grouped and cultured for 48 h, the proportion of G0/G1 subpopulation in both high glucose+low concentration of exosomes group and high glucose+high concentration of exosomes group was distinctly lower (with t values of 3.81 and 4.31, respectively, P<0.05), while the proportion of G2/M+S subpopulation was markedly higher (with t values of 3.81, 4.31, respectively, P<0.05) than in high glucose alone group. After being grouped and cultured for 24 h, the number of HDFs migrated through the filter membrane in both high glucose+low concentration of exosomes group and high glucose+high concentration of exosomes group was significantly higher than in high glucose alone group (with t values of 10.14 and 13.39, respectively, P<0.01), the number of HDFs migrated through the filter membrane in high glucose+high concentration of exosomes group was significantly increased than in high glucose+low concentration of exosomes group (t=6.27, P<0.01). After being grouped and cultured for 48 h, the HDF apoptosis rates in high glucose+low concentration of exosomes group and high glucose+high concentration of exosomes group were both significantly lower than in high glucose alone group (with t values of 3.72 and 5.53, respectively, P<0.05 or P<0.01). After being grouped and cultured for 48 h, compared with those in high glucose alone group, the mRNA expression levels of miR-145-5p and miR-498 were both obviously higher (with t values of 13.03 and 8.90, respectively, P<0.01), while the mRNA expression level of miR-503-5p was significantly lower (t=3.85, P<0.05) in high glucose+high concentration of exosomes group. After being grouped and cultured for 48 h, compared with those in high glucose alone group, the mRNA expression levels of CAMK1D and PTEN gene were both significantly lower (with t values of 8.83 and 5.97, respectively, P<0.01), while the mRNA expression level of Cyclin D1 was significantly higher in high glucose+high concentration of exosomes group (t=4.03, P<0.05). Conclusions: The dMSC exosomes are capable of improving cell proliferation and migration, and inhibiting cell apoptosis of high-glucose senescent HDFs. This may be related to the mechanism by which the increased expressions of intracellular miR-145-5p and miR-498 inhibit the expression of CAMK1D and PTEN gene, and the decreased expression of miR-503-5p promote the expression of Cyclin D1.


Subject(s)
Adolescent , Adult , Cell Proliferation , Decidua , Exosomes , Female , Fibroblasts , Glucose/pharmacology , Humans , Male , Mesenchymal Stem Cells , MicroRNAs , Young Adult
7.
Chinese Journal of Hepatology ; (12): 213-219, 2022.
Article in Chinese | WPRIM | ID: wpr-935929

ABSTRACT

Objective: To investigate the effects of glucose-6-phosphatase catalytic subunit (G6PC) recombinant adenovirus on proliferation and cell cycle regulation of liver cancer cells. Methods: Recombinant adenovirus AdG6PC was constructed. Huh7 cells and SK-Hep1 cells were set as Mock, AdGFP and AdG6PC group. Cell proliferation and clone formation assay were used to observe the proliferation of liver cancer cells. Transwell and scratch assay were used to observe the invasion and migration of liver cancer cells. Cell cycle flow cytometry assay was used to analyze the effect of G6PC overexpression on the proliferation cycle of liver cancer cells. Western blot was used to detect the effect of G6PC overexpression on the cell-cycle protein expression in liver cancer cells. Results: The recombinant adenovirus AdG6PC was successfully constructed. Huh7 and SK-Hep1 cells proliferation assay showed that the number of proliferating cells in the AdG6PC group was significantly lower than the other two groups (P < 0.05). Clone formation assay showed that the number of clones was significantly lower in AdG6PC than the other two groups (P < 0.05), suggesting that G6PC overexpression could significantly inhibit the proliferation of liver cancer cells. Transwell assay showed that the number of cell migration was significantly lower in AdG6PC than the other two groups (P < 0.05). Scratch repair rate was significantly lower in AdG6PC than the other two groups (P < 0.05), suggesting that G6PC overexpression can significantly inhibit the invasion and migration of liver cancer cells. Cell cycle flow cytometry showed that G6PC overexpression had significantly inhibited the Huh7 cells G(1)/S phase transition. Western blot result showed that G6PC overexpression had down-regulated the proliferation in cell-cycle related proteins expression. Conclusion: G6PC inhibits the proliferation, cell-cycle related expression, and migration of liver cancer cells by inhibiting the G(1)/S phase transition.


Subject(s)
Catalytic Domain , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Glucose-6-Phosphatase/metabolism , Humans , Liver Neoplasms/genetics
8.
Chinese Journal of Hepatology ; (12): 63-68, 2022.
Article in Chinese | WPRIM | ID: wpr-935909

ABSTRACT

Objective: To study the expression and effect of small nuclear ribonucleoprotein-associated protein B (SNRPB) on proliferation and metastasis of liver cancer tissues and cells. Methods: The bioinformatics database starBase v3.0 and GEPIA were used to analyze the expression of SNRPB in liver cancer tissue and normal liver tissue, as well as the survival and prognosis of liver cancer patients. The expression of SNRPB mRNA and protein in liver cancer cell lines were analyzed by qRT-PCR and Western blot. RNA interference technique (siRNA) was used to determine SNRPB protein expression down-regulation. The proliferation effect on hepatocellular carcinoma cells was observed by MTT assay. Transwell invasion and migration assay was used to detect the changes in the metastatic ability of liver cancer cells after SNRPB down-regulation. Western blot was used to detect the changes of epithelial mesenchymal transition (EMT) markers in liver cancer cells after down-regulation of SNRPB expression. Data were compared between two groups and multiple groups using t-test and analysis of variance. Results: The expression of SNRPB was significantly higher in liver cancer tissue than normal liver tissue, and its expression level was correlated with the prognosis of liver cancer patients. Compared with the immortalized hepatocyte LO(2), the expression of SNRPB was significantly increased in the liver cancer cells (P < 0.01). siRNA-SNRPB had significantly inhibited the expression of SNRPB mRNA and protein in liver cancer cells. MTT results showed that the absorbance value was lower in SNRPB knockdown group than negative control group, and the difference at 96 h after transfection was most significant (P < 0.01). Transwell assay results showed that compared with the negative control group, the SNRPB knockdown group (MHCC-97H: 121.27 ± 8.12 vs. 46.38 ± 7.54; Huh7: 126.50 ± 6.98 vs. 41.10 ± 8.01) invasion and migration (MHCC-97H: 125.20 ± 4.77 vs. 43.18 ± 7.32; Huh7: 132.22 ± 8.21 vs. 38.00 ± 6.78) ability was significantly reduced (P < 0.01) in liver cancer cells. Western blot showed that the expression level of epithelial phenotype marker E-cadherin was decreased after down-regulation of SNRPB, while the expression levels of mesenchymal phenotype markers N-cadherin and vimentin was increased, suggesting that down-regulation of SNRPB inhibited EMT in liver cancer cells. Conclusion: SNRPB expression is significantly increased in liver cancer tissues and cells, and it is involved in regulating the proliferation, metastasis and EMT of liver cancer cells.


