ABSTRACT
Ibervillea sonorae (S. Watson) Greene, is a plant native to Mexico, where its roots have been used traditionally for treating Diabetes Mellitus. The aim of this work was to establishment of cell cultures of stem explants of I. sonorae and evaluation of the anti-hyperglycemic activity of cell aqueous extract on a murine model of streptozotocin-induced diabetic rats. Cell extracts had 2.29 mg palmitic acid/g extracted, and other compounds with pharmacological activities like palmitoyl ethanolamide and palmitoyl tryptamine were also identified. Diabetic rats treated with aqueous cell extract decreased glucose levels from 350 mg/dL to 145 mg/dL, AST and ALT from 164 U/L to 49 U/L and 99 U/L to 53 U/L, respectively. Additionally, there were no changes in the cellular morphology of the pancreas, liver, kidneys, and spleen. These results revealed that the cell aqueous extract from stem explants has anti-hyperglycemic activity.
Ibervillea sonorae (S. Watson) Greene, es una planta originaria de México, donde sus raíces se han utilizado tradicionalmente para el tratamiento de la Diabetes Mellitus. El objetivo de este trabajo fue el establecimiento de cultivos celulares de explantes de tallo de I. sonorae y la evaluación de la actividad anti-hiperglucémica del extracto acuoso celular en un modelo de ratas diabéticas inducidas con estreptozotocina. El extracto celular contiene 2.29 mg de ácido palmítico/g extracto y se identificaron otros compuestos como palmitoil etanolamida y palmitoil triptamina. Las ratas diabéticas tratadas con extracto celular disminuyeron los niveles de glucosa de 350 mg/dL a 145 mg/dL, AST y ALT de 164 U/L a 49 U/L y 99 U/L a 53 U/L, respectivamente. Además, no hubo cambios en la morfología celular del páncreas, hígado, riñones y bazo. Estos resultados indican que el extracto de células de explantes de tallo de I. sonorae tiene actividad anti-hiperglucémica.
Subject(s)
Plant Extracts/chemistry , Cell Culture Techniques/methods , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , MexicoABSTRACT
In this study, we presented the isolation and characterization of eight novel seco-guaianolide sesquiterpenoids (1-8) and two known guaianolide derivatives (9 and 10), from the aerial part of Achillea alpina L.. Compounds 1-3 were identified as guaianolides bearing an oxygen insertion at the 2, 3 position, while compounds 4-8 belonged to a group of special 3-nor guaianolide sesquiterpenoids. The structural elucidation of 1-8, including their absolute configurations, were accomplished by a combination of spectroscopic data analysis and quantum electronic circular dichroism (ECD) calculations. To evaluate the potential antidiabetic activity of compounds 1-10, we investigated their effects on glucose consumption in palmitic acid (PA)-mediated HepG2-insulin resistance (IR) cells. Among the tested compounds, compound 7 demonstrated the most pronounced ability to reverse IR. Moreover, a mechanistic investigation revealed that compound 7 exerted its antidiabetic effect by reducing the production of the pro-inflammatory cytokine IL-1β, which was achieved through the suppression of the NLRP3 pathway.
Subject(s)
Humans , Hypoglycemic Agents/pharmacology , Circular Dichroism , Cytokines , Glucose , Hep G2 Cells , Insulin ResistanceABSTRACT
Metformin has been used for the treatment of type II diabetes mellitus for decades due to its safety, low cost, and outstanding hypoglycemic effect clinically. The mechanisms underlying these benefits are complex and still not fully understood. Inhibition of mitochondrial respiratory-chain complex I is the most described downstream mechanism of metformin, leading to reduced ATP production and activation of AMP-activated protein kinase (AMPK). Meanwhile, many novel targets of metformin have been gradually discovered. In recent years, multiple pre-clinical and clinical studies are committed to extend the indications of metformin in addition to diabetes. Herein, we summarized the benefits of metformin in four types of diseases, including metabolic associated diseases, cancer, aging and age-related diseases, neurological disorders. We comprehensively discussed the pharmacokinetic properties and the mechanisms of action, treatment strategies, the clinical application, the potential risk of metformin in various diseases. This review provides a brief summary of the benefits and concerns of metformin, aiming to interest scientists to consider and explore the common and specific mechanisms and guiding for the further research. Although there have been countless studies of metformin, longitudinal research in each field is still much warranted.
Subject(s)
Humans , Metformin/pharmacokinetics , Diabetes Mellitus, Type 2/metabolism , Hypoglycemic Agents/pharmacology , AMP-Activated Protein Kinases/metabolism , AgingABSTRACT
Diabetes mellitus is a chronic disease, typified by hyperglycemia resulting from failures in complex multifactorial metabolic functions, that requires life-long medication. Prolonged uncontrolled hyperglycemia leads to micro- and macro-vascular complications. Although antidiabetic drugs are prescribed as the first-line treatment, many of them lose efficacy over time or have severe side effects. There is a lack of in-depth study on the patents filed concerning the use of natural compounds to manage diabetes. Thus, this patent analysis provides a comprehensive report on the antidiabetic therapeutic activity of 6 phytocompounds when taken alone or in combinations. Four patent databases were searched, and 17,649 patents filed between 2001 and 2021 were retrieved. Of these, 139 patents for antidiabetic therapeutic aids that included berberine, curcumin, gingerol, gymnemic acid, gymnemagenin and mangiferin were analyzed. The results showed that these compounds alone or in combinations, targeting acetyl-coenzyme A carboxylase 2, serine/threonine protein kinase, α-amylase, α-glucosidase, lipooxygenase, phosphorylase, peroxisome proliferator-activated receptor-γ (PPARγ), protein tyrosine phosphatase 1B, PPARγ co-activator-1α, phosphoinositide 3-kinase and protein phosphatase 1 regulatory subunit 3C, could regulate glucose metabolism which are validated by pharmacological rationale. Synergism, or combination therapy, including different phytocompounds and plant extracts, has been studied extensively and found effective, whereas the efficacy of commercial drugs in combination with phytocompounds has not been studied in detail. Curcumin, gymnemic acid and mangiferin were found to be effective against diabetes-related complications. Please cite this article as: DasNandy A, Virge R, Hegde HV, Chattopadhyay D. A review of patent literature on the regulation of glucose metabolism by six phytocompounds in the management of diabetes mellitus and its complications. J Integr Med. 2023; 21(3): 226-235.
Subject(s)
Humans , PPAR gamma/metabolism , Curcumin/therapeutic use , Phosphatidylinositol 3-Kinases , Diabetes Mellitus/drug therapy , Hypoglycemic Agents/pharmacology , Hyperglycemia/drug therapy , GlucoseABSTRACT
With the rise of incidence, fatality rate, and number of young cases, diabetes mellitus has been one of the seven major diseases threatening human health. Although many antidiabetic drugs(oral or for injection) are available, the majority have serious side effects during the long-term use. Thus, it is of particularly vital to develop new drugs with low risk and definite effect. Psoraleae Fructus, a traditional medicinal widely used in the folk, has hypoglycemic, anti-osteoporosis, antitumor, estrogen-like, and anti-inflammatory effects. Thus, it has great clinical application potential. Chinese medicine and the active ingredients, characterized by multiple targets, multiple pathways, and multiple effects in the treatment of diabetes mellitus, have distinct advantages in clinical application. However, the safety of Chinese medicine remains to be a challenge, and one of keys is to clarifying the mechanism of a single Chinese medicinal and its active ingredients. With the method of literature research, this study summarized and analyzed the hypoglycemic mechanisms of Psoraleae Fructus and its main active ingredients over the last decade: regulating glucose metabolism, improving insulin resistance, and directly acting on pancreatic β-cells. The result is expected to serve as a reference for further research on the effects of Psoraleae Fructus and its main chemical constituents in lowering blood glucose and preventing diabetes mellitus and the clinical application.
Subject(s)
Humans , Drugs, Chinese Herbal/pharmacology , Fruit/chemistry , Hypoglycemic Agents/pharmacology , Osteoporosis/drug therapy , Psoralea/chemistryABSTRACT
Nordihydroguaiaretic acid (NDGA) is a natural product obtained by the alkaline extraction of dried plants of Larrea tridentata species. Due to the biological properties presented, such as antioxidant, anti-inflammatory, antiviral and cytotoxic capacity, this compound is being increasingly studied. In this review, it was evaluated the benefits of NDGA against different animal models. Besides that, it was found that this compound has antitumor activity similar to its synthetic derivative terameprocol in prostate tumors. The hypoglycemic effect may be evidenced by the inhibition of sugar uptake by NDGA; in obesity, studies have observed that NDGA presented a positive regulatory effect for Peroxisome proliferator-activated receptors (PPAR-α) involved in the oxidation of hepatic fatty acids and reduced the expression of lipogenic genes. Regarding its antioxidant potential, its mechanism is related to the ability to in vitro scavenging reactive substances. Although there are several studies demonstrating the benefits of using NDGA, there are also reports of its toxicity, mainly of liver damage and nephrotoxicity
Subject(s)
Masoprocol/analysis , Chemical Phenomena , Antiviral Agents/pharmacology , Plants/classification , Biological Products/analysis , In Vitro Techniques/methods , Models, Animal , Toxicity , Hypoglycemic Agents/pharmacology , Neoplasms , Antioxidants/pharmacologyABSTRACT
Abstract Degenerative diseases diabetes and oxidative stress constitute a major health concern worldwide. Medicinal plants are expected to provide effective and affordable remedies. The present research explored antidiabetic and antioxidant potential of extracts of Carissa opaca roots. Methanolic extract (ME) was prepared through maceration. Its fractions were obtained, sequentially, in hexane, chloroform, ethyl acetate and n-butanol. An aqueous decoction (AD) of the finely ground roots was obtained by boiling in distilled water. The leftover biomass with methanol was boiled in water to obtain biomass aqueous decoction (BAD). The extracts and fractions showed considerable porcine pancreatic α-amylase inhibitory activity with IC50 in the range of 5.38-7.12 mg/mL while acarbose had 0.31 mg/mL. The iron chelating activity in terms of EC50 was 0.2939, 0.3429, 0.1876, and 0.1099 mg/mL for AD, BAD, ME, and EDTA, respectively. The EC50 of beta-carotene bleaching activity for AD, BAD, ME, and standard BHA were 4.10, 4.71, 3.48, and 2.79 mg/mL, respectively. The total phenolic content (TPC) and total flavonoid content (TFC) of AD and BAD were also considerable. In general, ethyl acetate fraction proved to be the most potent. Thus, the C. opaca roots had excellent antioxidant activity while having moderate α-amylase inhibitory potentia
Subject(s)
Plants, Medicinal/adverse effects , Plant Extracts/analysis , Iron Chelating Agents/analysis , beta Carotene/analysis , Apocynaceae/classification , Disease , Inhibitory Concentration 50 , Hypoglycemic Agents/pharmacology , AntioxidantsABSTRACT
Microsechium helleri (Cucurbitaceae) has been used in ethnopharmacological as a lotion to prevent hair loss, diuretic and cathartic, in the region of central Veracruz, Mexico is used as antidiabetic. The antioxidant properties of the hexanic (EHex), chloroformic (ECHCl3) and ethanolic (EEtOH) extracts, were evaluated by 2,2diphenyl-1-pychrylhydrazyl (DPPH) test, the Ferric Reducing/Antioxidant Power (FRAP) and the total phenolic content test. The anti-inflammatory effect was evaluated in the acute ear edema induced with phorbol 12-myristate 13-acetate (TPA) in mouse and the hypoglycemic and cardioprotective effects of the EEtOH were determined in rats. The EEtOH was the most active in the antioxidant potential DPPH test and the ECHCl3 was the best in the FRAP assay and the total polyphenols content. In the anti-inflammatory assay, the ECHCl3 showed the most activity. The EEtOH had the decreased the glucose levels and reduced myocardial damage. The results support the use of this plant in folk medicine in Mexico as antioxidant, anti-inflammatory, hypoglycemic and cardioprotective.
Microsechium helleri (Cucurbitaceae) se utiliza en etnofarmacología como una loción para prevenir la caída del cabello, como diurético y catártico, en la región del centro de Veracruz, México es usado como antidiabético. Las propiedades antioxidantes de los extractos hexánico (EHex), clorofórmico (ECHCl3) y etanólico (EEtOH), se evaluaron mediante la prueba de 2,2difenil-1-psililhidrazilo (DPPH), el poder reductor férrico/poder antioxidante (FRAP) y el contenido fenólico total. El efecto anti-inflamatorio se evaluó en el edema agudo de la oreja inducido con forbol 12-miristato 13-acetato (TPA) en ratones y se determinaron los efectos hipoglucémicos y cardioprotectores del EEtOH en ratas. El EEtOH fue el más activo en la prueba DPPH de potencial antioxidante y el ECHCl3 fue el mejor en el ensayo FRAP y el contenido total de polifenoles. En el ensayo antiinflamatorio, el ECHCl3 mostró la mayor actividad. El EEtOH disminuyó los niveles de glucosa y redujo el daño miocárdico. Los efectos hipoglucémicos y cardioprotector del extracto de EEtOH se determinaron en ratas, donde el extracto disminuyó los niveles de glucosa y redujo el daño miocárdico. Los resultados apoyan el uso de esta planta en la medicina popular en México como antioxidante, anti-inflamatorio, hipoglucemiante y cardioprotector.
Subject(s)
Plant Extracts/pharmacology , Cardiotonic Agents/pharmacology , Cucurbitaceae/chemistry , Hypoglycemic Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Plant Extracts/chemistry , Cardiotonic Agents/chemistry , Free Radical Scavengers , Phenolic Compounds/analysis , Hypoglycemic Agents/chemistry , Medicine, Traditional , Mexico , Anti-Inflammatory Agents/chemistryABSTRACT
Abstract Campomanesia xanthocarpa, a plant belonging to the Myrtaceae family, is popularly known as gabiroba. Leaves of gabiroba has been popularly used to treat various diseases, including inflammatory, renal, and digestive, among others. Additionally, studies have shown an effect to reduce blood cholesterol levels. The aim of this study was to evaluate the antihyperglycemic and hypolipidemic effects of Campomanesia xanthocarpa seed extract in hyperglycemic rats. The results showed that 400 mg/kg of seed extract was able to decrease blood glucose levels and to increase the muscular and hepatic glycogen content as well as to inhibit the sucrase and maltase activity. At doses of 200 mg/kg and 800 mg/kg, the activity of these enzymes was also reduced. In the lipid profile 400 mg/kg produced a decrease in total and LDL cholesterol serum levels; and with 200 mg/kg there was an increase in HDL cholesterol levels. The extract did not present hepatic and renal toxic effects at the different doses tested. The results suggest that the treatment with Campomanesia xanthocarpa seeds extract is useful in reducing glycemia, total cholesterol and LDL levels with potential adjuvant therapeutic in the treatment of diabetes and hypercholesterolemia, however, additional pharmacological and toxicological studies are still required.
Resumo Campomanesia xanthocarpa, planta pertencente à família Mirtaceae, é popularmente conhecida como gabiroba. Folhas da gabiroba são popularmente usadas para tratar de doenças inflamatórias, renais, digestivas entre outras. Além disso, estudos têm mostrado um efeito redutor dos níveis de colesterol. O objetivo deste estudo foi avaliar os efeitos anti-hiperglicêmico e hipolipidêmico do extrato de sementes de Campomanesia xanthocarpa em ratos hiperglicêmicos. Os resultados mostraram que 400 mg/kg do extrato da semente foi capaz de reduzir os níveis de glicose sanguínea e aumentar o conteúdo de glicogênio hepático e muscular, bem como inibir a atividade da maltase e sacarase. Na dose de 200 mg/kg e 800 mg/kg, a atividade das enzimas também foi reduzida. No perfil lipídico, 400 mg/kg produziu uma redução nos níveis séricos de colesterol total e LDL e com 200 mg/kg houve um aumento nos níveis de colesterol HDL. O extrato não apresentou efeitos tóxicos hepáticos e renais nas doses testadas. Os resultados sugerem que o tratamento com o extrato de Campomanesia xanthocarpa é eficaz na redução da glicemia, de colesterol total e LDL com potencial para tratamento adjuvante do diabetes e hipercolesterolemia, no entanto estudos farmacológicos e toxicológicos adicionais são necessários.
Subject(s)
Animals , Rats , Carbon Dioxide , Myrtaceae , Seeds , Plant Extracts/pharmacology , Hypoglycemic Agents/pharmacologyABSTRACT
La diabetes mellitus, la insuficiencia cardíaca y la enfermedad renal crónica tienen alta prevalencia en la población. Asimismo, estas patologías están comprendidas en un "círculo vicioso" porque comparten mecanismos fisiopatológicos que predisponen a su coexistencia en un mismo paciente, incrementando significativamente el riesgo de eventos cardiovasculares. Recientemente se han agregado al arsenal terapéutico las gliflozinas, un grupo de fármacos con beneficios en las tres enfermedades mencionadas. Saber cómo se desarrolló la investigación con estos fármacos y sus mecanismos de acción es fundamental para optimizar el tratamiento de los pacientes.
Diabetes mellitus, heart failure, and chronic kidney disease are highly prevalent in the population. Likewise, these pathologies are included in a "vicious circle" because they share pathophysiological mechanisms that predispose to their coexistence in the same patient, significantly increasing the risk of cardiovascular events. Gliflozins, a group of drugs with benefits in the three mentioned pathologies, have recently been added to the therapeutic arsenal. Knowing how research with these drugs and its mechanisms of action is essential to optimize the treatment of patients.
Diabetes mellitus, insuficiência cardíaca e doença renal crônica são altamente prevalentes na população. Estas patologias fazem parte de um "círculo vicioso", compartilhando mecanismos fisiopatológicos que predispõem à coexistência no mesmo paciente, e aumentando significativamente o risco de eventos cardiovasculares. As gliflozinas, são un grupo de drogas com benefícios das três patologias citadas, foram adicionadas recentemente ao arsenal terapêutico. Saber como foram desenvolvidas as pesquisas com esses medicamentos e seus mecanismos de ação é essencial para otimizar o tratamento dos pacientes.
Subject(s)
Humans , Diabetes Mellitus/drug therapy , Renal Insufficiency, Chronic/drug therapy , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Heart Failure/drug therapy , Hypoglycemic Agents/pharmacology , Treatment OutcomeABSTRACT
Polysaccharides are macromolecular compounds formed by more than 10 monosaccharide molecules linked by glycosidic bonds. Polysaccharides have a wide range of sources, high safety and low toxicity, with a variety of biological activities, such as anti-tumor, anti-virus, immune regulation, lowering blood glucose, and lowering blood lipids. Type 2 diabetes mellitus(T2 DM) is a chronic metabolic disorder characterized by hyperglycemia, insulin resistance and low inflammation. In recent years, the treatment of T2 DM with polysaccharide has become a research hotspot. Polysaccharides can not only make up for the side effects such as hypoglycemia, weight gain, gastrointestinal injury caused by long-term treatment of acarbose, biguanidine and sulfonylurea, but also play an effective role in reducing glucose by regulating glucose metabolism, oxidative stress, inflammatory response, intestinal flora, etc. In this paper, the research progress of polysaccharides in the treatment of T2 DM was reviewed. In addition, the hot spots such as the hypoglycemic activity of polysaccharides with structural modifications were summarized, providing theoretical guidance for the development of active polysaccharide hypoglycemic medicines and the further study of action mechanism.
Subject(s)
Humans , Blood Glucose , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/pharmacology , Insulin Resistance , PolysaccharidesABSTRACT
The present study aimed to screen the Rhazya stricta Decne root for its antihyperglycemic and antioxidants potential through invitro assays along with phytochemical and elemental analyses. The crude extract was prepared through maceration and fractionated using solvent-solvent extraction technique. The spectroscopic studies indicated the presence of various phytochemical classes in the extract and its fractions. The antioxidant assays showed notable results along with a good concentration of phenolic and flavonoid contents. Enzyme inhibition assays demonstrated glucose-lowering effects by inhibiting the enzyme activity which could reduce post-prandial blood glucose level. The Dipeptidyl peptidase-IV (DPP-IV) inhibition assay results showed the novel DPP-IV inhibition activity of the plant extract and all fractions showed noteworthy enzyme inhibition and antihyperglycemic activity. Conclusively, the Rhazya stricta root extract displayed its antioxidant and antihyperglycemic potential due to the presence of various classes of phytochemicals and micro-nutrients.
El presente estudio tuvo como objetivo examinar la raíz de Rhazya stricta Decne por su potencial antihiperglicémico y antioxidante a través de ensayos in vitro junto con análisis fitoquímicos y elementales. El extracto crudo se preparó por maceración y se fraccionó usando una técnica de extracción solvente-solvente. Los estudios espectroscópicos indicaron la presencia de varias clases fitoquímicas en el extracto y sus fracciones. Los ensayos antioxidantes mostraron resultados notables junto con una importante concentración de contenido fenólico y flavonoide. Los ensayos de inhibición enzimática demostraron efectos reductores de la glucosa al inhibir la actividad enzimática que podría reducir el nivel de glucosa posprandial en sangre. Los resultados del ensayo de inhibición de Dipeptidyl peptidase-IV (DPP-IV) mostraron la nueva actividad de inhibición de DPP-IV del extracto de la planta y todas las fracciones mostraron una notable inhibición enzimática y actividad antihiperglicémica. En conclusión, el extracto de raíz de Rhazya stricta Decne mostró su potencial antioxidante y antihiperglicémico debido a la presencia de varias clases de fitoquímicos y micronutrientes.
Subject(s)
Plant Extracts/pharmacology , Apocynaceae/chemistry , Hypoglycemic Agents/pharmacology , Antioxidants/pharmacology , Phenols/analysis , Spectrophotometry, Ultraviolet , Flavonoids/analysis , Blood Glucose/drug effects , In Vitro Techniques , Plant Extracts/chemistry , Spectroscopy, Fourier Transform Infrared , Plant Roots/chemistry , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/antagonists & inhibitors , Phytochemicals , Hypoglycemic Agents/chemistry , Antioxidants/chemistryABSTRACT
Background: The harmful effects of type 2 diabetes mellitus and its complications have become a major global public health problem. In this study, the effects of Momordica charantia saponins (MCS) on lipid metabolism, oxidative stress, and insulin signaling pathway in type 2 diabetic rats were investigated. Results: MCS could attenuate the tendency of weight loss of the model rats. It could also improve glucose tolerance; reduce fasting blood glucose, nonesterified fatty acid, triglyceride, and total cholesterol; and increase the insulin content and insulin sensitivity index of the rats. The activity of superoxide dismutase and catalase increased, and the content of malondialdehyde decreased in the liver and pancreas tissues of rats in MCS-treated groups significantly. In addition, the expression of p-IRS-1 (Y612) and p-Akt (S473) increased, and the expression of p-IRS-1 (S307) decreased in the liver tissues and pancreas tissues of rats in MCS-treated groups significantly. Conclusion: MCS has an antidiabetic effect, which may be related to its improving the lipid metabolism disorder, reducing oxidative stress level, and regulating the insulin signaling pathway.
Subject(s)
Animals , Male , Rats , Saponins/therapeutic use , Momordica charantia/chemistry , Diabetes Mellitus, Experimental/drug therapy , Hypoglycemic Agents/therapeutic use , Pancreas/drug effects , Saponins/pharmacology , Blood Glucose/drug effects , Body Weight , Insulin Resistance , Rats, Wistar , Oxidative Stress/drug effects , Hypoglycemic Agents/pharmacology , Lipids , Liver/drug effectsABSTRACT
Endothelial progenitor cells (EPCs) play an important role in diabetic vascular complications. A large number of studies have revealed that some clinical antihyperglycemics can improve the complications of diabetes by regulating the function of EPCs. Metformin can improve EPCs function in diabetic patients by regulating oxidative stress level or downstream signaling pathway of adenosine monophosphate activated protein kinase; Pioglitazone can delay the aging of EPCs by regulating telomerase activity; acarbose, sitagliptin and insulin can promote the proliferation, migration and adhesion of EPCs. In addition to lowering blood glucose, the effects of antihyperglycemics on EPCs may also be one of the mechanisms to improve the complications of diabetes. This article reviews the research progress on the regulation of EPC proliferation and function by antihyperglycemics.
Subject(s)
Humans , Cell Movement/drug effects , Cells, Cultured , Endothelial Progenitor Cells/drug effects , Hypoglycemic Agents/pharmacology , Signal Transduction/drug effectsABSTRACT
Microglia are important cells involved in the regulation of neuropathic pain (NPP) and morphine tolerance. Information on their plasticity and polarity has been elucidated after determining their physiological structure, but there is still much to learn about the role of this type of cell in NPP and morphine tolerance. Microglia mediate multiple functions in health and disease by controlling damage in the central nervous system (CNS) and endogenous immune responses to disease. Microglial activation can result in altered opioid system activity, and NPP is characterized by resistance to morphine. Here we investigate the regulatory mechanisms of microglia and review the potential of microglial inhibitors for modulating NPP and morphine tolerance. Targeted inhibition of glial activation is a clinically promising approach to the treatment of NPP and the prevention of morphine tolerance. Finally, we suggest directions for future research on microglial inhibitors.
Subject(s)
Humans , Calcitonin Gene-Related Peptide/antagonists & inhibitors , Drug Tolerance , Hypoglycemic Agents/pharmacology , Microglia/physiology , MicroRNAs/physiology , Minocycline/pharmacology , Morphine/pharmacology , Neuralgia/etiology , Plant Extracts/pharmacology , Signal Transduction/physiologyABSTRACT
SUMMARY Type 2 diabetes mellitus is an important public health problem, with a significant impact on cardiovascular morbidity and mortality and an important risk factor for chronic kidney disease. Various hypoglycemic therapies have proved to be beneficial to clinical outcomes, while others have failed to provide an improvement in cardiovascular and renal failure, only reducing blood glucose levels. Recently, sodium-glucose cotransporter-2 (SGLT2) inhibitors, represented by the empagliflozin, dapagliflozin, and canagliflozin, have been showing satisfactory and strong results in several clinical trials, especially regarding the reduction of cardiovascular mortality, reduction of hospitalization due to heart failure, reduction of albuminuria, and long-term maintenance of the glomerular filtration rate. The benefit from SGLT2 inhibitors stems from its main mechanism of action, which occurs in the proximal tubule of the nephron, causing glycosuria, and a consequent increase in natriuresis. This leads to increased sodium intake by the juxtaglomerular apparatus, activating the tubule glomerular-feedback and, finally, reducing intraglomerular hypertension, a frequent physiopathological condition in kidney disease caused by diabetes. In addition, this class of medication presents an appropriate safety profile, and its most frequently reported complication is an increase in the incidence of genital infections. Thus, these hypoglycemic agents gained space in practical recommendations for the management of type 2 diabetes mellitus and should be part of the initial therapeutic approach to provide, in addition to glycemic control, cardiovascular outcomes, and the renoprotection in the long term.
Subject(s)
Humans , Cardiovascular Diseases/prevention & control , Diabetes Mellitus, Type 2/drug therapy , Sodium-Glucose Transporter 2/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Hypoglycemic Agents/pharmacology , Kidney Diseases/prevention & control , Benzhydryl Compounds/therapeutic use , Cardiovascular Diseases/etiology , Cardiovascular Diseases/mortality , Diabetes Mellitus, Type 2/complications , Diabetic Nephropathies/etiology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/prevention & control , Sodium-Glucose Transporter 2/therapeutic use , Canagliflozin/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Glomerular Filtration Rate , Glucose/metabolism , Glucosides/therapeutic use , Hypoglycemic Agents/therapeutic use , Kidney/drug effects , Kidney/physiopathology , Kidney/metabolism , Kidney Diseases/etiology , Kidney Diseases/metabolismABSTRACT
The therapeutic approaches for Type 2 Diabetes Mellitus rely most on the usage of oral hypoglycaemic drugs. These drugs have adverse side effects and hence alternative medicines are continuously explored. The present study intends to investigate the antidiabetic potential of the flavonoids present in Gracilaria corticata. The flavonoids were isolated (FEGC) and their inhibitory activity on the carbohydrate hydrolysing enzymes such as α-amylase and α-glucosidase was analysed. The flavonoids were found to inhibit α-amylase and α-glucosidase with an IC50 value of 302 µg and 75 µg respectively. The synergistic effect of FEGC and luteolin was also investigated and the results show that both FEGC and luteolin inhibited synergistically at half their IC50 values. The observations of this study reveal that the flavonoids of G. corticata have potential antidiabetic activity and can act independently or synergistically in the management of Type 2 Diabetes Mellitus
Subject(s)
Gracilaria/classification , Rhodophyta/adverse effects , Flavonoids/pharmacology , Pharmaceutical Preparations , Inhibitory Concentration 50 , Diabetes Mellitus, Type 2/pathology , Glucosidases/pharmacology , Amylases/adverse effects , Hypoglycemic Agents/pharmacologyABSTRACT
Ethnomedicinal survey documents the traditional practices of Tetrastigma angustifolia leaves in the management of diabetes in the North-eastern region of India. The present study was aimed at isolation of possible antidiabetic principle(s) from T. angustifolia leaves and evaluation of antidiabetic efficacy of isolated compound(s) in experimental animal model. The methanolic extract of T. angustifolia leaves was obtained by Soxhlet extraction method and subjected to silica gel column chromatography (100-200 mesh). Fraction 18-176 chloroform:methanol (70:30) yielded a pale yellow colored compound. The structure of pure compound was elucidated with the help of UV, IR, NMR and Mass spectrometric/techniques. The antioxidant activity of the isolated compound was evaluated in vitro by various radical scavenfing assay methods.. Oral acute toxicity study was carried out according to OECD guideline 423 in Wistar rats. The antidiabetic efficacy of the isolated compound was evaluated in STZ-induced diabetic rats at the dose of 5 mg/kg b.w. for duration of 21 days. The present study reports a new flavocnoid compound isolated from the methanolic extract of T. angustifolia leaves and identified as 8-hydroxyapigenin 7-O-D-glucopyranoside. The flavonoid compound exhibited potent antidiabetic (hypoglicemic) activity in STZ-induced diabetic rats with promising antioxidant (radical scavenging activity) potential in vitro.
Subject(s)
Flavonoids/analysis , Plant Leaves/adverse effects , Vitaceae/classification , In Vitro Techniques/instrumentation , Chromatography , Models, Animal , Dosage/adverse effects , Hypoglycemic Agents/pharmacology , Antioxidants/analysisABSTRACT
SUMMARY OBJECTIVE In view of the high incidence of polycystic ovary syndrome (PCOS) and the unsatisfactory therapeutic effects of dimethyldiguanide or clomifene citrate alone, our study aimed to investigate the therapeutic effects of dimethyldiguanide combined with clomifene citrate in the treatment of PCOS. METHODS A total of 79 patients with POCS and 35 healthy females were included, and endometrial biopsies were obtained. The sterol regulatory element-binding protein-1 (SREBP1) expression in endometrial tissues was detected by qRT-PCR. POC patients were randomly divided into group A (n=40) and group B (n=39). Patients in group A were treated with dimethyldiguanide combined with clomifene citrate, while patients in group B were treated with clomifene citrate alone. The number of mature follicles and cervical mucus score, follicular development rate and single follicle ovulation rate, cycle pregnancy rate, early miscarriage rate, ovulation rate, endometrial thickness, positive rate of three lines sign, follicle stimulating hormone level and luteinizing hormone level were compared between the two groups. RESULTS The expression level of SREBP1 was higher in PCOS patients than that in the healthy control. SREBP1 expression was inhibited after treatment, while the inhibitory effects of combined treatment were stronger than those of clomifene citrate alone. Compared with clomifene citrate alone, the combined treatment improved cervical mucus score, follicle development rate, single follicle ovulation rate, endometrial thickness, positive rate of three lines sign, and follicle-stimulating hormone level. CONCLUSION The therapeutic effect of combined treatment is better than clomifene citrate alone in the treatment of PCOS.
RESUMO OBJETIVO Tendo em vista a alta incidência de síndrome dos ovários policísticos (SOP) e os efeitos terapêuticos insatisfatórios da dimetildiguanida ou do citrato de clomifeno isoladamente, nosso estudo teve como objetivo investigar os efeitos terapêuticos da dimetildiguanida associada ao citrato de clomifeno no tratamento da SOP. MÉTODOS Um total de 79 pacientes com POCS e 35 mulheres saudáveis foram incluídos, e biópsias endometriais foram obtidas. A expressão da proteína de ligação do elemento regulador de esterol-1 (SREBP1) nos tecidos endometriais foi detectada por qRT-PCR. Pacientes POC foram divididos aleatoriamente em grupo A (n=40) e grupo B (n=39). Os pacientes do grupo A foram tratados com dimetildiguanida combinada com citrato de clomifeno, enquanto os pacientes do grupo B foram tratados apenas com citrato de clomifeno. O número de folículos maduros e muco cervical, taxa de desenvolvimento folicular e taxa de ovulação, taxa de gravidez, abortamento precoce, taxa de ovulação, espessura endometrial, taxa positiva de três linhas, nível de hormônio folículo estimulante e nível de hormônio luteinizante foram comparados entre os dois grupos. RESULTADOS O nível de expressão do SREBP1 foi maior nos pacientes com SOP do que no controle normal. A expressão de SREBP1 foi inibida após o tratamento, enquanto os efeitos inibidores do tratamento combinado foram mais fortes do que os do citrato de clomifeno isoladamente. Comparado com o citrato de clomifeno sozinho, o tratamento combinado melhorou significativamente a pontuação do muco cervical, a taxa de desenvolvimento folicular, a taxa de ovulação do folículo único, a espessura endometrial, a taxa positiva de três linhas de sinal e o nível de hormônio folículo estimulante. CONCLUSÃO O efeito terapêutico do tratamento combinado é melhor do que o citrato de clomifeno isolado no tratamento da SOP.
Subject(s)
Humans , Female , Adult , Young Adult , Polycystic Ovary Syndrome/drug therapy , Clomiphene/therapeutic use , Fertility Agents, Female/therapeutic use , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Ovulation Induction , Cervix Mucus/drug effects , Gene Expression Regulation/drug effects , Clomiphene/pharmacology , Drug Therapy, Combination , Endometrium/physiopathology , Sterol Regulatory Element Binding Protein 1/adverse effects , Sterol Regulatory Element Binding Protein 1/genetics , Fertility Agents, Female/pharmacology , Ovarian Follicle/drug effects , Hypoglycemic Agents/pharmacology , Metformin/pharmacologyABSTRACT
ABSTRACT Objective: Gymnosporia royleana (G royleana) Wall ex MA Lawson, locally known as (Sur Azghee), is traditionally used for the management of various diseases. In the current investigation, we made an effort to scientifically validate its traditional use in various pathological conditions, such as microbial infections and cancer, and to explore its additional pharmacological activities via random screening against locally accessible pharmacological methods, irrespective of its traditional uses like antidiabetic, haemagglutination and antioxidant assays. Methods: Extraction was carried out using a cold maceration methodology. Dilution method was used for antimicrobial susceptibility testing using different concentrations. Streptozocin (STZ) induced protocol was used to assess antidiabetic activity at a dose level of 200, 400 mg/ kg. Antioxidant activity, haemagglutination activity, and anticancer activities against HepG-2 and MCF-7 cell lines were determined as per established protocols. Similarly, the maximum amount of phenolic content (12.02 mg 100 g) was determined by using Folin Ciocalteu assay. Results: Promising antimicrobial activities in terms of minimum inhibitory concentration (MIC) were noted for crude extract (25-200 µg/mL), n-hexane (100-400 µg/mL), ethyl acetate (50-200 µg/mL) and aqueous (100-400 µg/mL). Antidiabetic potential was significant at a dose level of 200-400 mg/kg bodyweight by reducing the blood glucose level at days 10 and 15. The percentage of 2,2-diphenyl-1-picrylhydrazyl (DPPH) values increase by increasing the concentration of the plant extract (10-100 µg/mL). The methanol extract was found to possess high agglutination activity. Conclusion: It was concluded that this plant species possess significant antimicrobial, antidiabetic, antioxidant, anticancer and haemagglutination activities, which could be attributed to the phenolic content of the extract.
RESUMEN Objetivo: Gymnosporia royleana (G royleana) Wall ex MA Lawson, localmente conocida como "Sur Azghee", se utiliza tradicionalmente para el tratamiento de diversas enfermedades. En la investigación presente, tratamos de validar científicamente su uso tradicional en varias condiciones, tales como las infecciones microbianas y el cáncer, así como explorar sus actividades farmacológicas adicionales mediante el tamizado aleatorio frente a los métodos farmacológicos localmente accesibles, independientemente de sus usos tradicionales como ensayos antidiabéticos, hemaglutinantes, y antioxidantes. Métodos: La extracción se realizó mediante una metodología de maceración en frío. Un método de dilución se utilizó para la prueba de susceptibilidad antimicrobiana utilizando diferentes concentraciones. Se utilizó el protocolo inducido por estreptozotocina (STZ) para evaluar la actividad antidiabética a un nivel de dosis de 200, 400 mg/kg. La actividad antioxidante, la actividad de hemaglutinación, y las actividades anticancerígenas contra las líneas celulares HepG-2 y MCF-7, se determinaron según los protocolos establecidos. De modo similar. la cantidad máxima de contenido fenólico (12.02 mg 100 g) se determinó mediante el uso del ensayo Folin-Ciocalteu. Resultados: Se observaron actividades antimicrobianas prometedoras en términos de la concentración inhibitoria mínima (CIM) para el extracto crudo (25-200 μg/mL), el n-hexano (100-400 μg/mL), el acetato de etilo (50-200 μg/mL), y el extracto acuoso (100-400 μg/mL). El potencial antidiabético fue significativo a un nivel de dosis de 200-400 mg/kg de peso corporal mediante la reducción del nivel de glucosa en sangre a los 10 y 15 días. El porcentaje de los valores de 2,2-difenil-1-picrilhidracilo (DPPH) se incrementa al aumentar la concentración del extracto de la planta (10-100 μg/mL). Se halló que el extracto de metanol posee una alta actividad de aglutinación. Conclusión: Se concluyó que esta especie de planta posee importantes actividades antimicrobianas, antidiabéticas, antioxidantes, anticancerígenas y hemaglutinantes, que podrían atribuirse al contenido fenólico del extracto.