Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
1.
Article in English | WPRIM | ID: wpr-922754

ABSTRACT

OBJECTIVE@#Numerous studies have demonstrated the close relationship between chronic stress and blood pressure (BP). Hypertensive subjects exhibit exaggerated reactions to stress, especially higher BP. The mechanisms by which stress affects pre-existing hypertension still need to be explored. Danzhi Xiaoyao Powder (DP), a historical traditional Chinese medicine formula, is a promising treatment for BP control in hypertensive patients under stress. The present study investigated the metabolomic disruption caused by chronic stress and the treatment effect and mechanism of DP.@*METHODS@#Spontaneously hypertensive rats (SHRs) were subjected to chronic restraint stress (CRS) for 4 weeks. BP was measured via the tail-cuff method, and anxiety-like behavior was quantified using the elevated-plus-maze test. Meanwhile, DP was administered intragastrically, and its effects were observed. Global metabolomic analysis was performed using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, followed by multivariate statistical analysis to detect differential metabolites and pathways.@*RESULTS@#DP alleviated the CRS-induced increase in BP and anxiety-like behavior. Systematic metabolic differences were found among the three study groups. A total of 29 differential plasma metabolites were identified in both positive- and negative-ion modes. These metabolites were involved in triglyceride metabolism, amino acid (phenylalanine, tryptophan, and glycine) metabolism, and steroid hormone pathways.@*CONCLUSION@#These findings expose the metabolomic disturbances induced by chronic stress in SHRs and suggest an innovative treatment for this disorder.


Subject(s)
Animals , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/pharmacology , Humans , Medicine, Chinese Traditional , Powders , Rats , Rats, Inbred SHR
2.
Article in English | WPRIM | ID: wpr-922773

ABSTRACT

Pai-Nong-San (PNS), a prescription of traditional Chinese medicine, has been used for years to treat abscessation-induced diseases including colitis and colorectal cancer. This study was aimed to investigate the preventive effects and possible protective mechanism of PNS on a colitis-associated colorectal cancer (CAC) mouse model induced by azoxymethane (AOM)/dextran sodium sulfate (DSS). The macroscopic and histopathologic examinations of colon injury and DAI score were observed. The inflammatory indicators of intestinal immunity were determined by immunohistochemistry and immunofluorescence. The high throughput 16S rRNA sequence of gut microbiota in the feces of mice was performed. Western blot was used to investigate the protein expression of the Wnt signaling pathway in colon tissues. PNS improved colon injury, as manifested by the alleviation of hematochezia, decreased DAI score, increased colon length, and reversal of pathological changes. PNS treatment protected against AOM/DSS-induced colon inflammation by regulating the expression of CD4


Subject(s)
Animals , Azoxymethane/toxicity , CD8-Positive T-Lymphocytes , Colitis/genetics , Dextran Sulfate/toxicity , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Glycogen Synthase Kinase 3 beta , Mice , Mice, Inbred C57BL , RNA, Ribosomal, 16S , Wnt Signaling Pathway/drug effects
3.
Article in English | WPRIM | ID: wpr-922771

ABSTRACT

The current study was designed to explore the brain protection mechanism of Xinglou Chengqi Decoction (XCD) based on gut microbiota analysis and network pharmacology. A transient middle cerebral artery occlusion (MCAO) model of mice was established, followed by behavioral evaluation, TTC and TUNEL staining. Additionally, to investigate the effects of gut microbiota on neurological function after stroke, C57BL/6 mice were treated with anti-biotic cocktails 14 days prior to ischemic stroke (IS) to deplete the gut microbiota. High-throughput 16S rDNA gene sequencing, metabonomics technique, and flow multifactor technology were used to analyze bacterial communities, SCFAs and inflammatory cytokines respectively. Finally, as a supplement, network pharmacology and molecular docking were applied to fully explore the multicomponent-multitarget-multichannel mechanism of XCD in treating IS, implicated in ADME screening, target identification, network analysis, functional annotation, and pathway enrichment analysis. We found that XCD effectively improved neurological function, relieved cerebral infarction and decreased the neuronal apoptosis. Moreover, XCD promoted the release of anti-inflammatory factor like IL-10, while down-regulating pro-inflammatory factors such as TNF-α, IL-17A, and IL-22. Furthermore, XCD significantly increased the levels of short chain fatty acids (SCFAs), especially butyric acid. The mechanism might be related to the regulation of SCFAs-producing bacteria like Verrucomicrobia and Akkermansia, and bacteria that regulate inflammation like Paraprevotella, Roseburia, Streptophyta and Enterococcu. Finally, in the network pharmacological analysis, 51 active compounds in XCD and 44 intersection targets of IS and XCD were selected. As a validation, components in XCD docked well with key targets. It was obviously that biological processes were mainly involved in the regulation of apoptotic process, inflammatory response, response to fatty acid, and regulation of establishment of endothelial barrier in GO enrichment. XCD can improve neurological function in experimental stroke mice, partly due to the regulation of gut microbiota. Besises, XCD has the characteristic of "multi-component, multi-target and multi-channel" in the treatment of IS revealed by network pharmacology and molecular docking.