Subject(s)
Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/genetics , snRNP Core Proteins
9.
Chinese Journal of Hepatology ; (12): 38-44, 2022.
Article in Chinese | WPRIM | ID: wpr-935906

ABSTRACT

Objective: To investigate the effect of adenovirus-mediated shRNA down-regulating phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression on vinculin, filamin A, and cortactin in activated hepatic stellate cells (HSCs). Methods: Activated rats hepatic stellate cell line (HSC-T6) was cultured in vitro. Recombinant adenovirus Ad-shRNA/PTEN carrying PTEN targeted RNA interference sequence [short hairpin RNA (shRNA)] and empty control virus Ad-GFP were transfected into HSCs. The PTEN mRNA and protein expression of HSCs in each group were detected by real-time fluorescence quantitative PCR and Western blot. The expressional change of vinculin, filamin A and cortactin in HSCs of each group were detected by confocal laser scanning immunofluorescence microscope. Image-pro plus 6.0 software was used for image analysis and processing. The integrated optical density (IOD) of the fluorescence protein expression was measured. The experiment was divided into three groups: control group (DMEM instead of adenovirus solution in the adenovirus transfection step), Ad-GFP group (transfected with empty virus Ad-GFP only expressing green fluorescent protein), and Ad-shRNA/PTEN group (recombinant adenovirus Ad-shRNA/PTEN carrying shRNA targeting PTEN and expressing green fluorescent protein). One-way analysis of variance was used for comparison of mean value among the three groups, and LSD-test was used for comparison between the groups. Results: shRNA targeted PTEN was successfully transfected and the expression of PTEN mRNA and protein in HSC (P < 0.05) was significantly down-regulated. HSCs vinculin was mainly expressed in the cytoplasm. HSCs vinculin fluorescence IOD in the Ad-shRNA/PTEN group (19 758.83 ± 1 520.60) was higher than control (7 737.16 ± 279.93) and Ad-GFP group (7 725.50 ± 373.03) (P < 0.05), but there was no statistically significant difference between control group and Ad-GFP group (P > 0.05). There was no statistically significant difference in the fluorescence IOD of Filamin A among the three groups (P > 0.05), but the subcellular distribution of Filamin A among the three groups were changed. Filamin A in the Ad-shrNA /PTEN HSC group was mainly distributed in the cytoplasm. Filamin A HSC was mainly located in the nucleus.The filamin A HSC in the control group and Ad-GFP group was mainly located in the nucleus. The nucleocytoplasmic ratio of Filamin A in the AD-shrNA /PTEN group (0.60 ± 0.15) was significantly lower than control group (1.20 ± 0.15) and Ad-GFP group (1.08 ± 0.23), P < 0.05. but there was no statistically significant difference in filamin A nucleocytoplasmic ratio of HSC between the control group and the Ad-GFP group (P > 0.05). Cortactin HSCs in the three groups was mainly distributed in the cytoplasm. The cortactin fluorescence IOD of HSCs in the Ad-shRNA/PTEN group was significantly higher than control group (22 959.94 ± 1 710.42) and the Ad-GFP group (22 547.11 ± 1 588.72 ) (P < 0.05), while there was no statistically significant difference in the IOD of cortactin fluorescence in HSCs between the control group and the Ad-GFP group (P > 0.05). Conclusion: The down-regulation of PTEN expression raises the expression of microfilament-binding protein vinculin and cortactin, and changes the subcellular distribution of another microfilament binding protein filamin A, that is, translocation from nucleus to the cytoplasm in activated HSC in vitro.


Subject(s)
Adenoviridae/metabolism , Animals , Carrier Proteins , Cell Proliferation , Cortactin , Filamins/genetics , Hepatic Stellate Cells/metabolism , PTEN Phosphohydrolase/metabolism , RNA, Small Interfering/genetics , Rats , Vinculin/genetics
10.
Chinese Journal of Oncology ; (12): 389-394, 2022.
Article in Chinese | WPRIM | ID: wpr-935226

