ABSTRACT
OBJECTIVE@#To explore the genetic basis for a Chinese pedigree affected with hereditary spastic paraplegia type 30 (HSP30).@*METHODS@#A proband presented at the Second Hospital of Shanxi Medical University in August 2021 was selected as the study subject. The proband was subjected to whole exome sequencing, and candidate variant was verified by Sanger sequencing and bioinformatic analysis.@*RESULTS@#The proband was found to have harbored a heterozygous c.110T>C variant in exon 3 of the KIF1A gene, which can cause substitution of isoleucine by threonine at position 37 (p.I37T) and alter the function of its protein product. The same variant was not found in his parents, elder brother and elder sister, suggesting that it has a de novo origin. Based on the guidelines of the American College of Medical Genetics and Genomics (ACMG), the variant was rated as likely pathogenic (PM2_Supporting+PP3+PS2).@*CONCLUSION@#The c.110T>C variant of the KIF1A gene probably underlay the HSP30 in the proband. Above finding has enable genetic counseling for this family.
Subject(s)
Humans , Male , Female , East Asian People , Kinesins/genetics , Mutation , Pedigree , Spastic Paraplegia, Hereditary/geneticsABSTRACT
OBJECTIVES@#To analyze the clinical and genetic characteristics of children with autosomal dominant neurodevelopmental disorders caused by kinesin family member 1A (KIF1A) gene variation.@*METHODS@#Clinical and genetic testing data of 6 children with KIF1A gene de novo heterozygous variation diagnosed in Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine from the year 2018 to 2020 were retrospectively analyzed. Pathogenic variants were identified based on whole exome sequencing, and verified by Sanger sequencing. Moreover, the effect of variants on three-dimensional structure and stability of protein was analyzed by bioinformatics.@*RESULTS@#Among 6 patients there were 4 males and 2 females, and the age of consultation varied from 7 months to 18 years. All cases had varying degrees of motor developmental delay since childhood, and 4 of them had gait abnormalities or fell easily. In addition, 2 children were accompanied by delayed mental development, epilepsy and abnormal eye development. Genetic tests showed that all 6 cases had heterozygous de novo variations of KIF1A gene, including 4 missense mutations c.296C>T (p.T99M), c.761G>A (p.R254Q), c.326G>T (p.G109V), c.745C>G (p.L249V) and one splicing mutation c.798+1G>A, among which the last three variants have not been previously reported. Bioinformatics analysis showed that G109V and L249V may impair their interaction with the neighboring amino acid residues, thereby impacting protein function and reducing protein stability, and were assessed as "likely pathogenic". Meanwhile, c.798+1G>A may damage an alpha helix in the motor domain of the KIF1A protein, and was assessed as "likely pathogenic".@*CONCLUSIONS@#KIF1A-associated neurological diseases are clinically heterogeneous, with motor developmental delay and abnormal gait often being the most common clinical features. The clinical symptoms in T99M carriers are more severe, while those in R254Q carriers are relatively mild.
Subject(s)
Male , Female , Humans , Child , Retrospective Studies , China , Mutation , Epilepsy/genetics , Neurodevelopmental Disorders/genetics , Kinesins/geneticsABSTRACT
Hereditary gingival fibromatosis (HGF) is a rare inherited condition with fibromatoid hyperplasia of the gingival tissue that exhibits great genetic heterogeneity. Five distinct loci related to non-syndromic HGF have been identified; however, only two disease-causing genes, SOS1 and REST, inducing HGF have been identified at two loci, GINGF1 and GINGF5, respectively. Here, based on a family pedigree with 26 members, including nine patients with HGF, we identified double heterozygous pathogenic mutations in the ZNF513 (c.C748T, p.R250W) and KIF3C (c.G1229A, p.R410H) genes within the GINGF3 locus related to HGF. Functional studies demonstrated that the ZNF513 p.R250W and KIF3C p.R410H variants significantly increased the expression of ZNF513 and KIF3C in vitro and in vivo. ZNF513, a transcription factor, binds to KIF3C exon 1 and participates in the positive regulation of KIF3C expression in gingival fibroblasts. Furthermore, a knock-in mouse model confirmed that heterozygous or homozygous mutations within Zfp513 (p.R250W) or Kif3c (p.R412H) alone do not led to clear phenotypes with gingival fibromatosis, whereas the double mutations led to gingival hyperplasia phenotypes. In addition, we found that ZNF513 binds to the SOS1 promoter and plays an important positive role in regulating the expression of SOS1. Moreover, the KIF3C p.R410H mutation could activate the PI3K and KCNQ1 potassium channels. ZNF513 combined with KIF3C regulates gingival fibroblast proliferation, migration, and fibrosis response via the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK pathways. In summary, these results demonstrate ZNF513 + KIF3C as an important genetic combination in HGF manifestation and suggest that ZNF513 mutation may be a major risk factor for HGF.
