ABSTRACT
The present study was performed to compare the mitochondrial genomes between 2 Spirometra tapeworms, Spirometra erinaceieuropaei and Spirometra decipiens (Cestoidea: Diphyllobothriidae), which larval stages are important etiological agents of sparganosis in humans. For each species, the full mitochondrial genome was amplified in 8 overlapping fragments using total genomic DNA purified from a single worm as the template. The mitochondrial genomes were 13,643 bp (S. erinaceieuropaei) and 13,641 bp (S. decipiens) in length and contained 36 genes; 12 protein-coding genes, 2 ribosomal RNA (rRNA, small and large subunits), and 22 transfer RNAs (tRNAs). The 12 protein-coding genes constituted 10,083 bp (S. erinaceieuropaei) and 10,086 bp (S. decipiens) of their respective mitochondrial genomes. The tRNA genes, ranging in length from 56 to 70 bp, were identified based on putative secondary structures such as the typical cloverleaf shape. A total of 23 intergenic sequences, varying from 1 to 204 bp in size, were interspersed in S. erinaceieuropaei (total, 504 bp) and S. decipiens (total, 496 bp) mtDNA. The 12 protein-coding genes of S. erinaceieuropaei and S. decipiens differed by 12.4%, whereas the overall difference in mtDNA sequence between S. erinaceieuropaei and S. decipiens was 12.9%. Thus, from the standpoint of the mitochondrial genome, S. decipiens represents a valid species that can be distinguished from S. erinaceieuropaei.
Subject(s)
Animals , Humans , Base Sequence , Cestode Infections/parasitology , DNA, Mitochondrial/chemistry , Genome, Helminth , Genome, Mitochondrial , Molecular Sequence Data , Nucleic Acid Conformation , Open Reading Frames , Phylogeny , Spirometra/chemistryABSTRACT
The tapeworm Taenia solium is an important human zoonotic parasite that causes great economic loss and also endangers public health. At present, an effective vaccine that will prevent infection and chemotherapy without any side effect remains to be developed. In this study, codon usage patterns in the T. solium genome were examined through 8,484 protein-coding genes. Neutrality analysis showed that T. solium had a narrow GC distribution, and a significant correlation was observed between GC12 and GC3. Examination of an NC (ENC vs GC3s)-plot showed a few genes on or close to the expected curve, but the majority of points with low-ENC (the effective number of codons) values were detected below the expected curve, suggesting that mutational bias plays a major role in shaping codon usage. The Parity Rule 2 plot (PR2) analysis showed that GC and AT were not used proportionally. We also identified 26 optimal codons in the T. solium genome, all of which ended with either a G or C residue. These optimal codons in the T. solium genome are likely consistent with tRNAs that are highly expressed in the cell, suggesting that mutational and translational selection forces are probably driving factors of codon usage bias in the T. solium genome.
Subject(s)
Animals , Base Sequence , Codon/genetics , Evolution, Molecular , Genome, Helminth , Helminth Proteins/genetics , Molecular Sequence Data , Taenia solium/geneticsABSTRACT
Several genes related to the ubiquitin (Ub)-proteasome pathway, including those coding for proteasome subunits and conjugation enzymes, are differentially expressed during the Schistosoma mansoni life cycle. Although deubiquitinating enzymes have been reported to be negative regulators of protein ubiquitination and shown to play an important role in Ub-dependent processes, little is known about their role in S. mansoni . In this study, we analysed the Ub carboxyl-terminal hydrolase (UCHs) proteins found in the database of the parasite’s genome. An in silico ana- lysis (GeneDB and MEROPS) identified three different UCH family members in the genome, Sm UCH-L3, Sm UCH-L5 and Sm BAP-1 and a phylogenetic analysis confirmed the evolutionary conservation of the proteins. We performed quantitative reverse transcription-polymerase chain reaction and observed a differential expression profile for all of the investigated transcripts between the cercariae and adult worm stages. These results were corroborated by low rates of Z-Arg-Leu-Arg-Gly-Gly-AMC hydrolysis in a crude extract obtained from cercariae in parallel with high Ub conjugate levels in the same extracts. We suggest that the accumulation of ubiquitinated proteins in the cercaria and early schistosomulum stages is related to a decrease in 26S proteasome activity. Taken together, our data suggest that UCH family members contribute to regulating the activity of the Ub-proteasome system during the life cycle of this parasite.