ABSTRACT

Objective: To explore the possible mechanism of radiotherapy regulating the expression of PD-L1 in esophageal carcinoma. Methods: Three esophageal cancer cell lines (Eca109, Kyse150, TE1) were irradiated with different doses of X-rays, and 6 Gy+ AG490 group was set. The mRNA expression of PD-L1 was detected by real-time quantitative polymerase chain reaction (RT-qPCR). The protein expressions of PD-L1, STAT3, p-STAT3 were detected by western blotting and the protein level of IL-6 was detected by ELISA. Results: The mRNA expressions of PD-L1 in Eca109, Kyse150 and TE1 were 2.86±0.30, 960.01±21.27 and 106.78±6.67, higher than 1.07±0.15 in normal esophageal cell line HET-1A (P<0.01). The protein expressions of PD-L1 in Eca109, Kyse150 and TE1 were 0.091±0.036, 1.533±0.079 and 0.914±0.035, higher than 0.063±0.01 in normal esophageal cell line HET-1A (P<0.01). After 48 hours of 6 Gy irradiation, the protein expression levels of PD-L1 in Eca109, Kyse150 and TE1 were 0.135±0.007, 1.66±0.06 and 1.32±0.06, higher than 0.09±0.01, 1.21±0.05 and 0.93±0.03 of the 0 Gy group (P<0.01), while the protein expression levels of p-STAT3 in Eca109, Kyse150 and TE1 were 1.44±0.26, 0.75±0.04 and 1.92±0.17, higher than 0.18±0.05, 0.48±0.02 and 0.36±0.06 of the 0 Gy group (P<0.01). IL-6 protein expression increased significantly after different doses of irradiation (P<0.01). After the IL-6/STAT3 signaling pathway was blocked by the specific inhibitor AG490, the expressions of PD-L1 of Eca109, Kyse150 and TE1 in the 6 Gy+ AG490 groups were 0.11±0.03, 1.07±0.08 and 0.96±0.11, without significant differences of 0.09±0.01, 0.96±0.05 and 0.85±0.09 of the 0 Gy group (P>0.05), while the protein expressions of p-STAT3 were 0.76±0.11, 0.59±0.06 and 0.96±0.12, without significant differences of 0.67±0.08, 0.54±0.06 and 0.84±0.11 of the 0 Gy group (P>0.05). Conclusion: Radiotherapy may regulate the expression of PD-L1 in esophageal cancer cells through IL-6 / STAT3 signaling pathway.


Subject(s)
B7-H1 Antigen/metabolism , Cell Line, Tumor , Cell Proliferation , Esophageal Neoplasms/radiotherapy , Humans , Interleukin-6/metabolism , RNA, Messenger , STAT3 Transcription Factor/metabolism , Signal Transduction
11.
Chinese Journal of Oncology ; (12): 334-340, 2022.
Article in Chinese | WPRIM | ID: wpr-935217

ABSTRACT

Objective: To explore the effect and mechanism of Casticin (CAS) on the proliferation, migration and invasion of bladder cancer T24 cells. Methods: T24 cells were cultured in vitro and divided into control group, 5, 10, 20 μmol/L CAS groups, si-NC group, si-TM7SF4 group, CAS+ pcDNA group and CAS+ pcDNA-TM7SF4 group. Cell counting kit-8 (CCK-8) was used to detect cell proliferation; Transwell was used to detect cell migration and invasion; western blot was used to detect the protein expressions of cyclin D1, p21, MMP-2, MMP-9 and TM7SF4, and real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used to detect the expression of TM7SF4 mRNA. Results: The inhibition rates of T24 cells in the 5, 10, 20 μmol/L CAS groups were (17.68±1.41)%, (33.54±3.16)% and (61.44±5.50)%, respectively, higher than (0.00±0.00)% of the control group (P<0.001), but the numbers of migration and invasion were 72.83±5.66, 59.13±4.27, 41.25±3.22 and 55.83±5.15, 42.19±3.06, 31.13±3.22, respectively, lower than 86.11±5.16 and 68.82±5.29 of the control group (P<0.001). The protein expression levels of cyclin D1, MMP-2, MMP-9, TM7SF4 and the expression levels of TM7SF4 mRNA in the 5, 10, and 20 μmol/L CAS groups were lower than the control group (P<0.001). However, the protein expression levels of p21 were 0.37±0.03, 0.51±0.04, and 0.66±0.06, respectively, higher than 0.25±0.03 in the control group (P<0.001). The inhibition rate of T24 cells in the si-TM7SF4 group was (50.35±4.67)%, higher than (6.31±0.58)% in the si-NC group (P<0.001), but the numbers of migration and invasion were 53.51±4.18 and 42.92±3.81, lower than 85.26±4.99 and 67.93±4.64 of the si-NC group (P<0.001). The protein expression levels of TM7SF4, CyclinD1, MMP-2, MMP-9 in the si-TM7SF4 group were lower than the si-NC group (P<0.001). However, the protein expression level of p21 in the si-TM7SF4 group was higher than the si-NC group (P<0.001). The inhibitory rate of T24 cells in the CAS+ pcDNA-TM7SF4 group was (21.45±2.46)%, lower than (64.06±4.49)% of the CAS+ pcDNA group (P<0.001), but the number of migration and invasion in the CAS+ pcDNA-TM7SF4 group were 75.66±6.57 and 59.35±5.40, higher than 40.43±3.85 and 30.25±3.32 in the CAS+ pcDNA group (P<0.001). The protein expression levels of TM7SF4, CyclinD1, MMP-2 and MMP-9 in the CAS+ pcDNA-TM7SF4 group were higher than the CAS+ pcDNA group (P<0.001), but the protein expression level of p21 was lower than the CAS+ pcDNA group (P<0.001). Conclusion: CAS may suppress the proliferation, migration and invasion of bladder cancer T24 cells by inhibiting the expression of TM7SF4.


Subject(s)
Cell Line, Tumor , Cell Movement , Cell Proliferation , Cyclin D1 , Female , Flavonoids , Humans , Male , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , MicroRNAs/genetics , RNA, Messenger , Urinary Bladder Neoplasms/genetics
12.
Chinese Journal of Oncology ; (12): 326-333, 2022.
Article in Chinese | WPRIM | ID: wpr-935216