Subject(s)
Animals , Humans , Mice , Fibromatosis, Gingival/pathology , Gingiva , Kinesins/genetics , Mutation/genetics , Phosphatidylinositol 3-Kinases/geneticsABSTRACT
OBJECTIVE@#To explore the genetic basis for a child featuring complex cortical dysplasia and other brain malformations (CDCBM3).@*METHODS@#Genomic DNA was extracted from peripheral blood samples from the patient and his parents. Whole exome sequencing (WES) was carried out for the family trio. Suspected variant was verified by Sanger sequencing.@*RESULTS@#The proband, a 1-year-and-2-month old Chinese boy, had presented with motor developmental delay, lissencephaly, severe cognitive impairments, absent speech and congenital laryngomalacia. WES revealed that he has harbored a heterozygous missense variant of the KIF2A gene, namely NM_001098511.2: c.952G>A, p.Gly318Arg (GRCh37/hg19). The highly conserved residue is located around the ATP nucleotide-binding pocket in the kinesin motor domain (PM1). The variant was not found in the Genome Aggregation Database and the 1000 Genomes Project (PM2), and was predicted to be deleterious on the gene product by multiple in silico prediction tools (PP3). This variant was unreported previously and was de novo in origin (PS2). Based on the ACMG guidelines, it was categorized as likely pathogenic (PS2+PM1+PM2+PP3). Furthermore, the congenital laryngomalacia found in our patient was absent in previously reported CDCBM3 cases.@*CONCLUSION@#The novel variant of the KIF2A gene probably underlay the disorders in the proband. Above finding has expanded the phenotypic and mutational spectrum of CDCBM3.
Subject(s)
Humans , Infant , Male , Asian People/genetics , Brain , China , Kinesins/genetics , Malformations of Cortical Development/genetics , Exome SequencingABSTRACT
OBJECTIVE@#To analyze the pathogenic variants of the KIF1A gene and its corresponding protein structure in an autism spectrum disorder (ASD) family trio carrying harmful missense variants in the KIF1A gene.@*METHODS@#The peripheral blood DNA of the patient and his parents was extracted and sequenced using whole exome sequencing (WES) technology and verified by Sanger sequencing. Bioinformatics software SIFT, PolyPhen-2, Mutation Taster, and CADD software were used to analyze the harmfulness and conservation of variants. The Human Brain Transcriptome (HBT) database was used to analyze the expression of the KIF1A gene in the brain. PredictProtein and SWISS-MODEL were further used to predict the secondary structure and tertiary structure of KIF1A wild-type protein and variant protein. PyMOL V2.4 was utilized to investigate the change of hydrogen bond connection after protein variant.@*RESULTS@#The WES sequencing revealed a missense variant c.664A>C (p.Asn222His) in the child's KIF1A gene, and this variant was a de novo variant. The harmfulness prediction results suggest that this variant is harmful. By analyzing expression level of KIF1A gene in the brain. It is found that KIF1A gene widely expressed in various brain regions during embryonic development. By analyzing the variant protein structure, the missense variant of KIF1A will cause many changes in the secondary structure of protein, such as alpha-helix, beta-strand, and protein binding domain. The connection of hydrogen bond and spatial structure will also change, thereby changing the original biological function.@*CONCLUSION@#The KIF1A gene may be a risk gene for ASD.
Subject(s)
Child , Female , Humans , Pregnancy , Autism Spectrum Disorder/genetics , Kinesins/genetics , Mutation , Mutation, Missense , Protein Domains , Exome SequencingABSTRACT
Cervical cancer (CC) is the most common malignant tumor in females. Although persistent high-risk human papillomavirus (HPV) infection is a leading factor that causes CC, few women with HPV infection develop CC. Therefore, many mechanisms remain to be explored, such as aberrant expression of oncogenes and tumor suppressor genes. To identify promising prognostic factors and interpret the relevant mechanisms of CC, the RNA sequencing profile of CC was downloaded from the Cancer Genome Atlas and the Gene Expression Omnibus databases. The GSE63514 dataset was analyzed, and differentially expressed genes (DEGs) were obtained by weighted coexpression network analysis and the edgeR package in R. Fifty-three shared genes were mainly enriched in nuclear chromosome segregation and DNA replication signaling pathways. Through a protein-protein interaction network and prognosis analysis, the kinesin family member 14 (KIF14) hub gene was extracted from the set of 53 shared genes, which was overexpressed and associated with poor overall survival (OS) and disease-free survival (DFS) of CC patients. Mechanistically, gene set enrichment analysis showed that KIF14 was mainly enriched in the glycolysis/gluconeogenesis signaling pathway and DNA replication signaling pathway, especially in the cell cycle signaling pathway. RT-PCR and the Human Protein Atlas database confirmed that these genes were significantly increased in CC samples. Therefore, our findings indicated the biological function of KIF14 in cervical cancer and provided new ideas for CC diagnosis and therapies.
Subject(s)
Humans , Female , Uterine Cervical Neoplasms/genetics , Papillomavirus Infections , Gene Expression Regulation, Neoplastic , Cell Cycle/genetics , Kinesins/genetics , Oncogene Proteins , Disease-Free Survival , Computational Biology , Protein Interaction MapsABSTRACT
This study aimed to explore the correlation of kinesin family member 2A (KIF2A) expression with disease risk, clinical characteristics, and prognosis of acute myeloid leukemia (AML), and investigate the effect of KIF2A knockdown on AML cell activities in vitro. Bone marrow samples were collected from 176 AML patients and 40 healthy donors, and KIF2A expression was measured by real-time quantitative polymerase chain reaction. Treatment response, event-free survival (EFS), and overall survival (OS) were assessed in AML patients. In vitro, KIF2A expression in AML cell lines and CD34+ cells (from healthy donors) was measured, and the effect of KIF2A knockdown on AML cell proliferation and apoptosis in HL-60 and KG-1 cells was detected. KIF2A expression was greater in AML patients compared to healthy donors, and receiver operating characteristic curve indicated that KIF2A expression predicted increased AML risk (area under curve: 0.793 (95%CI: 0.724-0.826)). In AML patients, KIF2A expression positively correlated with white blood cells, monosomal karyotype, and high risk stratification. Furthermore, no correlation of KIF2A expression with complete remission or hematopoietic stem cell transplantation was found. Kaplan-Meier curves showed that KIF2A expression was negatively correlated with EFS and OS. In vitro experiments showed that KIF2A was overexpressed in AML cell lines (KG-1, HL-60, ME-1, and HT-93) compared to CD34+ cells, moreover, cell proliferation was reduced but apoptosis was increased by KIF2A knockdown in HL-60 and KG-1 cells. In conclusion, KIF2A showed potential to be a biomarker and treatment target in AML.