Subject(s)
Animals , Endopeptidases/genetics , Schistosoma mansoni/enzymology , Ubiquitin Thiolesterase/genetics , Cercaria/enzymology , Cercaria/genetics , Conserved Sequence/genetics , Evolution, Molecular , Gene Expression , Genome, Helminth/genetics , Genome/genetics , Life Cycle Stages/genetics , Mice, Inbred BALB C , Reverse Transcriptase Polymerase Chain Reaction/methods , Sequence Alignment , Schistosoma mansoni/genetics , Schistosoma mansoni/growth & development , Transcriptome/physiology , Transcytosis/physiology , Ubiquitin Thiolesterase/classification , Ubiquitin-Specific Proteases/genetics , Ubiquitination/physiologyABSTRACT
Genome sequences for Schistosoma japonicum and Schistosoma mansoni are now available. The schistosome genome encodes ~13,000 protein encoding genes for which the function of only a minority is understood. There is a valuable role for transgenesis in functional genomic investigations of these new schistosome gene sequences. In gain-of-function approaches, transgenesis can lead to integration of transgenes into the schistosome genome which can facilitate insertional mutagenesis screens. By contrast, transgene driven, vector-based RNA interference (RNAi) offers powerful loss-of-function manipulations. Our laboratory has focused on development of tools to facilitate schistosome transgenesis. We have investigated the utility of retroviruses and transposons to transduce schistosomes. Vesicular stomatitis virus glycoprotein (VSVG) pseudotyped murine leukemia virus (MLV) can transduce developmental stages of S. mansoni including eggs. We have also observed that the piggyBac transposon is transpositionally active in schistosomes. Approaches with both VSVG-MLV and piggyBac have resulted in somatic transgenesis and have lead to integration of active reporter transgenes into schistosome chromosomes. These findings provided the first reports of integration of reporter transgenes into schistosome chromosomes. Experience with these systems is reviewed herewith, along with findings with transgene mediated RNAi and germ line transgenesis, in addition to pioneering and earlier reports of gene manipulation for schistosomes.
Subject(s)
Animals , Humans , Mice , Gene Transfer Techniques , Genome, Helminth/genetics , Schistosoma japonicum/genetics , Schistosoma mansoni/genetics , Animals, Genetically Modified , Chromosomes/genetics , Chromosomes/virology , DNA Transposable Elements , DNA, Helminth/genetics , DNA, Viral/genetics , DNA, Viral/isolation & purification , Genetic Vectors , Leukemia Virus, Murine/genetics , Leukemia Virus, Murine/isolation & purification , Membrane Glycoproteins/genetics , Membrane Glycoproteins/isolation & purification , RNA Interference , Schistosoma japonicum/virology , Schistosoma mansoni/virology , Viral Envelope Proteins/genetics , Viral Envelope Proteins/isolation & purificationABSTRACT
Non-coding RNAs (ncRNAs) were recently given much higher attention due to technical advances in sequencing which expanded the characterization of transcriptomes in different organisms. ncRNAs have different lengths (22 nt to >1, 000 nt) and mechanisms of action that essentially comprise a sophisticated gene expression regulation network. Recent publication of schistosome genomes and transcriptomes has increased the description and characterization of a large number of parasite genes. Here we review the number of predicted genes and the coverage of genomic bases in face of the public ESTs dataset available, including a critical appraisal of the evidence and characterization of ncRNAs in schistosomes. We show expression data for ncRNAs in Schistosoma mansoni. We analyze three different microarray experiment datasets: (1) adult worms' large-scale expression measurements; (2) differentially expressed S. mansoni genes regulated by a human cytokine (TNF-α) in a parasite culture; and (3) a stage-specific expression of ncRNAs. All these data point to ncRNAs involved in different biological processes and physiological responses that suggest functionality of these new players in the parasite's biology. Exploring this world is a challenge for the scientists under a new molecular perspective of host-parasite interactions and parasite development.
RNAs não codificadores (ncRNAs) têm sido recentemente objeto de atenção muito maior devido aos avanços técnicos no sequenciamento que expandiram a caracterização dos transcritomas em diferentes organismos. ncRNAs possuem diferentes comprimentos (22 nt a >1.000 nt) e mecanismos de ação que essencialmente compreendem uma sofisticada rede de regulação de expressão gênica. A publicação recente dos genomas e transcritomas dos esquistossomos aumentou a descrição e caracterização de um grande número de genes do parasita. Aqui nós revisamos o número de genes preditos e a cobertura das bases do genoma em face dos ESTs públicos disponíveis, incluindo uma avaliação crítica da evidência e caracterização de ncRNAs em esquistossomos. Nós mostramos dados de expressão de ncRNAs em Schistosoma mansoni. Nós analisamos três conjuntos diferentes de dados de experimentos com microarranjos: (1) medidas de expressão em larga escala de vermes adultos; (2) genes diferencialmente expressos de S. mansoni regulados por uma citocina humana (TNF-α) no parasita em cultura; e (3) expressão estágio-especifica de ncRNAs. Todos estes dados apontam para ncRNAs envolvidos em diferentes processos biológicos e respostas fisiológicas que sugerem funcionalidade destes novos personagens na biologia do parasita. Explorar este mundo é um desafio para os cientistas sob uma nova perspectiva molecular da interação parasita-hospedeiro e do desenvolvimento do parasita.
Subject(s)
Animals , Humans , Genome, Helminth/genetics , RNA, Helminth/genetics , RNA, Untranslated/genetics , Schistosoma japonicum/genetics , Schistosoma mansoni/genetics , Expressed Sequence TagsABSTRACT
<p><b>BACKGROUND</b>Cystic echinococcosis due to Echinococcus granulosus (E. granulosus) is one of the most important chronic helminthic diseases, especially in sheep/cattle-raising regions. The larval stage of the parasite forms a cyst that grows in the liver, lung, or other organs of the host. To ensure a long life in the host tissues, the parasite establishes complex inter-cellular communication systems between its host to allow its differentiation toward each larval stage. Recent studies have reported that this communication is associated with the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase cascade in helminth parasites, and in particular that these protein kinases might serve as effective targets for a novel chemotherapy for cystic echinococcosis. The aim of the present study investigated the biological function of a novel ERK ortholog from E. granulosus, EgERK.</p><p><b>METHODS</b>DNA encoding EgERK was isolated from protoscolices of E. granulosus and analyzed using the LA Taq polymerase chain reaction (PCR) approach and bioinformatics. Reverse transcription PCR (RT-PCR) was used to determine the transcription level of the gene at two different larval tissues. Western blotting was used to detect levels of EgERK protein. The expression profile of EgERK in protoscolices was examined by immunofluorescence.</p><p><b>RESULTS</b>We cloned the entire Egerk genomic locus from E. granulosus. In addition, two alternatively spliced transcripts of Egerk, Egerk-A, and Egerk-B were identified. Egerk-A was found to constitutively expressed at the transcriptional and protein levels in two different larval tissues (cyst membranes and protoscolices). Egerk-A was expressed in the tegumental structures, hooklets, and suckers and in the tissue surrounding the rostellum of E. granulosus protoscolices.</p><p><b>CONCLUSIONS</b>We have cloned the genomic DNA of a novel ERK ortholog from E. granulosus, EgERK (GenBank ID HQ585923), and found that it is constitutively expressed in cyst membrane and protoscolex. These findings will be useful in further study of the biological functions of the gene in the growth and development of Echinococcus and will contribute to research on novel anti-echinococcosis drug targets.</p>
Subject(s)
Animals , Blotting, Western , Computational Biology , DNA, Helminth , Genetics , Echinococcus granulosus , Genetics , Genome, Helminth , Genetics , Helminth Proteins , Genetics , Metabolism , Polymerase Chain ReactionABSTRACT
Cytoplasmic processing bodies, termed P bodies, are involved in diverse post-transcriptional processes including mRNA decay, nonsense-mediated RNA decay (NMD), RNAi, miRNA-mediated translational repression and storage of translationally silenced mRNAs. Regulation of the formation of P bodies in the context of multicellular organisms is poorly understood. Here we describe a systematic RNAi screen in C. elegans that identified 224 genes with diverse cellular functions whose inactivations result in a dramatic increase in the number of P bodies. 83 of these genes form a complex functional interaction network regulating NMD. We demonstrate that NMD interfaces with many cellular processes including translation, ubiquitin-mediated protein degradation, intracellular trafficking and cytoskeleton structure.We also uncover an extensive link between translation and RNAi, with different steps in protein synthesis appearing to have distinct effects on RNAi efficiency. Moreover, the intracellular vesicular trafficking network plays an important role in the regulation of RNAi. A subset of genes enhancing P body formation also regulate the formation of stress granules in C. elegans. Our study offers insights into the cellular mechanisms that regulate the formation of P bodies and also provides a framework for system-level understanding of NMD and RNAi in the context of the development of multicellular organisms.
Subject(s)
Animals , Animals, Genetically Modified , Caenorhabditis elegans , Genetics , Cytoplasmic Structures , Gene Expression Regulation , Genes, Helminth , Genome, Helminth , Genetics , MicroRNAs , Genetics , Nonsense Mediated mRNA Decay , Physiology , RNA Interference , RNA, Helminth , Genetics , Reverse Transcriptase Polymerase Chain ReactionABSTRACT
In this paper we review the impact that the availability of the Schistosoma mansoni genome sequence and annotation has had on schistosomiasis research. Easy access to the genomic information is important and several types of data are currently being integrated, such as proteomics, microarray and polymorphic loci. Access to the genome annotation and powerful means of extracting information are major resources to the research community.
Subject(s)
Animals , Databases, Genetic , Genomics , Genome, Helminth , Schistosoma mansoni , ResearchABSTRACT
Schistosomes have a comparatively large genome, estimated for Schistosoma mansoni to be about 270 megabase pairs (haploid genome). Recent findings have shown that mobile genetic elements constitute significant proportions of the genomes of S. mansoni and S. japonicum. Much less information is available on the genome of the third major human schistosome, S. haematobium. In order to investigate the possible evolutionary origins of the S. mansoni long terminal repeat retrotransposons Boudicca and Sinbad, several genomes were searched by Southern blot for the presence of these retrotransposons. These included three species of schistosomes, S. mansoni, S. japonicum, and S. haematobium, and three related platyhelminth genomes, the liver flukes Fasciola hepatica and Fascioloides magna and the planarian, Dugesia dorotocephala. In addition, Homo sapiens and three snail host genomes, Biomphalaria glabrata, Oncomelania hupensis, and Bulinus truncatus, were examined for possible indications of a horizontal origin for these retrotransposons. Southern hybridization analysis indicated that both Boudicca and Sinbad were present in the genome of S. haematobium. Furthermore, low stringency Southern hybridization analyses suggested that a Boudicca-like retrotransposon was present in the genome of B. truncatus, the snail host of S. haematobium.
Subject(s)
Humans , Animals , DNA, Helminth/analysis , Genome, Helminth/genetics , Retroelements/genetics , Schistosoma/genetics , Blotting, Southern , Biomphalaria/genetics , Bulinus/genetics , Schistosoma haematobium/geneticsABSTRACT
Estudos prévios têm mostrado que a infecção pelo HTLV-I pode resultar em uma ativação e proliferação linfocitária, e uma exacerbada resposta imune Th1 com níveis altos de IFN-y. A infecção por helmintos está relacionada com produção de IgE e citocinas com um perfil Th2. Neste trabalho foi caracterizada a resposta imune de portadores de HTLV-1 e de pacientes com mielopatia asssociada ao HTLV-1 e a influência da infecção pelo HTLV-I no curso clínico e na resposta imune de pacientes com estrongiloidíase e esquistossomos. Adcionalmente, foi avaliada a influência da infecção por he1mintos na resposta imune (determinação de citocinas em sobrenadante e análise por FACS) e na carga proviral de indivíduos infectados pelo HTLV-I. Foi observado que indivíduos com mielopatia apresentaram níveis de citocinas pro-inflamatórias, especificamente o IFN-y, bem mais altos do que portadores assintomáticos, porém neste último grupo houve uma variação nestes níveis e 40% destes indivíduos tiveram níveis semelhantes aos pacientes com mielopatia. Além disso, os pacientes com mielopatia apresentaram maior proliferação linfocitária e maior freqüência de células T CD8+. Quando foi avaliada a influência do HTLV-1 na resposta imune ao S. stercoralis, foi documentado que pacientes com estrongiloidíase quando co-infectados pelo HTLV-1 apresentaram níveis mais baixos de IL-5, IL-13 e níveis mais altos de IFN-y do que pacientes que apresentavam somente estrongiloidíase. Estes achados podem justificar o fato de que pacientes co-infectados pelo HTLV-1 e S. stercoralis desenvolvam formas disseminadas da doença e menor resposta terapêutica a drogas anti-helmínticas. Achados imunológicos semelhantes foram observados em relação à co-infecção com HTLV-1 e S. mansoni. Os pacientes dualmente infectados pelo HTLV-1 e S. mansoni produziram mais IFN-y e menos IL-5, IL-10 e IgE específica para S. mansoni do que pacientes apenas com infecção pelo S. mansoni. A despeito de pacientes com HTLV-1 e...