ABSTRACT

Objective: To study the effects of dihydromyricetin (DMY) on the proliferation, apoptosis and epithelial mesenchymal transition (EMT) of esophageal squamous cell carcinoma (ESCC) cell KYSE150 and KYSE410. Methods: KYSE150 and KYSE410 cells were treated with different concentrations of DMY (0, 25, 50, 100, 150, 200 μmol/L) for 24 hours. The median inhibition concentration (IC50) values of KYSE150 and KYSE410 were detected by cell counting kit-8 (CCK-8) method. Then 0.5‰ dimethyl sulfoxide (DMSO) was used as control group, dihydromyricetin (DMY), dihydromyricetin and transforming growth factor-β1 (DMY+ TGF-β1), transforming growth factor-β1 (TGF-β1) were used as experimental group. Cell proliferation and apoptosis rates were measured by clonal formation and flow cytometry. Transwell invasion and wound healing assay were used to detect cell invasion and migration. The protein expression levels of Caspase-3, Caspase-9, Bcl-2, Bax, Smad2/3, phosphorylation-Smad2/3 (p-Smad2/3) and Vimentin were detected by western blot. Results: The IC50 values of DMY on KYSE410 and KYSE150 cells were 100.51 and 101.27 μmol/L. The clone formation numbers of KYSE150 and KYSE410 in DMY group [(0.53±0.03) and (0.31±0.03)] were lower than those in DMSO group [(1.00±0.10) and (1.00±0.05), P<0.05]. The apoptosis rates of KYSE150 and KYSE410 cells in DMY group [(1.84±0.22)% and (2.80±0.07)%] were higher than those in DMSO group [(1.00±0.18)% and (1.00±0.07)%, P<0.05]. The invasion numbers of KYSE150 and KYSE410 cells in DMY group [(0.42±0.03) and (0.29±0.05)] were lower than those in DMSO group [(1.00±0.08) and (1.00±0.05), P<0.05]. The migration rates of KYSE150 and KYSE410 cells in DMY group [(0.65±0.14)% and (0.40±0.17)%] were lower than those in DMSO group [(1.00±0.10)% and (1.00±0.08)%, P<0.05]. The clone formation numbers of KYSE150 and KYSE410 in TGF-β1 group [(1.01±0.08) and (0.99±0.25)] were higher than those in DMY+ TGF-β1 group [(0.73±0.10) and (0.58±0.05), P<0.05]. The apoptosis rates of KYSE150 and KYSE410 cells in TGF-β1 group [(0.81±0.14)% and (1.18±0.10)%] were lower than those in DMY+ TGF-β1 group [(1.38±0.22)% and (1.85±0.04)%, P<0.05]. The invasion numbers of KYSE150 and KYSE410 cells in TGF-β1 group [(1.19±0.11) and (1.39±0.11)] were higher than those in DMY+ TGF-β1 group [(0.93±0.09) and (0.93±0.05), P<0.05]. The migration rates of KYSE150 and KYSE410 cells in TGF-β1 group [(1.87±0.19)% and (1.32±0.04)%] were higher than those in DMY+ TGF-β1 group [(0.86±0.16)% and (0.77±0.12)%, P<0.05]. The protein expression levels of Bax, Caspase-3 and Caspase-9 in KYSE150 and KYSE410 cells in DMY group were higher than those in DMSO group, while the protein expression level of Bcl-2 was lower than that in DMSO group (P<0.05). The protein expression levels of p-Smad2/3, Smad2/3 and Vimentin in KYSE150 and KYSE410 cells in DMY group were lower than those in DMSO group (P<0.05). The protein expression levels of Bax, Caspase-3 and Caspase-9 in KYSE150 and KYSE410 cells in TGF-β1 group were lower than those in DMY+ TGF-β1 group, and the protein expression level of Bcl-2 was higher than that in DMY+ TGF-β1 group (P<0.05). The protein expression levels of Bax, Caspase-3 and Caspase-9 in KYSE150 and KYSE410 cells in DMY+ TGF-β1 group were lower than those in DMY group, and the protein expression level of Bcl-2 was higher than that in DMY group (P<0.05). The protein expression levels of p-Smad2/3, Smad2/3 and Vimentin in KYSE150 and KYSE410 cells in TGF-β1 group were higher than those in DMY+ TGF-β1 group (P<0.05). Conclusion: DMY can inhibit the proliferation and EMT of ESCC mediated by TGF-β1 and promote cell apoptosis.


Subject(s)
Apoptosis , Caspase 3/metabolism , Caspase 9/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Dimethyl Sulfoxide/pharmacology , Epithelial-Mesenchymal Transition , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma , Flavonols , Humans , Signal Transduction , Transforming Growth Factor beta1/pharmacology , Vimentin/metabolism , bcl-2-Associated X Protein/pharmacology
13.
Chinese Journal of Oncology ; (12): 238-245, 2022.
Article in Chinese | WPRIM | ID: wpr-935206