Subject(s)
Animals , Drugs, Chinese Herbal/pharmacology , Gastrointestinal Microbiome , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , Stroke/drug therapy
4.
Article in English | WPRIM | ID: wpr-922101

ABSTRACT

With Chinese medicine (CM) gaining popularity in recent years, researchers and clinicians have put in much interest and effort into the makings and effects of it, especially after the recent announcement of World Health Orgnitation's incorporation of CM into mainstream medical compendium. Individual herb has complex properties, coming from its pharmacological properties and the Chinese medical principles of organ-directed, taste and dynamic orientational behaviours. The use of individual herb in CM is rare, where various herbs/ingredients are mostly found in a prescribed formula. To fully reveal the effects of CM is a great challenge. The complexity of various herbs in combined effect, the absorption and utility rate by the body, uniqueness of individual physique, sub-types of pathological behaviors and time-line progression of the healing process add on to the complication of understanding the full effect of CM. Various theories such as pathophysiology guidance, pharmacokinetic-pharmacodynamic compatibility method, and Global Systems Biology for Integrative Genomics, Proteomics and Metabolomics, which interactively provide a wider scope, more details, with the consideration of development timeline, may shed more light to revealing the full picture of the effects of compatibility prescription.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Medicine, Chinese Traditional , Prescriptions , Systems Biology
5.
Article in Chinese | WPRIM | ID: wpr-921807

ABSTRACT

The active ingredients of Ficus hirta and Hypericum perforatum were collected from Traditional Chinese Medicine Database and Analysis Platform(TCMSP) and related papers. The potential targets of these two medicinal herbs were searched from HERB database, and those associated with microvascular angina were screened out from GeneCards, Online Mendelian Inheritance in Man(OMIM), Therapeutic Target Database(TTD), and HERB. Cytoscape was used to construct a protein-protein interaction(PPI) network of the common targets shared by the two herbs and microvascular angina based on the data of String platform. Metascape was employed to identify the involved biological processes and pathways enriched with the common targets. Cytoscape was used to draw the "active ingredient-target-pathway" network. AutoDock Vina was used to dock the core ingredients with the key targets. A total of 19 potential active ingredients and 71 potential targets were identified to be associated with microvascular angina. Bioinformatics analysis showed that phosphatidylinositol-3-kinase/protein kinase B(PI3 K-AKT), interleukin-17(IL17), hypoxia-inducible factor 1(HIF-1) and other signaling pathways were related to the treatment of microvascular angina by F. hirta and H. perforatum. Molecular docking results showed that β-sitosterol, luteolin and other ingredients had strong affinity with multiple targets including mitogen-associated protein kinase 1(MAPK1), epidermal growth factor receptor(EGFR) and so on. These findings indicated that F. hirta and H. perforatum may regulate PI3 K-AKT, IL17, HIF-1 and other signaling pathways by acting on multiple targets to alleviate oxidative stress, inhibit inflammatory response, regulate angiogenesis, and improve vascular endothelium and other functions. This study provides reference for in vitro and in vivo studies of the treatment of microvascular angina.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Ficus , Humans , Hypericum , Medicine, Chinese Traditional , Microvascular Angina , Molecular Docking Simulation
6.
Article in Chinese | WPRIM | ID: wpr-921806

ABSTRACT

In this study, the molecular mechanism of astragaloside Ⅳ(AS-Ⅳ) in the treatment of Parkinson's disease(PD) was explored based on network pharmacology, and the potential value of AS-Ⅳ in alleviating neuronal injury in PD by activating the PI3 K/AKT signaling pathway was verified through molecular docking and in vitro experiments. Such databases as SwissTargetPrediction, BTMAN-TAM, and GeneCards were used to predict the targets of AS-Ⅳ for the treatment of PD. The Search Tool for the Retrieval of Interacting Genes/Proteins(STRING) was employed to analyze protein-protein interaction(PPI) and construct a PPI network, and the Database for Annotation, Visualization and Integrated Discovery(DAVID) was used for Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis. Based on the results of GO enrichment analysis and KEGG pathway analysis, the PI3 K/AKT signaling pathway was selected for further molecular docking and in vitro experiments in this study. The in vitro cell model of PD was established by MPP~+. The cell viability was measured by MTT assay and effect of AS-Ⅳ on the expression of the PI3 K/AKT signaling pathway-related genes and proteins by real-time polymerase chain reaction(RT-PCR) and Western blot. Network pharmacology revealed totally 122 targets of AS-Ⅳ for the treatment of PD, and GO enrichment analysis yielded 504 GO terms, most of which were biological processes and molecular functions. Totally 20 related signaling pathways were screened out by KEGG pathway analysis, including neuroactive ligand-receptor interaction, PI3 K/AKT signaling pathway, GABAergic synapse, and calcium signaling pathway. Molecular docking demonstrated high affinity of AS-Ⅳ to serine/threonine-protein kinases(AKT1, AKT2), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit gamma(PIK3 CG), and phosphoinositide-3-kinase, catalytic, alpha polypeptide(PIK3 CA) on the PI3 K/AKT signaling pathway. In vitro experiments showed that AS-Ⅳ could effectively inhibit the decrease of the viability of PC12 induced by MPP~+ and up-regulate the mRNA expression levels of AKT1 and PI3 K as well as the phosphorylation levels of AKT and PI3 K. As an active component of Astragali Radix, AS-Ⅳ acts on PD through multiple targets and pathways. Furthermore, it inhibits neuronal apoptosis and protects neurons by activating the PI3 K/AKT signaling pathway, thereby providing reliable theoretical and experimental supports for the treatment of PD with AS-Ⅳ.