Subject(s)
Humans , Male , Female , Adult , Middle Aged , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Kinesins/genetics , Biomarkers, Tumor/genetics , Survival Rate , Risk Factors , Apoptosis , HL-60 Cells , Cell Proliferation , Gene Knockdown TechniquesABSTRACT
INTRODUCTION: Dengue is the most prevalent arboviral disease in tropical areas. In Mato Grosso, outbreaks are reported every year, but studies on dengue in this state are scarce. METHODS: Natural transovarial infection of Aedes aegypti by a flavivirus was investigated in the Jardim Industriário neighborhood of Cuiabá, Mato Grosso. Eggs were collected with ovitraps during the dry, intermediate, and rainy seasons of 2012. After the eggs hatched and the larvae developed to adulthood, mosquitoes (n = 758) were identified and allocated to pools of 1-10 specimens according to the collection location, sex, and climatic period. After RNA extraction, multiplex semi-nested RT-PCR was performed to detect the four dengue virus (DENV) serotypes, yellow fever virus, West Nile virus and Saint Louis encephalitis virus. RESULTS: DENV-4 was the only flavivirus detected, and it was found in 8/50 pools (16.0%). Three of the positive pools contained females, and five contained males. Their nucleotide sequences presented 96-100% similarity with DENV-4 genotype II strains from Manaus, Amazonas. The minimum infection rate was 10.5 per 1000 specimens, and the maximum likelihood estimator of the infection rate was 11.6 (95% confidence interval: 4.8; 23.3). CONCLUSIONS: This study provides the first evidence of natural transovarial infection by DENV-4 in Ae. Aegypti in Mato Grosso, suggesting that this type of infection might serve as a mechanism of virus maintenance during interepidemic periods in Cuiabá, a city where dengue epidemics are reported every year. These results emphasize the need for efficient vector population control measures to prevent arbovirus outbreaks in the state. .
Subject(s)
Animals , Humans , Mice , Kinesins/metabolism , Protein Biosynthesis , Cell Line , Centrifugation, Density Gradient , Gene Knockdown Techniques , Immunoprecipitation , Interphase , Kinesins/antagonists & inhibitors , Kinesins/genetics , Microtubules/metabolism , Peptide Chain Initiation, Translational , Protein Binding , Pyrimidines/pharmacology , RNA Interference , Ribosomes/metabolism , Thiones/pharmacologyABSTRACT
Although it has been suggested that kinesin family member 14 (KIF14) has oncogenic potential in various cancers, including hepatocellular carcinoma (HCC), the molecular mechanism of this potential remains unknown. We aimed to elucidate the role of KIF14 in hepatocarcinogenesis by knocking down KIF14 in HCC cells that overexpressed KIF14. After KIF14 knockdown, changes in tumor cell growth, cell cycle and cytokinesis were examined. We also examined cell cycle regulatory molecules and upstream Skp1/Cul1/F-box (SCF) complex molecules. Knockdown of KIF14 resulted in suppression of cell proliferation and failure of cytokinesis, whereas KIF14 overexpression increased cell proliferation. In KIF14-silenced cells, the levels of cyclins E1, D1 and B1 were profoundly decreased compared with control cells. Of the cyclin-dependent kinase inhibitors, the p27Kip1 protein level specifically increased after KIF14 knockdown. The increase in p27Kip1 was not due to elevation of its mRNA level, but was due to inhibition of the proteasome-dependent degradation pathway. To explore the pathway upstream of this event, we measured the levels of SCF complex molecules, including Skp1, Skp2, Cul1, Roc1 and Cks1. The levels of Skp2 and its cofactor Cks1 decreased in the KIF14 knockdown cells where p27Kip1 accumulated. Overexpression of Skp2 in the KIF14 knockdown cells attenuated the failure of cytokinesis. On the basis of these results, we postulate that KIF14 knockdown downregulates the expression of Skp2 and Cks1, which target p27Kip1 for degradation by the 26S proteasome, leading to accumulation of p27Kip1. The downregulation of Skp2 and Cks1 also resulted in cytokinesis failure, which may inhibit tumor growth. To the best of our knowledge, this is the first report that has identified the molecular target and oncogenic effect of KIF14 in HCC.
Subject(s)
Humans , Carcinoma, Hepatocellular/metabolism , Cyclin-Dependent Kinase Inhibitor p27/genetics , Cyclins/genetics , Cytokinesis , Gene Silencing , Hep G2 Cells , Kinesins/genetics , Liver Neoplasms/metabolism , Oncogene Proteins/genetics , Proteasome Endopeptidase Complex/metabolism , RNA, Messenger/genetics , S-Phase Kinase-Associated Proteins/genetics , UbiquitinationABSTRACT
BACKGROUND: Vascular endothelial growth factor (VEGF) is involved in the growth of new blood vessels that feed tumors and kinesin spindle protein (KSP) plays a critical role in mitosis involving in cell proliferation. Simultaneous silencing of VEGF and KSP, an attractive and viable approach in cancer, leads on restricting cancer progression. The purpose of this study is to examine the therapeutic potential of dual gene targeted siRNA cocktail on human hepatocellular carcinoma Hep3B cells. RESULTS: The predesigned siRNAs could inhibit VEGF and KSP at mRNA level. siRNA cocktail showed a further downregulation on KSP mRNA and protein levels compared to KSP-siRNA or VEGF-siRNA, but not on VEGF expression. It also exhibited greater suppression on cell proliferation as well as cell migration or invasion capabilities and induction of apoptosis in Hep3B cells than single siRNA simultaneously. This could be explained by the significant downregulation of Cyclin D1, Bcl-2 and Survivin. However, no sigificant difference in the mRNA and protein levels of ANG2, involving inhibition of angiogenesis was found in HUVECs cultured with supernatant of Hep3B cells treated with siRNA cocktail, compared to that of VEGF-siRNA. CONCLUSION: Silencing of VEGF and KSP plays a key role in inhibiting cell proliferation, migration, invasion and inducing apoptosis of Hep3B cells. Simultaneous silencing of VEGF and KSP using siRNA cocktail yields promising results for eradicating hepatocellular carcinoma cells, a new direction for liver cancer treatment.
Subject(s)
Humans , Kinesins/genetics , Apoptosis/genetics , Gene Silencing , RNA, Small Interfering/genetics , Vascular Endothelial Growth Factor A/genetics , Cell Proliferation/genetics , Tetrazolium Salts , Transfection , Cysteine Proteinase Inhibitors/metabolism , Down-Regulation , Cell Movement , Blotting, Western , Kinesins/metabolism , Annexin A5 , Genes, bcl-2 , Cyclin D1/metabolism , Vesicular Transport Proteins/metabolism , Cell Line, Tumor , Vascular Endothelial Growth Factor A/metabolism , Inhibitor of Apoptosis Proteins/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Real-Time Polymerase Chain Reaction , Flow Cytometry , Survivin , Mitosis/geneticsABSTRACT
Recently, rearranged during transfection (RET) fusions have been identified in approximately 1% of non-small cell lung cancer (NSCLC). To know the prevalence of RET fusion genes in Korean NSCLCs, we examined the RET fusion genes in 156 surgically resected NSCLCs using a reverse transcriptase polymerase chain reaction. Two KIF5B-RET fusions and one CCDC6-RET fusion were identified. All three patients were females and never smokers with adenocarcinomas. RET fusion genes were mutually exclusive from EGFR, KRAS mutations and EML4-ALK fusion. RET fusion genes occur 1.9% (3 of 156) of surgically treated NSCLC patients in Koreans.
Subject(s)
Female , Humans , Middle Aged , Asian People/genetics , Carcinoma, Non-Small-Cell Lung/epidemiology , Cytoskeletal Proteins/genetics , Kinesins/genetics , Lung Neoplasms/epidemiology , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Proteins c-ret/genetics , Republic of Korea/epidemiology , Sequence Analysis, DNAABSTRACT
The integrity of blood vessels controls vascular permeability and extravasation of blood cells, across the endothelium. Thus, the impairment of endothelial integrity leads to hemorrhage, edema, and inflammatory infiltration. However, the molecular mechanism underlying vascular integrity has not been fully understood. Here, we demonstrate an essential role for A-kinase anchoring protein 12 (AKAP12) in the maintenance of endothelial integrity during vascular development. Zebrafish embryos depleted of akap12 (akap12 morphants) exhibited severe hemorrhages. In vivo time-lapse analyses suggested that disorganized interendothelial cell-cell adhesions in akap12 morphants might be the cause of hemorrhage. To clarify the molecular mechanism by which the cell-cell adhesions are impaired, we examined the cell-cell adhesion molecules and their regulators using cultured endothelial cells. The expression of PAK2, an actin cytoskeletal regulator, and AF6, a connector of intercellular adhesion molecules and actin cytoskeleton, was reduced in AKAP12-depleted cells. Depletion of either PAK2 or AF6 phenocopied AKAP12-depleted cells, suggesting the reduction of PAK2 and AF6 results in the loosening of intercellular junctions. Consistent with this, overexpression of PAK2 and AF6 rescued the abnormal hemorrhage in akap12 morphants. We conclude that AKAP12 is essential for integrity of endothelium by maintaining the expression of PAK2 and AF6 during vascular development.
Subject(s)
Animals , Humans , A Kinase Anchor Proteins/genetics , Blood Vessels/abnormalities , Cell Cycle Proteins/genetics , Down-Regulation , Embryo, Nonmammalian/abnormalities , Gene Deletion , Gene Expression Regulation, Developmental , Hemorrhage/embryology , Human Umbilical Vein Endothelial Cells , Intercellular Junctions/genetics , Kinesins/genetics , Myosins/genetics , Zebrafish/embryology , p21-Activated Kinases/geneticsABSTRACT
Objetivo: Correlacionar tipo clínico de fibrosis muscular congénita (CFEOM tipo 1) y falla genética en los miembros afectados en tres generaciones de una familia chilena. Metodología: enrolamiento de portadores de fibrosis muscular congénita tipo clínico 1 (CFEOM 1) según protocolo. Fotografía y video, pedigrí familiar, obtención de muestra de sangre, extracción del DNA linfositario de casos/control, Linkage análisis de DNA. Resultados: Identificación de mutación AD en cromosoma 11, gen KIF21A en todos los afectados en una familia con tres generaciones con CFEOM tipo 1. Codifica proteína motora kinesina, que participa en el desarrollo del III par craneal. Conclusiones: En este tipo de estrabismo la alteración primaria es inervacional y no muscular. Relación entre forma clínica y cromosoma afectado permite caracterizar genéticamente las distintas formas clínicas de la enfermedad. Se propone una clasificación clínica nueva de los estrabismos restrictivos congénitos.
Aim: To correlate a clinical type of congenital muscular fibrosis (CFEOM type 1) with a genetic flaw in the affected members of three generations of a single Chilean family. Methods: Clinical type 1 congenital muscular fibrosis carriers were enrolled according to protocol. For each patient, the following information was collected: Video and pictures, family pedigree, blood samples, case/ control lymphocytes DNA, and DNA linkage analysis. Results: An AD mutation in chromosome 11 was identified. KIF21A gene was found in all affected members of the family over the three generations. It codified The motor protein kinesin, which is involved in the development of the third cranial nerve. Conclusions: In this form of strabismus, the primary dysfunction is innervational rather than muscular. The relationship between the clinical form and the affected chromosome permits identification of the various clinical forms of the disease. We propose a new clinical classification of the congenital restrictive strabismus.
Subject(s)
Female , Fibrosis/congenital , Oculomotor Muscles/pathology , Ocular Motility Disorders/genetics , Ocular Motility Disorders/pathology , Kinesins/genetics , Strabismus/genetics , Strabismus/pathology , MutationABSTRACT
We have identified the Drosophila homologue of the non-motor accessory subunit of kinesin-II motor complex. It is homologous to the SpKAP115 of the sea urchin, KAP3A and KAP3B of the mouse, and SMAP protein in humans. In situ hybridization using a DmKAP specific cRNA probe has revealed a dynamic pattern of expression in the developing nervous system. The staining first appears in a subset of cells in the embryonic central nervous system at stage 13 and continues till the first instar larva stage. At the third instar larva stage the staining gets restricted to a few cells in the optic lobe and in the ventral ganglion region. It has also stained a subset of sensory neurons from late stage 13 and till the first instar larva stage. The DmKAP expression pattern in the nervous system corresponds well with that of Klp64D and Klp68D as reported earlier. In addition, we have found that the DmKAP gene is constitutively expressed in the germline cells and in follicle cells during oogenesis. These cells are also stained using an antibody to KLP68D protein, but mRNA in situ hybridization using KLP64D specific probe has not stained these cells. Together these results proved a basis for further analysis of tissue specific function of DmKAP in future.