ABSTRACT

Objective: To investigate the molecular mechanism of circZNF609 targeting miR-153 to regulate the proliferation and apoptosis of diffuse large B-cell lymphoma. Methods: Fifty cases of lymphoma tissue from patients with diffuse large B-cell lymphoma who were diagnosed and treated in the First Affiliated Hospital of Zhengzhou University from July 2018 to December 2019 were collected. Thirty cases of normal lymph node tissues that were confirmed to be reactive hyperplasia by pathological diagnosis during the same period were selected as controls. Real time quantitative polymerase chain reaction (PCR) was used to detect the expression of circZNF609 in diffuse large B-cell lymphoma tissues and control hyperplasia lymph nodes. Diffuse large B-cell lymphoma OCI-LY19 cells were divided into control group (blank control), si-con group (transfected with siRNA control), si-ZNF609 group (transfected with circZNF609 siRNA), and si-ZNF609+ Anti-NC group (co-transfected with circZNF609 siRNA and inhibitor control) and si-ZNF609+ Anti-miR-153 group (co-transfected with circZNF609 siRNA and miR-153 inhibitor). Cell counting kit-8 (CCK-8) was used to detected proliferation, flow cytometry was used to detect cell cycle and apoptosis. Western blot was used to detect the protein expressions of C-caspase-3, cyclin D1, p21. The luciferase reporter system was used to identifie the relationship between circZNF609 and miR-153. Results: The expression level of circZNF609 in diffuse large B-cell lymphoma tissue was (1.44±0.22), higher than (0.37±0.14) in the control tissues (P<0.001). The cell survival rate of the si-ZNF609 group was (51.74±6.39)%, lower than (100.00±10.23)% of the control group and the (99.64±11.67)% of the si-con group (P<0.001). The proportion of cells in the G(0)/G(1) phase was (63.25±4.11)%, higher than (48.62±4.32)% of the control group and (47.12±3.20)% of the si-con group (P<0.001), the apoptosis rate was (13.36±1.42)%, higher than (3.65±0.47)% of the control group and (3.84±0.62)% of the si-con group (P<0.05). The expression levels of C-caspase-3 and p21 protein were (0.85±0.09) and (0.90±0.08), higher than (0.38±0.04) and (0.65±0.07) in the control group and (0.39±0.05) and (0.66±0.05) in the si-con group (P<0.001). The expression level of cyclin D1 protein was (0.40±0.03), lower than (0.52±0.06) of the control group and (0.53±0.04) of the si-con group (all P<0.001). CircZNF609 and miR-153 are mutually targeted. The cell survival rate of the si-ZNF609+ Anti-miR-153 group was (169.92±13.25)%, higher than (100.00±9.68)% of the si-ZNF609+ Anti-NC group (P<0.001), the ratio of cells in G(0)/G(1) phase and apoptosis rate were (52.01±3.62)% and (8.20±0.87)%, respectively, lower than (64.51±5.17)% and (14.03±1.17)% in the si-ZNF609+ Anti-NC group (P<0.001). The protein expression levels of C-caspase-3 and p21 were (0.42±0.06) and (0.52±0.06), lower than (0.80±0.07) and (0.92±0.10) of the si-ZNF609+ Anti-NC group (P<0.001). The protein expression level of cyclin D1 was (0.68±0.07), higher than (0.39±0.04) in the si-ZNF609+ Anti-NC group (P<0.001). Conclusion: Down-regulation of circZNF609 inhibits the proliferation of diffuse large B-cell lymphoma OCI-LY19 cells and induces apoptosis by targeting miR-153.


Subject(s)
Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Lymphoma, Large B-Cell, Diffuse/pathology , MicroRNAs/genetics , RNA, Circular/genetics
14.
Chinese Journal of Oncology ; (12): 228-237, 2022.
Article in Chinese | WPRIM | ID: wpr-935205

ABSTRACT

Objective: To study the effects of Homeobox C10 (HOXC10) on biological characteristics such as migration, invasion and proliferation of glioma cancer cells and to explore the role of HOXC10 gene in glioma microenvironment. Methods: The expression level of HOXC10 in high grade glioma (glioblastoma) and low grade glioma and its effect on patient survival were analyzed by using The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) database. Hoxc10-siRNA-1, HOXC10-siRNA-2 and siRNA negative control (NC) were transfected into U251 cells according to the operation instructions of HOXC10-siRNA transfection. 100 ng/ mL recombinant protein chemokine ligand 2 (reCCL2) was added into the transfection group, and was labeled as HOXC10-siRNA-1+ reCCL2 and HOXC10-siRNA-2+ reCCL2 groups. The expressions of HOXC10 mRNA and target protein in each group was detected by real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) and western blot. The proliferation ability of cells in each group was detected by cell counting kit 8 (CCK8) method. The migration ability of cells was detected by Transwell assay and Nick assay, and cell apoptosis was detected by flow cytometry. The expression of chemokines in each group was detected by multiple factors. Co-incubation assays were performed to determine the role of HOXC10 and chemokine ligand 2 (CCL2) in recruiting and polarizing tumor-associated macrophages (M2-type macrophages). Results: The median expression level of HOXC10 in high grade gliomas was 8.51, higher than 1.00 in low grade gliomas (P<0.001) in TCGA database. The median expression level of HOXC10 in high grade gliomas was 0.83, higher than 0.00 in low grade gliomas (P=0.002) in CGGA database. The 5-year survival rate of patients with high HOXC10 expression in TCGA database was 28.2%, lower than 78.7% of those with low HOXC10 expression (P<0.001), and the 5-year survival rate of patients with high HOXC10 expression in CGGA database was 20.3%, lower than 58.0% of those with low HOXC10 expression (P<0.001). The numbers of cell migration in HOXC10-siRNA-1 group and HOXC10-siRNA-2 group were (45±3) and (69±4) respectively, lower than (159±3) in NC group (P<0.05). The cell mobility of HOXC10-siRNA-1 group and HOXC10-siRNA-2 group at 48 hours were (15±2)% and (28±4)% respectively, lower than (80±5)% of NC group (P<0.05). The expressions of vimentin in HOXC10-siRNA-1 group and HOXC10-siRNA-2 group were (141 740.00±34 024.56) and (94 655.00±5 687.97), N-cadherin were (76 810.00±14.14) and (94 254.00±701.45), β-catenin were (75 786.50±789.84) and (107 296.50±9 614.53), lower than (233 768.50±34 114.37), (237 154.50±24 715.50) and (192 449.50±24 178.10) of NC group (P<0.05). The A value of HOXC10-siRNA-1 group and HOXC10-siRNA-2 group were (0.44±0.05) and (0.32±0.02) at 96 hours, lower than 0.92±0.12 of NC group (P<0.05). The apoptosis rates of HOXC10-siRNA-1 group and HOXC10 siRNA-2 group were (10.23±1.24)% and (13.81±2.16)%, higher than (4.60±0.07)% of NC group (P<0.05). The expression levels of CCL2 in U251 cells in HOXC10-siRNA-1 and HOXC10-siRNA-2 groups were (271.63±44.27) and (371.66±50.21), lower than (933.93±29.84) in NC group (P<0.05). The expression levels of CCL5 (234.81±5.95 and 232.62±5.72), CXCL10 (544.13±48.14 and 500.87±15.65) and CXCL11 (215.75±15.30 and 176.18±16.49) in HOXC10-siRNA-1 and HOXC10-siRNA-2 groups were higher than those in NC group (9.98±0.71, 470.54±18.84 and 13.55±0.73, respectively, P<0.05). The recruited numbers of CD14(+) THP1 in HOXC10-siRNA-1 and HOXC10-siRNA-2 groups were (159.33±1.15) and (170.67±1.15), respectively, lower than (360.00±7.81) in NC group (P<0.05), while addition of reCCL2 promoted the recruitment of CD14(+) THP1 cells (287.00±3.61 and 280.67±2.31 in HOXC10-siRNA-1+ reCCL2 group and HOXC10-siRNA-2+ reCCL2 group, respectively, P<0.05). The expressions level of M2-type macrophage-related gene TGF-β in HOXC10-siRNA-1 group and HOXC10-siRNA-2 group were (0.30±0.02) and (0.28±0.02), respectively, lower than (1.06±0.10) in NC group (P<0.05). The expressions level of M1-related gene NOS2 in HOXC10-siRNA-1 and HOXC10-siRNA-2 were (11 413.95±1 911.85) and (5 894.00±945.21), respectively, higher than (13.39±4.32) in NC group (P<0.05). Conclusions: The expression of HOXC10 in glioma is high and positively correlated with the poor prognosis of glioma patients. Knockdown of HOXC10 can inhibit the proliferation, migration and metastasis of human glioma U251 cells. HOXC10 may play an immunosuppressive role in glioma microenvironment by promoting the expression of CCL2 and recruiting and polarizing tumor-associated macrophages (M2 macrophages).