Subject(s)
Animals , Drugs, Chinese Herbal/pharmacology , Molecular Docking Simulation , PC12 Cells , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Rats , Saponins , Signal Transduction , Triterpenes
7.
Article in Chinese | WPRIM | ID: wpr-921805

ABSTRACT

In this study, ultra-high performance liquid chromatography-linear ion trap/electrostatic field orbit trap combined-type mass spectrometry(UPLC-LTQ-Orbitrap-MS) was used to analyze the main active components of Huangqi Guizhi Wuwu Decoction(HQGZ). A total of 50 active components were identified from HQGZ and 108 potential targets of the components related to the treatment of rheumatoid arthritis were retrieved based on network pharmacology, including 87 key targets, followed by Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment of the targets. The result indicated that HQGZ may exert therapeutic effects mainly through the sphingolipid signaling pathway, tumor necrosis factor(TNF) signaling pathway, as well as the positive regulation of ribonucleic acid(RNA) polymerase Ⅱ promoter transcription, inflammatory response and other biological processes. At the same time, cell experiment was performed to verify the key proteins in the TNF signaling pathway. The results demonstrated that HQGZ significantly reduced the expression of caspase-3(CASP3), TNF, relaxed(RELA) protein, and IkappaB kinase beta(IKBKB) in fibroblast-like synoviocytes induced by TNF-α. The results of UPLC-LTQ-Orbitrap-MS, network pharmacology and cell experiment showed that the active components in HQGZ may inhibit inflammatory response and regulate immune function and cell apoptosis by modulating key proteins in TNF signaling pathway to treat rheumatoid arthritis.


Subject(s)
Arthritis, Rheumatoid/genetics , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/pharmacology , Humans , Synoviocytes
8.
Article in Chinese | WPRIM | ID: wpr-921799

ABSTRACT

This study was designed to predict the Q-markers of Citri Reticulatae Pericarpium volatile oil and conduct quantitative analysis by GC-MS. The common components of Citri Reticulatae Pericarpium volatile oil were detected by GC-MS. The network pharmacology approaches were utilized for constructing the component-target network and protein-protein interaction(PPI) network, followed by the GO and KEGG pathway enrichment analysis to clarify the pharmacological effects of common components. Molecular docking was conducted to observe the biological activities of common components, thus identifying the Q-markers of Citri Reticulatae Pericarpium volatile oil. The obtained Q-markers were subjected to quantitative analysis by GC-MS. The GC-MS analysis of 19 batches of Citri Reticulatae Pericarpium volatile oil revealed three common components, namely, D-limonene, γ-terpinene, and myrcene. The common components were analyzed based on network pharmacology, and the results showed that Citri Reticulatae Pericarpium volatile oil mainly acted on the core targets GABRA1, GABRA6, GABRA5, GABRA3, and GABRA2 through D-limonene and γ-terpinene, with five important pathways such as nicotine addiction and GABAergic synapse involved. The core targets were mainly distributed in olfactory region, cerebral cortex, cerebellum, basal ganglia, hippocampus, and amygdala to exert the pharmacological effects. As revealed by molecular docking, D-limonene and γ-terpinene exhibited good biological activities, so they were identified as the Q-markers of Citri Reticulatae Pericarpium volatile oil. The results of quantitative analysis showed that the volume fraction of D-limonene was within the range of 0.77-1.03 μL·mL~(-1), and that of γ-terpinene within the range of 0.04-0.13 μL·mL~(-1). The prediction of D-limonene and γ-terpinene as the Q-markers of Citri Reticulatae Pericarpium volatile oil has laid an experimental foundation for the establishment of the quality evaluation standard for Citri Reticulatae Pericarpium volatile oil.


Subject(s)
Citrus , Drugs, Chinese Herbal/pharmacology , Gas Chromatography-Mass Spectrometry , Molecular Docking Simulation , Oils, Volatile/pharmacology
9.
Article in Chinese | WPRIM | ID: wpr-921782

ABSTRACT

As a classic prescription for promoting blood circulation to remove blood stasis, Xuefu Zhuyu Decoction(XFZYD) is widely used in clinical practice and has notable curative effect. Based on the key targets of activating blood circulation, this study identified the active components of XFZYD to reveal the material basis. The components of XFZYD were collected from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP). The molecular docking models were built for the blood-activating targets obtained from the previous study with the components of XFZYD. The top five active components with measurability for each target were selected as the potential blood-activating components in the prescription. The efficacy of the prescription can embody key pharmacological and high-content components. In this study, anti-platelet aggregation activity was used to characterize the effect of activating blood, and the in vivo experiments were conducted to verify the accuracy of the active components. A total of 210 chemical components of XFZYD were screened out from TCMSP and docked with the key targets with the function of activating blood. Ligustrazine, acteoside, naringin, etc. were selected as the potential active components for activating blood in XFZYD. The anti-platelet aggregation activity of the combination of Chuanxiong Rhizoma, Rehmanniae Radix, Aurantii Fructus, Glycyrrhizae Radix et Rhizoma, and Carthami Flos was 9.82%±5.11%. Compared with that in the control group, the platelet aggregation induced by adenosine diphosphate(ADP) was significantly inhibited in the test group(P<0.01), which verified the accuracy of the active components. This study can guide the research on the material basis of XFZYD and provide insights into the development and utilization of the classical prescription.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Medicine, Chinese Traditional , Molecular Docking Simulation , Rhizome
10.
Article in Chinese | WPRIM | ID: wpr-921780

ABSTRACT

Alzheimer's disease(AD) patients in China have been surging, and the resultant medical burden and care demand have a huge impact on the development of individuals, families, and the society. The active component compound of Epimedii Folium, Astragali Radix, and Puerariae Lobatae Radix(YHG) can regulate the expression of iron metabolism-related proteins to inhibit brain iron overload and relieve hypofunction of central nervous system in AD patients. Hepcidin is an important target regulating iron metabolism. This study investigated the effect of YHG on the expression of a disintegrin and metalloprotease-17(ADAM17), a key enzyme in the hydrolysis of β amyloid precursor protein(APP) in HT22 cells, by mediating hepcidin. To be specific, HT22 cells were cultured in vitro, followed by liposome-mediated siRNA transfection to silence the expression of hepcidin. Real-time PCR and Western blot were performed to examine the silencing result and the effect of YHG on hepcidin in AD cell model. HT22 cells were randomized into 7 groups: control group, Aβ25-35 induction(Aβ) group, hepcidin-siRNA(siRNA) group, Aβ25-35 + hepcidin-siRNA(Aβ + siRNA) group, Aβ25-35+YHG(Aβ+YHG) group, hepcidin-siRNA+YHG(siRNA+YHG) group, Aβ25-35+hepcidin-siRNA+YHG(Aβ+siRNA+YHG) group. The expression of ADAM17 mRNA in cells was detected by real-time PCR, and the expression of ADAM17 protein by immunofluorescence and Western blot. Immunofluorescence showed that the ADAM17 protein expression was lower in the Aβ group, siRNA group, and Aβ+siRNA group than in the control group(P<0.05) and the expression was lower in the Aβ+siRNA group(P<0.05) and higher in the Aβ+YHG group(P<0.05) than in the Aβ group. Moreover, the ADAM17 protein expression was lower in the Aβ+siRNA group(P<0.05) and higher in the siRNA+YHG group(P< 0.05) than in the siRNA group. The expression was higher in the Aβ+siRNA+YHG group than in the Aβ+siRNA group(P<0.05). The results of Western blot and real-time PCR were consistent with those of immunofluorescence. The experiment showed that YHG induced hepcidin to up-regulate the expression of ADAM17 in AD cell model and promote the activation of non-starch metabolic pathways, which might be the internal mechanism of YHG in preventing and treating AD.


Subject(s)
ADAM17 Protein , Alzheimer Disease/genetics , Amyloid beta-Peptides , Drugs, Chinese Herbal/pharmacology , Hepcidins/genetics , Humans , Pueraria
11.
Article in Chinese | WPRIM | ID: wpr-921779

ABSTRACT

This study aims to explore the effect of extract of Ginseng Radix et Rhizoma, Notoginseng Radix et Rhizoma, and Chuanxiong Rhizoma(hereinafter referred to as GNS) on the SIRT1-autophagy pathway of endothelial cell senescence induced by hydrogen peroxide(H_2O_2). To be specific, vascular endothelial cells were classified into the blank control group(control), model group(model), model + DMSO group(DMSO), resveratrol group(RESV), and GNS low-dose(GNS-L), medium-dose(GNS-M), and high-dose(GNS-H) groups. They were treated with H_2O_2 for senescence induction except the control. After intervention of cells in each group with corresponding drugs for 24 h, cell growth status was observed under an inverted microscope, and the formation of autophagosome under the transmission electron microscope. In addition, the changes of microtubule-associated protein 1 light chain 3β(LC3 B) were detected by immunofluorescence staining. The autophagy flux was tracked with the autophagy double-labeled adenovirus(mRFP-GFP-LC3) fusion protein. Dansylcadaverine(MDC) staining was employed to determine the autophagic vesicles, and Western blot the expression of sirtuin 1(SIRT1), ubiquitin-binding protein p62, and LC3Ⅱ. After H_2O_2 induction, cells demonstrated slow growth, decreased adhesion ability, raised number of SA-β-gal-stained blue ones, a certain number of autophagosomes with bilayer membrane and secondary lysosomes in the cytoplasm, and slight rise of autophagy flux level. Compared with the model group, GNS groups showed improved morphology, moderate adhesion ability, complete and smooth membrane, decreased SA-β-gal-stained blue cells, many autophagosomes, autophagic vesicles, and secondary lysosomes in the cytoplasm, increased autophagolysosomes, autophagy flux level, and fluorescence intensity of LC3 B and MDC, up-regulated expression of SIRT1 and LC3Ⅱ, and down-regulated expression of p62, suggesting the improvement of autophagy level. GNS can delay the senescence of vascular endothelial cells. After the intervention, the autophagy flux and related proteins SIRT1, LC3Ⅱand p62 changed significantly, and the autophagy level increased significantly. However, EX527 weakened the effect of Chinese medicine in delaying vascular senescence. GNS may delay the senescence of vascular endothelial cells through the SIRT1 autophagy pathway.


Subject(s)
Autophagy , Cells, Cultured , Cellular Senescence , Drugs, Chinese Herbal/pharmacology , Endothelial Cells/drug effects , Hydrogen Peroxide , Panax/chemistry , Sirtuin 1/genetics
12.
Article in Chinese | WPRIM | ID: wpr-921754

ABSTRACT

To investigate the potential molecular markers and drug-compound-target mechanism of Mahuang Shengma Decoction(MHSM) in the intervention of acute lung injury(ALI) by network pharmacology and experimental verification. Databases such as TCMSP, TCMIO, and STITCH were used to predict the possible targets of MHSM components and OMIM and Gene Cards were employed to obtain ALI targets. The common differentially expressed genes(DEGs) were therefore obtained. The network diagram of DEGs of MHSM intervention in ALI was constructed by Cytoscape 3. 8. 0, followed by Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses of target genes. The ALI model was induced by abdominal injection of lipopolysaccharide(LPS) in mice. Bronchoalveolar lavage fluid(BALF) was collected for the detection of inflammatory factors. Pathological sectioning and RT-PCR experiments were performed to verify the therapeutic efficacy of MHSM on ALI. A total of 494 common targets of MHSM and ALI were obtained. Among the top 20 key active compounds of MHSM, 14 from Ephedrae Herba were found to be reacted with pivotal genes of ALI [such as tumor necrosis factor(TNF), tumor protein 53(TP53), interleukin 6(IL6), Toll-like receptor 4(TLR4), and nuclear factor-κB(NF-κB)/p65(RELA)], causing an uncontrolled inflammatory response with activated cascade amplification. Pathway analysis revealed that the mechanism of MHSM in the treatment of ALI mainly involved AGE-RAGE, cancer pathways, PI3 K-AKT signaling pathway, and NF-κB signaling pathway. The findings demonstrated that MHSM could dwindle the content of s RAGE, IL-6, and TNF-α in the BALF of ALI mice, relieve the infiltration of inflammatory cells in the lungs, inhibit alveolar wall thickening, reduce the acute inflammation-induced pulmonary congestion and hemorrhage, and counteract transcriptional activities of Ager-RAGE and NF-κB p65. MHSM could also synergically act on the target DEGs of ALI and alleviate pulmonary pathological injury and inflammatory response, which might be achieved by inhibiting the expression of the key gene Ager-RAGE in RAGE/NF-κB signaling pathway and downstream signal NF-κB p65.


Subject(s)
Acute Lung Injury/genetics , Animals , Drugs, Chinese Herbal/pharmacology , Lipopolysaccharides , Lung/metabolism , Mice , NF-kappa B/metabolism , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction
13.
Article in Chinese | WPRIM | ID: wpr-921753

ABSTRACT

The present study explored the potential mechanism of Jingfang Granules in relieving alcohol and protecting liver by network pharmacology and molecular docking and verified the effects and related pathways by animal experiments. The active components of Jingfang Granules were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP). Targets of drugs and diseases were obtained from PubChem, Swiss Target Prediction and CTD. The common targets were uploaded to STRING to plot the protein-protein interaction(PPI) network. The core targets were screened out and the target organs were identified by Bio GPS and Metascape, followed by Gene Ontology(GO) analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway enrichment analysis of common targets. The acute drunk mouse model was established and the effects of Jingfang Granules on serum ethanol level and the expression of proteins related to the phosphatidylinositol 3-kinase(PI3 K)/protein kinase B(Akt) signaling pathway in the liver tissue of mice were observed. A total of 187 active components of Jingfang Granules were obtained, including 47 common targets with alcoholic liver injury. GO enrichment analysis and KEGG pathway analysis showed that Jingfang Granules might play the role of relieving alcohol and protecting liver through the PI3 K-Akt signaling pathway. The drug-component-target and component-target-pathway networks revealed that the important active components of Jingfang Granules in relieving alcohol and protecting liver included quercetin, 5-O-methylvisamminol, glyasperin M, glyasperin B and hederagenin. Molecular docking showed that the active components had a good affinity with AKT1, EGFR, ESR1 and PTGS2. Experimental results showed that Jingfang Granules(15 and 10. 5 g·kg-1) could significantly reduce the content of serum ethanol in mice and up-regulate the protein expression ratios of p-PI3 K/PI3 K and p-Akt/Akt in the liver tissue. Jingfang Granules could relieve alcohol and protect liver through multi-component and multitarget, and the mechanism may be related to the activation of the PI3 K-Akt signaling pathway.


Subject(s)
Animals , Computational Biology , Drugs, Chinese Herbal/pharmacology , Ethanol , Liver , Medicine, Chinese Traditional , Mice , Molecular Docking Simulation , Technology
14.
Article in Chinese | WPRIM | ID: wpr-921752

ABSTRACT

Two terpenes, 3-keto-tirucalla-8,24-dien-21-oic acid(KTDA) and 2-methoxy-5-acetoxy-furanogermacr-1(10)-en-6-one(FSA), are isolated from Olibanum and Myrrha respectively, which are characterized by high yield and easy crystallization during the preparation. The present study explored the regulatory targets and anti-inflammatory mechanism of KTDA and FSA based on network pharmacology and cell viability assay. First, the drug-likeness of KTDA and FSA was predicted by Swiss ADME. The target prediction of active components was carried out by Swiss Target Prediction and Pharmmapper. TTD, Drug Bank, and Gene Cards were searched for inflammation-related target genes of KTDA and FSA. Protein-protein interaction(PPI) analysis was performed on the inflammatory targets of KTDA and FSA by STRING, and Cytoscape was used to conduct topological analysis of the interaction results and construct the PPI network. GO function and KEGG pathway enrichment analyses of inflammatory targets of KTDA and FSA were carried out by DAVID, and a " component-target-pathway" network was constructed. Finally, lipopolysaccharide(LPS)-induced RAW264. 7 cells were treated with KTDA and FSA at different concentrations, and nitric oxide(NO) concentration and protein and m RNA expression levels were detected. The results showed that both KTDA and FSA showed good drug-likeness. A total of 157 and 142 inflammation-related targets of KTDA and FSA were screened out. PPI network analysis showed that MAPK1, AKT1, MAPK8, PIK3 CA,PIK3 R1, EGFR, etc. might be the key proteins for the anti-inflammatory effect. PI3 K/AKT and MAPK signaling pathways were obtained by KEGG and GO-BP enrichment. Cell experiment results showed that KTDA and FSA could exert anti-inflammatory effects by inhibiting NO production, reducing the phosphorylation levels of JNK, p38, and AKT proteins, and down-regulating the m RNA expression of interleukin(IL)-1β and IL-6. Meanwhile, FSA could also inhibit ERK phosphorylation. The results indicated that KTDA and FSA had significant anti-inflammatory activity, which provided a scientific basis and important support for the further research,development, and utilization of Olibanum and Myrrha.


Subject(s)
Animals , Ants , Drugs, Chinese Herbal/pharmacology , Frankincense , Lipopolysaccharides , Molecular Docking Simulation
15.
Article in Chinese | WPRIM | ID: wpr-921732

ABSTRACT

Salviae Miltiorrhizae Radix et Rhizoma is a Chinese herbal medicine that promotes blood circulation to remove blood stasis, nourishes blood to tranquilize the mind, and cools blood to disperse carbuncles. Salviae Miltiorrhizae Radix et Rhizoma has microcirculation-improving, blood vessel-dilating, atherosclerosis-preventing, anti-inflammatory, anti-tumor, and blood pressure-and blood lipid-lowering activities. As research progresses, the chemical composition, pharmacological effect, and clinical application of Salviae Miltiorrhizae Radix et Rhizoma have attracted much attention. We reviewed the research progress in this field. Based on the concept of quality marker(Q-marker) in traditional Chinese medicine, the Q-markers of Salviae Miltiorrhizae Radix et Rhizoma were predicted and analyzed from the aspects of quality transfer, traceability, ingredient specificity, association between ingredients and pharmacological effects, ingredient predictability, and compounding environment. This review provides a scientific basis for the quality control of Salviae Miltiorrhizae Radix et Rhizoma and its preparations.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Medicine, Chinese Traditional , Plant Roots , Rhizome , Salvia miltiorrhiza
16.
Article in Chinese | WPRIM | ID: wpr-921713

ABSTRACT

This study investigated the material basis and mechanism of Pinelliae Rhizoma Decoction in the treatment of airway inflammation. The cigarette smoke combined with lipopolysaccharide(LPS) was used to induce an airway inflammation model in mice. The expression levels of IL-6 and IL-8 in the bronchoalveolar lavage fluid(BALF) and the phosphorylation levels of p38 and IκB in the lungs of mice were taken as indexes to screen the effective extracts by system solvent extraction from Pinelliae Rhizoma Decoction(dichloromethane extract, ethyl acetate extract, n-butanol extract, etc.). Meanwhile, the human bronchial epithelial(16-HBE) cell model of cigarette smoke extract(CSE)-induced injury was established, and the mRNA expression levels of IL-6 and IL-8 and the phosphorylation levels of p38 and IκB proteins were also taken as indexes to evaluate the anti-inflammatory effect of different extracts of Pinelliae Rhizoma Decoction. The results showed that Pinelliae Rhizoma Decoction significantly antagonized airway inflammation in mice by down-regulating the expression levels of IL-6 and IL-8 in mice with airway inflammation and 16-HBE cells with CSE-induced injury and inhibiting the phosphorylation levels of p38 and IκB. The dichloromethane and ethyl acetate extracts of Pinelliae Rhizoma Decoction showed significant anti-inflammatory effects, while such effects of other extracts were not prominent. Furthermore, the database of Pinelliae Rhizoma composition was constructed, and the components in effective extracts were analyzed by HPLC-TOF-MS and Nano-LC-MS/MS. As revealed by the results, the compositions of the two effective extracts were similar with 36 common components. They were combined and then divided into Pinelliae Rhizoma alkaloids(PTAs) and Pinelliae Rhizoma non-alkaloids(PTNAs) by 732 cation-exchange resin. Further in vitro investigation confirmed the significant anti-inflammatory effect of PTNAs, while such effect of PTAs was not manifest. The MS analysis showed 172 peptides and 7 organic acids in PTNAs. The peptide content in PTNAs was 63.5% measured by quantitative analysis of BCA assay, and the organic acid content was 9.92% by potentiometric titration method. The findings of this study suggested that Pinelliae Rhizoma Decoction could antagonize airway inflammation in mice by inhibiting phosphorylation of p38 and IκB and blocking the activation of MAPK and NF-κB signaling pathways, and the effective components were related to the peptides and organic acids in PTNAs. The above results lay a foundation for the research on the mechanism and material basis of Pinelliae Rhizoma in antagonizing airway inflammation.


Subject(s)
Animals , Drugs, Chinese Herbal/pharmacology , Inflammation/drug therapy , Mice , NF-kappa B/genetics , Pinellia/chemistry , Respiratory Tract Diseases/drug therapy , Rhizome , Tandem Mass Spectrometry
17.
Article in Chinese | WPRIM | ID: wpr-921710

ABSTRACT

This study aims to explore the mechanism of fresh Phragmitis Rhizoma against chronic bronchitis airway inflammation. The SD rats of SPF grade were divided into control group, model group, Guilongkechuanning group(GLKCN, 1.125 g·kg~(-1)), high-dose fresh Phragmitis Rhizoma group(LG-HD, 15 g·kg~(-1)), and low-dose fresh Phragmitis Rhizoma group(LG-LD, 7.5 g·kg~(-1)). The chronic bronchitis models of rats in other groups except the control group were induced by the modified smoking method. From the 15 th day of modeling, the rats were given corresponding agents by gavage for 20 consecutive days. After the last administration, the rats were sacrificed for sample collection. Enzyme-linked immunosorbent assay(ELISA) was employed to detect serum transforming growth factor-β(TGF-β) and interleukin-6(IL-6) levels. The protein expression of TGF-β, IL-1β and IL-6 in lung tissue was detected by immunohistochemical method. Masson staining was performed to detect collagen fibers and muscle fibers in lung tissue, and HE staining to detect the pathological changes of lung tissue. Human bronchial epithelial(16 HBE) cells were cultured in vitro, and CCK-8(cell counting kit-8) method was used to detect the cytotoxicity of cigarette smoke extract(CSE) and fresh Phragmitis Rhizoma. After the exposure of 16 HBE cells to 3.5% CSE and appropriate concentration(800, 400 μg·mL~(-1)) of fresh Phragmitis Rhizoma for 24 h, quantitative real-time PCR was conducted to determine the mRNA levels of TGF-β and IL-1β, and Western blot was employed to determine the protein levels of TGF-β and IL-6 in the cells. The rat model of chronic bronchitis induced by smoking was successfully established. Fresh Phragmitis Rhizoma reduced serum TGF-β and IL-6 levels, down-regulated the protein levels of TGF-β, IL-1β, and IL-6 in lung tissue, and alleviated pathological changes and fibrotic lesions in lung tissue. Moreover, it down-regulated the CSE-induced protein expression of TGF-β and IL-6 as well as the mRNA level of TGF-β in 16 HBE cells. These results indicated that fresh Phragmitis Rhizoma could prevent airway inflammation from chronic bronchitis and promote cell repair by inhibiting the TGF-β signaling pathway.


Subject(s)
Animals , Bronchitis, Chronic/genetics , Drugs, Chinese Herbal/pharmacology , Inflammation , Lung , Poaceae/chemistry , Rats , Rats, Sprague-Dawley , Rhizome , Signal Transduction , Transforming Growth Factor beta/genetics
18.
Article in Chinese | WPRIM | ID: wpr-921681

ABSTRACT

The present study investigated the therapeutic efficacy and potential mechanism of Jinqi Jiangtang Tablets(JQJT) on pancreatic β cell dysfunction based on network pharmacology and molecular docking technology. TCMSP platform was used to retrieve the chemical components and targets of the three Chinese herbal medicines of JQJT. The genes were converted to gene symbol by the UniProt, and its intersection with targets related to pancreatic β cell function in GeneCards and CTD databases was obtained. The drugs, active components and common targets were imported into Cytoscape 3.8.2 to plot the drug-component-target network. The main effective components and targets were obtained by software analysis. The drug targets and targets related to pancreatic β cell function were imported separately into the STRING platform for the construction of protein-protein interaction(PPI) networks. The two PPI networks were merged by Cytoscape 3.8.2 and the key targets were obtained by plug-in CytoNCA. The targets obtained from drug-component-target network and PPI networks were imported into DAVID for GO analysis and KEGG enrichment analysis. AutoDock was used to carry out molecular docking of main active components and core targets and Pymol was used to plot the molecular docking diagram. The results showed that there were 371 active components and 203 targets related to JQJT and 2 523 targets related to pancreatic β cell damage, covering 136 common targets. The results revealed core targets(such as PTGS2, PTGS1, NOS2, ESR1 and RXRA) and effective key components(such as quercetin, kaempferol, luteolin, β-carotene and β-sitosterol). KEGG enrichment analysis indicated that apoptosis, inflammation, and other signaling pathways were mainly involved. Molecular docking results showed that the main active components could spontaneously bind to the targets. This study preliminarily revealed the mechanism of JQJT in improving pancreatic β cell damage through multi-component, multi-target and multi-pathway, and provided a theoretical basis for JQJT in the treatment of pancreatic β cell dysfunction.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Insulin-Secreting Cells , Medicine, Chinese Traditional , Molecular Docking Simulation , Tablets , Technology
19.
Article in Chinese | WPRIM | ID: wpr-921662

ABSTRACT

Arisaematis Rhizoma included in the Chinese Pharmacopoeia is the dried tuber of Arisaema erubescens, A. heterophyllum or A. amurense in the family Araceae. This paper mainly focuses on the classification and summary of the chemical components and structures reported in recent years in the above three varieties of this medicinal material included in the pharmacopoeia, including alkaloids, flavonoids, phenylpropanoids, lignans and benzene ring derivatives, steroids and terpenes, glycosides and esters, etc. Then we reviewed the reported biological activities of these chemical components, including cytotoxicity, antitumor activity, antibacterial activity, nematicidal activity, etc. Although there have been reports on the review of the chemical composition of the medicinal material, the structure and classification of the chemical composition in these reviews are not clear enough. This review provides a basis for the later study of the chemical composition of this medicinal material, especially the identification of the chemical structures. And most of the current reviews on the biological activity of this medicinal material are mainly for the crude extract. This paper mainly summarized the biological activity of related monomer compounds and expected to lay a foundation for the development of novel high-efficiency and low-toxicity active leading compounds from Arisaematis Rhizoma.


Subject(s)
Arisaema , Drugs, Chinese Herbal/pharmacology , Flavonoids , Glycosides , Rhizome
20.
Article in Chinese | WPRIM | ID: wpr-888130

ABSTRACT

Bolbostemma paniculatum is a commonly used Chinese medicinal material effective in clearing heat, removing toxin, eliminating phlegm, and alleviating swelling. The anti-tumor activity it possesses makes it a research hotspot. At present, 76 compounds have been isolated from B. paniculatum, including triterpenoids, sterols, alkaloids, anthraquinones, organic acids, etc., with anti-tumor, antiviral, and immunosuppressive pharmacological activities. This study reviewed the research on the chemical constituents and pharmacological effects of B. paniculatum over the past 20 years, aiming to provide a scientific basis for the research on the pharmacodynamic material basis and promote the development and utilization of B. paniculatum.


Subject(s)
Cucurbitaceae , Drugs, Chinese Herbal/pharmacology , Edema , Triterpenes
SELECTION OF CITATIONS
SEARCH DETAIL