Subject(s)
Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Genes, Homeobox , Glioma/pathology , Homeodomain Proteins/metabolism , Humans , Neoplasm Invasiveness/genetics , Tumor Microenvironment
15.
Chinese Journal of Oncology ; (12): 139-146, 2022.
Article in Chinese | WPRIM | ID: wpr-935193

ABSTRACT

Objective: To explore the effect of down-regulation of retinol binding protein 2 (RBP2) expression on the biological characteristics of ovarian cancer cells and its mechanism. Methods: Knockdown of RBP2 and cisplatin (DDP)-resistant ovarian cancer cell line SKOV3/DDP-RBP2i was established, the negative control group and blank control group were also set. Cell counting kit 8 (CCK-8) was used to detect the cell proliferation ability, flow cytometry was used to detect cell apoptosis, scratch test and Transwell invasion test were used to detect cell migration and invasion ability, real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) and western blot were used to detect the expressions of molecular markers related to epithelial-mesenchymal transition (EMT). The effect of RBP2 on the growth of ovarian cancer was verified through experiment of transplanted tumors in nude mice, and the relationships between RBP2 expression and tumor metastasis and patient prognosis were analyzed using the clinical data of ovarian cancer in TCGA database. Results: After down-regulating the expression of RBP2, the proliferation ability of SKOV3/DDP cell was significantly reduced. On the fifth day, the proliferation activities of SKOV3/DDP-RBP2i group, negative control group and blank control group were (56.67±4.16)%, (84.67±3.51) and (87.00±4.00)% respectively, with statistically significant difference (P<0.001). The apoptosis rate of SKOV3/DDP-RBP2i group was (14.19±1.50)%, higher than (8.77±0.75)% of the negative control group and (7.48±0.52)% of the blank control group (P<0.001). The number of invasive cells of SKOV3/DDP-RBP2i group was (55.20±2.39), lower than (82.60±5.18) and (80.80±7.26) of the negative control group and the blank control group, respectively (P<0.001). The scratch healing rate of SKOV3/DDP-RBP2i group was (28.47±2.72)%, lower than (50.58±4.06)% and (48.92±4.63)% of the negative control group and the blank control group, respectively (P<0.001). The mRNA and protein expressions of E-cadherin in the SKOV3/DDP-RBP2i group were higher than those in the negative control group (P=0.015, P<0.001) and the blank control group (P=0.006, P<0.001). The mRNA and protein expression of N-cadherin in SKOV3/DDP-RBP2i group were lower than those in the negative control group (P=0.012, P<0.001) and the blank control group (P=0.005, P<0.001). The mRNA and protein expressions of vimentin in SKOV3/DDP-RBP2i group were also lower than those in the negative control group (P=0.016, P=0.001) and the blank control group (P=0.011, P=0.001). Five weeks after the cells inoculated into the nude mice, the tumor volume of SKOV3/DDP-RBP2i group, negative control group and blank control group were statistically significant different. The tumor volume of SKOV3/DDP-RBP2i group was smaller than those of negative control group and blank control group (P=0.001). Bioinformatics analysis showed that the expression of RBP2 in patients with metastatic ovarian cancer was higher than that without metastasis (P=0.043), and the median overall survival of ovarian cancer patients with high RBP2 expression was 41 months, shorter than 69 months of low RBP2 expression patients (P<0.001). Conclusion: Downregulation of the expression of RBP2 in SKOV3/DDP cells can inhibit cell migration and invasion, and the mechanism may be related to the inhibition of EMT.


Subject(s)
Animals , Apoptosis , Carcinoma, Ovarian Epithelial/genetics , Cell Line, Tumor , Cell Proliferation , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Female , Gene Silencing , Humans , Mice , Mice, Nude , Ovarian Neoplasms/pathology , Retinol-Binding Proteins, Cellular/metabolism
16.
Chinese Journal of Oncology ; (12): 130-138, 2022.
Article in Chinese | WPRIM | ID: wpr-935192

ABSTRACT

Objective: To explore the expression of miR1290 in endometrial cancer tissues and its relationship with the pathological grade, and to find out the effect of miR1290 on biological characteristics of endometrial cancer cells and its mechanism. Methods: A total of 38 cases of endometrioid adenocarcinoma tissues, 10 cases of adjacent tissues and 23 cases of normal endometrial tissues were collected in Provincial Hospital Affiliated to Shandong University from May 2020 to October 2020. The expression of miR1290 was detected by reverse transcription polymerase chain reaction (RT-PCR). The expressions of miR1290 in endometrial cancer cells including KLE and Ishikawa were knocked down by lentiviral transfection. Cell counting kit 8 (CCK-8) test and colony formation test were used to detect cell proliferation ability, wound healing and Transwell test were used to detect cell invasion and migration ability, western blot was used to detect the expressions of epithelial-mesenchymal transition (EMT), phospholipids acylinositide 3-kinase (PI3K)/Akt and Wnt/β-catenin pathway related proteins. Results: The relative expressions of miR1290 in endometrial cancer tissues were 5.40±3.20, which was 1.55 times of normal endometrial tissues (P<0.01) and 1.75 times of adjacent tissues (P<0.01). The relative expressions of miR1290 in 17 cases of endometrial tissues at proliferative stage and 6 cases of endometrial tissues at secretory stage were 3.00±1.08 and 4.97±0.58, respectively, and the difference was statistically significant (P<0.01). In KLE cells and Ishikawa cells, the expression of miR1290 in miR1290 knockdown (Sh-miR1290) group was decreased when compared with the negative control (Sh-NC) group. The absorbance value of Sh-miR1290 group detected by the CCK-8 method and the colony formation rate detected by the colony formation experiment were both increased, the number of cells penetrating the basement membrane in the Transwell experiment and the wound healing rate in the scratch experiment were decreased (P<0.05). In KLE cells, knockdown of miR1290 reduced the expressions of EMT-related proteins including N-cadherin, Vimentin, Snail and Slug(P<0.05), and the expressions of PI3K and P-Akt/Akt (P<0.05), while there was no significant change in the expressions of Wnt and β-catenin (P>0.05). In Ishikawa cells, knockdown of miR1290 decreased the expressions of EMT-related proteins including N-cadherin, Snail and Slug, and the expressions of Wnt and β-catenin, increased the expression of E-cadherin (P<0.05), while there was no significant change in the expressions of PI3K and P-Akt/Akt (P>0.05). Conclusions: The expressions of miR1290 in endometrial cancer tissues are higher than that in the adjacent tissues and normal endometrial tissues. Knockdown of miR1290 expression can promote the proliferation of endometrial cancer cells, but inhibit cell invasion, migration and EMT ability through the PI3K/Akt and Wnt/β-catenin pathways.


Subject(s)
Cell Line, Tumor , Cell Movement , Cell Proliferation , Endometrial Neoplasms/genetics , Epithelial-Mesenchymal Transition , Female , Humans , MicroRNAs/genetics , Phosphatidylinositol 3-Kinases/metabolism , Wnt Signaling Pathway
17.
Chinese Journal of Oncology ; (12): 104-111, 2022.
Article in Chinese | WPRIM | ID: wpr-935189

ABSTRACT

Objective: To investigate the expression of long non-coding RNA LOC101927476 (LncRNA LOC101927476) in ovarian cancer and its effect on the biological characteristics of ovarian cancer. Methods: Patients with ovarian cancer who underwent surgery in Cancer Hospital of Chinese Academy of Medical Sciences from 2018 to 2019 were selected. The expressions of LOC101927476 in ovarian cancer cells 3AO, OVCA429, TOV21G, A2780, SKOV3, as well as 22 primary tumor tissues and their matched metastatic tumor tissues were detected by real-time quantitative polymerase chain reaction (RT-PCR). Ovarian cancer transcriptome sequencing data from the TCGA database was used to verify the expressions of LOC101927476 and GATA4. 3AO and OVCA429 cells were infected with lentivirus plasmid containing OE-LOC101927476 and single guide RNA (sg-RNA) targeting LOC101927476, respectively. The effects of LOC101927476 on migration and invasion were detected by Transwell and wound healing assay. The effect of LOC101927476 on cell proliferation was detected by cell counting kit-8 (CCK-8) assay. Results: RT-PCR assay showed that 20 out of 22 patients had significantly lower expression of LOC101927476 in their metastatic tumors compared with primary tumors. Transwell assay showed that overexpression of LOC101927476 significantly inhibited the invasion and migration capacities of 3AO cells. The numbers of invading and migrating 3AO cells infected with OE-LOC101927476 lentivirus were (357±63) and (699±65), respectively, lower than (661±95) and (1 024±76) in OE-EV group (P<0.050). In contrast, the numbers of invading and migrating OVCA429 cells with LOC101927476 knockdown were (512±72) and (472±40), respectively, higher than (309±13) and (363±27) in sg-Control group (P<0.050). Wound healing assay results showed that after 48 hours, the percentage of scratch healing of 3AO cells in OE-LOC101927476 group was (10.86±0.63)%, significantly lower than (57.38±4.42)% of OE-EV group (P=0.009). After 24 hours, the percentage of scratch healing of OCVA429 cells in sg-LOC101927476 group was (59.98±1.34)%, significantly higher than (23.15±2.03)% of sg-Control group (P=0.004). CCK-8 assays showed that the OD value of 3AO cells in OE-LOC101927476 group was (2.07±0.08), significantly lower than (2.29±0.04) of OE-EV group (P=0.009). The OD value of OVCA429 cells in sg-LOC101927476 group was (2.13±0.03), significantly higher than (1.93±0.03) of sg-Control group (P=0.001). The relative expression of GATA4 in OE-LOC101927476 group was (1.86±0.25), significantly higher than 1.00 of OE-EV group (P=0.001). In patients with high expression of LncRNA LOC101927476, the expression level of GATA4 was (2.93±0.35), which was higher than (0.29±0.06) of LOC101927476 low expression group (P=0.001). Conclusion: LncRNA LOC101927476 can inhibit the invasion, migration and proliferation of ovarian cancer cells.


Subject(s)
Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Female , Humans , Neoplasm Invasiveness , Ovarian Neoplasms/genetics , RNA, Long Noncoding/genetics
18.
Article in English | WPRIM | ID: wpr-929266

ABSTRACT

Currently, chemoresistance seriously attenuates the curative outcome of liver cancer. The purpose of our work was to investigate the influence of 6-shogaol on the inhibition of 5-fluorouracil (5-FU) in liver cancer. The cell viability of cancer cells was determined by MTT assay. Liver cancer cell apoptosis and the cell cycle were examined utilizing flow cytometry. Moreover, qRT-PCR and western blotting was used to analyse the mRNA and protein expression levels, respectively. Immunohistochemistry assays were used to examine multidrug resistance protein 1 (MRP1) expression in tumour tissues. In liver cancer cells, we found that 6-shogaol-5-FU combination treatment inhibited cell viability, facilitated G0/G1 cell cycle arrest, and accelerated apoptosis compared with 6-shogaol or 5-FU treatment alone. In cancer cells cotreated with 6-shogaol and 5-FU, AKT/mTOR pathway- and cell cycle-related protein expression levels were inhibited, and MRP1 expression was downregulated. AKT activation or MRP1 increase reversed the influence of combination treatment on liver cancer cell viability, apoptosis and cell cycle arrest. The inhibition of AKT activation to the anticancer effect of 6-shogaol-5-FU could be reversed by MRP1 silencing. Moreover, our results showed that 6-shogaol-5-FU combination treatment notably inhibited tumour growth in vivo. In summary, our data demonstrated that 6-shogaol contributed to the curative outcome of 5-FU in liver cancer by inhibiting the AKT/mTOR/MRP1 signalling pathway.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Apoptosis , Catechols , Cell Cycle , Cell Cycle Checkpoints , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , Fluorouracil/pharmacology , Humans , Liver Neoplasms/genetics , Multidrug Resistance-Associated Proteins , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism
19.
Article in Chinese | WPRIM | ID: wpr-941048

ABSTRACT

OBJECTIVE@#To investigate the effect of JAG1 on the malignant phenotype of triple-negative breast cancer (TNBC) and its role in angiogenesis in breast cancer microenvironment.@*METHODS@#The expressions of Notch molecules were detected in human TNBC 231 and 231B cells using RT-qPCR. Five female nude mice were inoculated with 231 cells and another 5 with 231B cells into the mammary fat pads, and 4-6 weeks later, the tumors were collected for immunohistochemical and immunofluorescence tests. 231 cells and 231B cells were treated with recombinant JAG (rJAG) protein and DAPT, respectively, and changes in their malignant phenotypes were assessed using CCK-8 assay, Hoechst 33258 staining, wound healing assay, Transwell chamber assay and endothelial cell adhesion assay. Western blotting was used to detect the changes in the expressions of proteins related with the malignant phenotypes of 231 and 231B cells. The effects of conditioned medium (CM) derived from untreated 231 and 231 B cells, rJAG1-treated 231 cells and DAPT-treated 231B cells on proliferation and tube formation ability of cultured human umbilical vein endothelial cells (HUVECs) were evaluated using CCK-8 assay and tube-forming assay.@*RESULTS@#The expression of JAG1 was higher in 231B cells than in 231 cells (P < 0.05). Tumor 231B showed higher expression of VEGFA and CD31. Compared with 231-Blank group, the migration, invasion and adhesion of 231 cells in 231-rJAG1 were significantly enhanced (P < 0.05). Protein levels of Twist1 and Snail increased (P < 0.01), anti-apoptotic protein Bcl-2 increased (P < 0.05), while DAPT inhibited the related phenomena and indicators of 231B. The 231-rJAG1-CM increased the cell number and tubule number of HUVEC (P < 0.05).@*CONCLUSION@#JAG1 may affect the malignant phenotype of TNBC and promote angiogenesis in the tumor microenvironment.


Subject(s)
Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Culture Media, Conditioned , Female , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Jagged-1 Protein/metabolism , Mice , Mice, Nude , Neovascularization, Pathologic/metabolism , Platelet Aggregation Inhibitors , Sincalide/metabolism , Triple Negative Breast Neoplasms/metabolism , Tumor Microenvironment
20.
Article in Chinese | WPRIM | ID: wpr-941042

ABSTRACT

OBJECTIVE@#To investigate the effects of co-expression of sodium iodide symporter (NIS) reporter gene on the proliferation and cytotoxic activity of chimeric antigen receptor (CAR)-T cells in vitro.@*METHODS@#T cells expressing CD19 CAR (CAR-T cells), NIS reporter gene (NIS-T cells), and both (NIS-CAR-T cells) were prepared by lentiviral infection. The transfection rates of NIS and CAR were determined by flow cytometry, and the cell proliferation rate was assessed using CCK-8 assay at 24, 48 and 72 h of routine cell culture. The T cells were co-cultured with Nalm6 tumor cells at the effector-target ratios of 1∶2, 1∶1, 2∶1 and 4∶1 for 24, 48 and 72 h, and the cytotoxicity of CAR-T cells to the tumor cells was evaluated using lactate dehydrogenase (LDH) assay. ELISA was used to detect the release of IFN-γ and TNF-β in the co-culture supernatant, and the function of NIS was detected with iodine uptake test.@*RESULTS@#The CAR transfection rate was 91.91% in CAR-T cells and 99.41% in NIS-CAR-T cells; the NIS transfection rate was 47.83% in NIS-T cells and 50.24% in NIS- CAR-T cells. No significant difference in the proliferation rate was observed between CAR-T and NIS-CAR-T cells cultured for 24, 48 or 72 h (P> 0.05). In the co-cultures with different effector-target ratios, the tumor cell killing rate was significantly higher in CAR-T group than in NIS-CAR-T group at 24 h (P < 0.05), but no significant difference was observed between the two groups at 48 h or 72 h (P>0.05). Higher IFN-γ and TNF-β release levels were detected in both CAR-T and NIS-CAR-T groups than in the control group (P < 0.05). NIS-T cells and NIS-CAR-T cells showed similar capacity of specific iodine uptake (P>0.05), which was significantly higher than that in the control T cells (P < 0.05).@*CONCLUSION@#The co-expression of the NIS reporter gene does not affect CAR expression, proliferation or tumor cell-killing ability of CAR-T cells.


Subject(s)
Antineoplastic Agents , Cell Line, Tumor , Cell Proliferation , Iodine , Lymphotoxin-alpha , Receptors, Chimeric Antigen , Symporters , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL