Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Ethiop. Med. j ; 61(2): 161-169, 2023. tables, figures
Article in English | AIM | ID: biblio-1426998

ABSTRACT

Introduction: Widal agglutination test is a serologic investigation that is used to diagnose typhoidfever. This is an easy, fairly inexpensive, and readily available test it'ith questionable reliability. The test performance differs from setting to setting depending on the technique used and otherfactors. The accuracy ofthis test in Ethiopia is poorly understood. So, the aim of this scientific work was to analyze the accuracy of Widal agglutination in diagnosing typhoidfever in Ethiopia. Methods: We performed a systematic review and meta-analysis. Two electronic databases (PubMed/Medline and Google scholar) were searched using preset search strategv to find relevant studies. The methodological quality of the studies included was evaluated "'ith a QUADAS-2. We extracted important variables from the eligible articles. Statistical analysis was conducted using STATA version 14. The protocol of our systematic review and metaanalysis is registered in the International Prospective Register of Systematic Reviews (PROSPERO) with the record number CRD42020194252. Results: The electronic quests yielded 42 papers of which 8 "'ere eligible for analysis. The quality of these studies was rated to be moderate based on the QUADAS-2. The pooled sensitivity, specificity, and negative, andpositive predicthe values ofthe Widal test were 80.8%, 53.0%, 98.5%, and 2.1% respecth'ely. Conclusion: The "'idal agglutination test has average specificity, ven good negative predicth'e value, and ven poor positive predictive value for the diagnosis of typhoidfever. Depending on Widal to diagnose typhoid fever may lead to over-diagnosis of typhoid fever and related complications including inappropriate use of antibiotics. There is an urgent needfor quick and dependable tests for diagnosing typhoidfever, particularly in settings like Ethiopia M'here doing timely culture is notfeasible.


Subject(s)
Serologic Tests , Dimensional Measurement Accuracy , Typhoid Fever , Meta-Analysis , Network Pharmacology
2.
Braz. J. Pharm. Sci. (Online) ; 59: e22394, 2023. tab, graf
Article in English | LILACS | ID: biblio-1505845

ABSTRACT

Abstract This study aimed to investigate the molecular mechanism of Picrasma quassioides Benn against inflammation by means of network pharmacology. The paper will provide a reference for multi-target and multi-channel treatment of inflammation with traditional Chinese medicine. Through screening and analysis, 11 active ingredients and 109 anti-inflammation prediction targets were obtained and constructed a compound-target network. The targets such as VEGFA, TLR4 and STAT3 may play a crucial role. Network enrichment analysis showed that the 109 potential targets constitute a number of pathways or inflammatory reactions closely related to inflammation, including NF-κB signaling pathway and MAPK signaling pathway. The docking results indicated that the binding energy of Picrasidine Y and the inflammatory factors VEGFA is the highest. This study predicted the role of multiple active compounds in the alkaloids of Picrasma in the inflammatory response, and provided a theoretical basis for the anti-inflammatory mechanism of Picrasma


Subject(s)
Research/classification , Picrasma/classification , Alkaloids/analysis , Network Pharmacology/instrumentation , Anti-Inflammatory Agents/analysis , Medicine, Chinese Traditional
3.
Article in Chinese | WPRIM | ID: wpr-936359

ABSTRACT

OBJECTIVE@#To evaluate the clinical efficacy of Huangqi Sijunzi decoction (HQSJZD) for treating cancer-related fatigue (CRF) of spleen and stomach Qi deficiency type after chemotherapy in patients with breast cancer.@*METHODS@#A total of 94 breast cancer patients who developed CRF of spleen and stomach Qi deficiency type after chemotherapy were randomized into chemotherapy group (n=47) and traditional Chinese medicine (TCM) + chemotherapy group (n=47). The patients in chemotherapy group received the AC or EC regimen and non-drug interventions including psychological counseling, and those in TCM + chemotherapy group received oral administration of HQSJZD in addition to chemotherapy for 21 days as a treatment cycle, after which improvement of fatigue was assessed using Modified Piper Fatigue Scale. The active ingredients and targets of HQSJZD were screened using the TCM System Pharmacology Analysis Platform (TCMSP); the CRF- and breast cancer-related disease targets were retrieved based on data from the GeneCards, NCBI gene and OMIM databases to construct the component-target network and the protein-protein interaction (PPI) network. GO functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes KEGG pathway enrichment analysis of the target genes were performed to construct the component-disease-pathway-target biological network. The binding strength of the major drug ingredients and CRF key targets were predicted using AutoDock software.@*RESULTS@#The scores for somatic fatigue, emotional fatigue and cognitive fatigue, along with the overall fatigue score, showed more significant improvements in TCM+chemotherapy group than in chemotherapy group (P < 0.001), and the response rate reached 89.4% in the combined treatment group. We identified 250 targets for HQSJZD, 2653 CRF-related genes, 15 329 breast cancer-related genes and 161 prescription-disease intersected targets, from which topological analysis identified 66 potential key targets. GO and KEGG enrichment analyses predicted multiple pathways related with the disease. Molecular docking results suggested that the core ingredients of HQSJZD showed high affinities to the key targets AKT1, CASP3, IL6, JUN and VEGFA, among which AKT1 might be the most important target for HQSJZD to treat CRF.@*CONCLUSION@#HQSJZD can obviously improve CRF symptoms in breast cancer patients possibly by regulating multiple signaling pathways including PI3K-Akt through AKT1.


Subject(s)
Female , Humans , Breast Neoplasms/drug therapy , Drugs, Chinese Herbal/pharmacology , Medicine, Chinese Traditional , Molecular Docking Simulation , Network Pharmacology , Phosphatidylinositol 3-Kinases
4.
Article in Chinese | WPRIM | ID: wpr-936299

ABSTRACT

OBJECTIVE@#To study the therapeutic mechanism of Longqi Fang (LQF) for diabetic kidney disease (DKD) based on GEO database and network pharmacology.@*METHODS@#LQF and DKD targets were obtained using the databases including GEO, TCMSP, CNKI, ChemDraw, and SwissTarget Prediction, and LQF-DKD intersection targets were obtained with VENNY. String was used for protein-protein interaction (PPI) analysis, and R package for KEGG and GO enrichment analysis. Cytoscape 3.7.2 software Network graphs were constructed. The results of network pharmacology analysis were verified in SD rat models of DKD by daily treatment of the rats with LQF at low (1 g/kg), medium (2 g/kg), and high (2 g/kg) doses, and kidney pathology was observed with HE staining and the changes in renal function were assessed. Western blotting was used to detect the expression levels of NF-κB and p-NF-κB proteins.@*RESULTS@#We identified 760 main targets of LQF, and obtained 1026 differential genes using GEO database and 61 LQF-DKD intersection targets using Venny database. The core targets obtained through PPI network analysis included Myc, EGF, CASP3, VEGFA, CCL2, SPP1, VCAM1 and ICAM1. Go analysis showed that LQF affects mainly nuclear receptor activity and ligand activated transcription factor activity. KEGG analysis showed that LQF affects inflammatory signaling pathways by interfering with NF-κB, TNF, and PI3K-AKT. In rat models of DKD, treatment with LQF resulted in significant improvements of the renal functions (P < 0.05) and glomerular and tubular structure and arrangement in a dose-dependent manner. Western blotting results showed that LQF dose-dependently downregulated NF-κB and p-NF-κB expressions in the rat models.@*CONCLUSION@#The therapeutic mechanism of LQF for DKD involves multiple components, targets and signal pathways that mediate an inhibitory effect on NF-κB signaling pathway to protect the renal function.


Subject(s)
Animals , Rats , Diabetes Mellitus , Diabetic Nephropathies/metabolism , Network Pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Protein Interaction Maps , Rats, Sprague-Dawley
5.
Article in Chinese | WPRIM | ID: wpr-936280

ABSTRACT

OBJECTIVE@#To identify traditional Chinese drugs that contain active ingredients for treatment of myocardial infarction (MI) and explore their therapeutic mechanisms using network pharmacology and molecular docking technology.@*METHODS@#The TCMSP database was used for screening the traditional Chinese drugs containing active ingredients for treating MI, and the related targets of MI and the candidate drugs were obtained from Genecards, OMIM, PharmGkb and PharmMapper databases. The common target network of the drug targets and disease targets was established using Venny2.1.0 software. GO and KEGG signal pathway enrichment analysis of the common targets was performed, and the protein-protein interaction (PPI) network was constructed for the targets. The targets in the PPI network were analyzed to identify the key targets, for which GO and KEGG pathway enrichment analyses were performed. Molecular docking was performed for the candidate ingredients and the key targets, and a total score ≥6 was used as the criteria for screening the therapeutic ingredients and their docking binding with key targets was verified. A human umbilical vein endothelial cell (HUVEC) model of oxygen-glucose deprivation (OGD) was used to validate the candidate ingredients and the key therapeutic targets for MI by Western blotting.@*RESULTS@#Our analysis identified Salvia miltiorrhiza and Dalbergiae odoriferae as the candidate drugs rich in active ingredients for treatment of MI. These ingredients involved 16 key therapeutic targets for MI, which participated in such biological processes as inflammatory response, angiogenesis, energy metabolism and oxidative stress and the pathways including HIF-1, VEGF, and TNF pathways. Sclareol and PTGS2 in Salvia miltiorrhiza and formononetin and KDR in Dalbergiae odoriferae all had high docking total scores. Western blotting showed that at medium and high doses, sclareol significantly inhibited PTGS2 expression and formononetin promoted KDR expressions in the cell models in a dose-dependent manner (P < 0.05).@*CONCLUSION@#Both Salvia miltiorrhiza and Dalbergiae odoriferae have good therapeutic effects on MI. Sclareol in Salvia miltiorrhiza and formononetin in Dalbergiae odoriferae regulate the expressions of KDR and PTGS2, respectively, to modulate the inflammatory response, angiogenesis, oxidative stress and energy metabolism and thus produce myocardial protective effects.


Subject(s)
Humans , China , Drugs, Chinese Herbal/therapeutic use , Medicine, Chinese Traditional , Molecular Docking Simulation , Myocardial Infarction/drug therapy , Network Pharmacology
6.
Article in Chinese | WPRIM | ID: wpr-936279

ABSTRACT

OBJECTIVE@#To explore the pharmacological mechanism of Bushen Huatan (BSHT) recipe in the treatment of polycystic ovary syndrome (PCOS).@*METHODS@#The active ingredients in the component drugs of the recipe were screened through TCMSP, and their potential targets were predicted by PubChem and Swiss target prediction. Genecards and OMIM were used to screen the therapeutic targets in the treatment of PCOS. The drug targets and disease targets were corrected using Uniprot, and the intersection targets were obtained. The protein-protein interaction (PPI) network was constructed using STRING, and the intersection targets were analyzed with CytoNCA to screen the core targets. DAVID was used for GO enrichment analysis and KEGG pathway enrichment analysis, and the core components and core targets were verified using AutoDock. Animal experiment was performed to verify the results using a female C57BL/6J mouse model of PCOS, treated daily with 1 mg/kg BSHT recipe granule for 35 days, and the ovarian expressions of the core targets and pathways were detected using Western blotting.@*RESULTS@#We identified a total of 125 potential active ingredients from the 14 component drugs in the recipe, 990 drug targets, 4759 PCOS targets and 434 intersection targets. The core active ingredients of the recipe included β -Sitosterol, kaempferol, and quercetin, whose core targets included PIK3CA, PIK3R1, APP, AKT1, and MAPK1. GO enrichment analysis highlighted such processes as drug reaction, negative regulation of apoptosis, and positive regulation of transcription from RNA polymerase Ⅱ promoter. The enriched KEGG pathways included primarily the cancer pathway and PI3K-Akt signaling pathway. Molecular docking showed that the core active ingredients had strong binding ability with the core targets. In the animal experiment, BSHT recipe was shown to improve the symptoms, down-regulate the expressions of PI3K and Akt proteins and up-regulate MAPK1 expression in the ovary of mice with PCOS.@*CONCLUSION@#The therapeutic mechanism of BSHT recipe for PCOS involves multiple active ingredients, multiple therapeutic targets and multiple pathways.


Subject(s)
Animals , Female , Mice , Drugs, Chinese Herbal/therapeutic use , Mice, Inbred C57BL , Molecular Docking Simulation , Network Pharmacology , Phosphatidylinositol 3-Kinases , Polycystic Ovary Syndrome/drug therapy
7.
Article in Chinese | WPRIM | ID: wpr-941021

ABSTRACT

OBJECTIVE@#To investigate the therapeutic mechanism of emodin in the treatment of rheumatoid arthritis (RA) using a network pharmacology-based method and validate this mechanism in a fibroblast-like synovial cell line.@*METHODS@#The PubChem, Targetnet, SwissTargetPrediction, Genecards, OMIM, and DisGeNET databases were searched to obtain emodin targets and RA-related genes. A protein-protein interaction (PPI) network was constructed, and GO and KEGG pathway enrichment analyses were carried out to analyze the intersection genes. AutoDock4.2.6 software was used to simulate molecular docking between emodin and its candidate targets. In a cultured fibroblast-like synovial cell line (MH7A), the effects of different concentrations of emodin on proliferation of tumor necrosis factor-α (TNF-α)-induced cells were investigated using CCK-8 assay, cell scratch experiment and flow cytometry; the changes in the expressions of nuclear factor-κB (NF-κB) pathway proteins were detected using Western blotting, and the mRNA expressions of the hub genes were examined with RT-qPCR.@*RESULTS@#We identified 32 intersection genes of emodin and RA, and the key targets including CAPS3, ESR1, and MAPK14 involved mainly the NF-κB signaling pathway. Cell scratch experiment and flow cytometry demonstrated a strong inhibitory effect of emodin on MH7A cell proliferation. Treatment with TNF-α significantly increased the cellular expressions of the NF-κB pathway proteins, which were obviously lowered by treatment with 80 μmol/L emodin. The results of RT-qPCR showed that TNF-α treatment obviously up-regulated the expressions of the hub genes COX2 and P38MAPK, and emodin treatment significantly down-regulated the expressions of MAPK and PTGS2 and up-regulated the expression of CASP3.@*CONCLUSION@#The therapeutic effect of emodin on RA is mediated mainly through regulation of cell proliferation, apoptosis, and the NF-κB pathway.


Subject(s)
Humans , Arthritis, Rheumatoid/pathology , Emodin/pharmacology , Molecular Docking Simulation , NF-kappa B/metabolism , Network Pharmacology , Tumor Necrosis Factor-alpha/pharmacology
8.
Article in Chinese | WPRIM | ID: wpr-941008

ABSTRACT

OBJECTIVE@#To explore the effective components of Yiqi Jiedu recipe and the main biological processes and signal pathways involved in the therapeutic mechanism of the recipe in treatment of primary liver cancer through network pharmacology and molecular docking approaches.@*METHODS@#TCMSP, Uniport, Genecards and String databases were searched to obtain the target genes of drugs and disease using Cytoscape 3.8.2 software. GO and KEGG enrichment analyses were performed to identify the common genes in the target genes of the drugs and disease. Using Pubcham, RCSB and Autoduck, the effective components of the drugs were connected with the final core genes. The effects of different concentrations of Yiqi Jiedu recipe on the expressions of the core genes DHX9, HNRNPK, NCL and PABPC1 in HepG2 cells were analyzed with Western blotting and real- time fluorescence quantitative PCR.@*RESULTS@#We finally identified 8 core genes from the drug and disease targets, including DDX5, HNRNPK, PABPC1, DHX9, RPS3A, RPS3, RPL13, and NCL. GO analysis showed that these core genes were involved mainly in the biological processes of adrenaline receptor signal communication, movement of cellular or subcellular components, blood particles, adhesion class and iron ion binding. KEGG analysis showed that the Ras signaling pathway had the greatest gene enrichment. The results of molecular docking suggested that the effective components of the recipe were capable of docking with the core genes under natural conditions, and PABPC1 and stigmasterol had the highest binding energy. In HepG2 cells, treatment with 10% medicated serum for 48 h had the strongest effect on the expression of DHX9, HNRNPK, NCL and PABPC1 (P < 0.05).@*CONCLUSION@#Yiqi Jiedu recipe is capable of regulating viral expression of primary liver cancer multiple effective components that bind to DHX9, HNRNPK, NCL and PABPC1.


Subject(s)
Humans , DEAD-box RNA Helicases , Drugs, Chinese Herbal/therapeutic use , Liver Neoplasms/drug therapy , Molecular Docking Simulation , Neoplasm Proteins , Network Pharmacology , Ribosomal Proteins , Signal Transduction
9.
Article in English | WPRIM | ID: wpr-939776

ABSTRACT

OBJECTIVE@#To identify specific Chinese medicines (CM) that may benefit patients with primary liver cancer (PLC), and to explore the mechanism of action of these medicines.@*METHODS@#In this retrospective, singlecenter study, prescription information from PLC patients was used in combination with Traditional Chinese Medicine Inheritance Supports System to identify the specific core drugs. A system pharmacology approach was employed to explore the mechanism of action of these medicines.@*RESULTS@#Taking CM more than 6 months was significantly associated with improved survival outcomes. In total, 77 putative targets and 116 bioactive ingredients of the core drugs were identified and included in the analysis (P<0.05). A total of 1,036 gene ontology terms were found to be enriched in PLC. A total of 75 pathways identified from Kyoto Encyclopedia of Genes and Genomes were also enriched in this disease, including fluid shear stress, interleukin-17 signaling, signaling between advanced glycan end products and their receptors, cellular senescence, tumor necrosis factor signaling, p53 signaling, cell cycle signaling, steroid hormone biosynthesis, T-helper 17 cell differentiation, and metabolism of xenobiotics by cytochrome. Docking studies suggested that the ingredients in the core drugs exert therapeutic effects in PLC by modulating c-Jun and interleukin-6.@*CONCLUSIONS@#Receiving CM for 6 months or more improves survival for the patients with PLC. The core drugs that really benefit for PLC patients likely regulates the tumor microenvironment and tumor itself.


Subject(s)
Humans , Data Mining , Drugs, Chinese Herbal/therapeutic use , Liver Neoplasms/drug therapy , Medicine, Chinese Traditional , Network Pharmacology , Retrospective Studies , Tumor Microenvironment
10.
Article in English | WPRIM | ID: wpr-929236

ABSTRACT

Hallmarks of the pathophysiology of glaucoma are oxidative stress and apoptotic death of retinal ganglion cells (RGCs). Ginkgo biloba extract (EGb) with multi-target, multi-pathway functions has been reported to exert positive pharmacological effects on oxidative stress and damaged RGCs. However, the ingredients and anti-apoptotic targets of EGb in the treatment of open-angle glaucoma (OAG) have not been fully elucidated. Therefore, in-depth analysis is necessary for further research. Ginkgo biloba-related and anti-apoptotic targets were identified and then combined to obtain the intersection, representing the potential anti-apoptotic targets of Ginkgo biloba. In addition, compound-anti-apoptotic target and OAG-target protein-protein interaction network were merged to obtain five core genes and compound-OAG-anti-apoptotic target protein-protein interaction network. Consequently, the active compounds and anti-apoptotic targets of Ginkgo biloba in the treatment of OAG were identified, namely luteolin, β-sitosterol, kaempferol, stigmasterol, quercetin, and p53, Bax, Bcl-2, Caspase-3 and Caspase-9, respectively. For the anti-apoptotic targets of Ginkgo biloba in the treatment of OAG, Gene Ontology (GO) and pathway analysis were executed to confirm the gene functions of Ginkgo biloba in antagonizing apoptosis of RGCs. The pathway enrichment was mainly involved in transcriptional activation of p53 responsive genes, activation of caspases and apoptotic processes. Finally, we confirmed the results of the network analysis by H2O2 treated RGC-5 cells in vitro. The results demonstrated that EGb protection can effectively diminish H2O2-induced apoptosis by inhibiting p53 acetylation, reducing the ratio of Bax/Bcl-2 and suppressing the expression of specific cleavage of Caspase-9 and Caspase-3.


Subject(s)
Humans , Ginkgo biloba , Glaucoma, Open-Angle , Hydrogen Peroxide , Network Pharmacology , Plant Extracts , Retinal Ganglion Cells
11.
Article in English | WPRIM | ID: wpr-929235

ABSTRACT

Bladder cancer is the most common malignancy of the urinary system. Compound Kushen Injection (CKI) is a Chinese medicinal preparation that has been widely used in the treatment of various types of cancers in the past two decades. However, the pharmacological effect of CKI on bladder cancer is not still completely understood. In the current study, network pharmacology combined with bioinformatics was used to elucidate the therapeutic mechanism and potential targets of CKI in bladder cancer. The mechanism by which CKI was effective against bladder cancer was further verified in vitro using human bladder cancer cell line T24. Network pharmacology analysis identified 35 active compounds and 268 target genes of CKI. Bioinformatics data indicated 5500 differentially expressed genes associated with bladder cancer. Common genes of CKI and bladder cancer suggested that CKI exerted anti-bladder cancer effects by regulating genes such as MMP-9, JUN, EGFR, and ERK1. Functional enrichment analysis indicated that CKI exerted therapeutic effects on bladder cancer by regulating certain biological processes, including cell proliferation, cell migration, and cell apoptosis. In addition, Kyoto Encyclopedia of Genes and Genomes enrichment analysis implicated pathways related to cancer, bladder cancer, and the PI3K-Akt signaling pathway. Consistently, cell experiments indicated that CKI inhibited the proliferation and migration of T24 cells, and induced their apoptosis. Moreover, RT-qPCR and Western blot results demonstrated that CKI was likely to treat bladder cancer by down-regulating the gene and protein expression of MMP-9, JUN, EGFR, and ERK1. CKI inhibited the proliferation and migration, and induced the apoptosis of T24 bladder cancer cells through multiple biological pathways and targets. CKI also exhibited significant effects on the regulation of key genes and proteins associated with bladder cancer. Overall, our findings provide solid evidence and deepen current understanding of the therapeutic effects of CKI for bladder cancer, and further support its clinical use.


Subject(s)
Humans , Computational Biology , Drugs, Chinese Herbal , Network Pharmacology , Phosphatidylinositol 3-Kinases , Urinary Bladder Neoplasms/genetics
12.
Article in English | WPRIM | ID: wpr-928956

ABSTRACT

OBJECTIVE@#To investigate the pharmacodynamic material basis, mechanism of actions and targeted diseases of Salicornia europaea L. (SE) based on the network pharmacology method, and to verify the antidepressant-like effect of the SE extract by pharmacological experiments.@*METHODS@#Retrieval tools including Chinese medicine (CM), PubMed, PharmMapper, MAS 3.0 and Cytoscape were used to search the components of SE, predict its targets and related therapeutic diseases, and construct the "Component-Target-Pathway" network of SE for central nervous system (CNS) diseases. Further, protein-protein interaction (PPI) network, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) function annotation of depression-related targets were analyzed to predict the antidepressant mechanism of SE. Chronic unpredictable mild stress (CUMS) model was used to construct a mouse model with depression-like symptoms. And the animals were randomly divided into 6 groups (n=10) including the normal group (nonstressed mice administered with distilled water), the CUMS group (CUMS mice administered with distilled water), the venlafaxine group (CUMS mice administered with venlafaxine 9.38 mg/kg), SE high-, medium-, and low-dose groups (CUMS mice administered with SE 1.8, 1.35 and 0.9 g/kg, respectively). Then some relevant indicators were determined for experimental verification by the forced swim test (FST), the tail suspension test (TST) and open-field test (OFT). Dopamine (DA) concentration in hippocampus and cerebral cortex, IL-2 and corticosterone (CORT) levels in blood, and nuclear factor E2 related factor 2 (Nrf2), kelch-like epichlorohydrin related protein 1 (Keap1), NAD(P) H dehydrogenase [quinone] 1 (NQO1) and heme oxygenase-1 (HO-1) levels in mice were measured by enzyme linked immunosorbent assay (ELISA) and Western blot respectively to explore the possible mechanisms.@*RESULTS@#The "target-disease" network diagram predicted by network pharmacology, showed that the potential target of SE involves a variety of CNS diseases, among which depression accounts for the majority. The experimental results showed that SE (1.8, 1.35 g/kg) significantly decreased the immobility period, compared with the CUMS group in FST and TST in mice after 3-week treatment, while SE exhibited no significant effect on exploratory behavior in OFT in mice. Compared with CUMS group, the SE group (0.9 g/kg) showed significant differences (P<0.05) in DA levels in the hippocampus and cerebral cortex. In addition, compared with CUMS control group, SE (1.8 g/kg) group showed a significant effect on decreasing the activities of CORT (P<0.05), and serum IL-2 level with no statistical significance. Finally, Western blot results showed that compared with the model group, Nrf2, Keap1, NQO1 and HO-1 protein expressions in SE group (1.8 g/kg) were up-regulated (all P<0.01).@*CONCLUSION@#The SE extract may have an antidepressant effect, which appeared to regulate Nrf2-ARE pathway and increased levels of DA and CORT in the hippocampus and cortex.


Subject(s)
Animals , Mice , Antidepressive Agents/therapeutic use , Behavior, Animal , Chenopodiaceae/metabolism , Depression/drug therapy , Disease Models, Animal , Hippocampus , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Network Pharmacology , Plant Extracts/therapeutic use , Stress, Psychological/drug therapy
13.
Article in English | WPRIM | ID: wpr-928657

ABSTRACT

To explore the mechanism of ovarian toxicity of Hook. F. (TwHF) by network pharmacology and molecular docking. The candidate toxic compounds and targets of TwHF were collected by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and the Comparative Toxicogenomics Database (CTD). Then, the potential ovarian toxic targets were obtained from CTD, and the target genes of ovarian toxicity of TwHF were analyzed using the STRING database. The protein-protein interaction (PPI) network was established by Cytoscape and analyzed by the cytoHubba plug-in to identify hub genes. Additionally, the target genes of ovarian toxicity of TwHF were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses by using the R software. Finally, Discovery Studio software was used for molecular docking verification of the core toxic compounds and the hub genes. Nine candidate toxic compounds of TwHF and 56 potential ovarian toxic targets were identified in this study. Further network analysis showed that the core ovarian toxic compounds of TwHF were triptolide, kaempferol and tripterine, and the hub ovarian toxic genes included , , , , , , , , and . Besides, the GO and KEGG analysis indicated that TwHF caused ovarian toxicity through oxidative stress, reproductive system development and function, regulation of cell cycle, response to endogenous hormones and exogenous stimuli, apoptosis regulation and aging. The docking studies suggested that 3 core ovarian toxic compounds of TwHF were able to fit in the binding pocket of the 10 hub genes. TwHF may cause ovarian toxicity by acting on 10 hub genes and 140 signaling pathways.


Subject(s)
Drugs, Chinese Herbal/toxicity , Medicine, Chinese Traditional , Molecular Docking Simulation , Network Pharmacology , Protein Interaction Maps
14.
Article in English | WPRIM | ID: wpr-928653

ABSTRACT

To investigate the therapeutic effect and mechanism of Qingfei oral liquid in idiopathic pulmonary fibrosis. Seventy-two male SD rats were divided into control group, model group, pirofenidone group and Qingfei group with 18 animals in each group. The idiopathic pulmonary fibrosis was induced in last three groups by intratracheal injection of bleomycin; pirofenidone group was given oral administration of pirofenidone b.i.d for 21 d, and Qingfei group was given Qingfei oral liquid 3.6 mL/kg q.d for Lung tissues were obtained for HE staining, Masson staining and transforming growth factor (TGF)-β immunohistochemical staining. Superoxide dismutase (SOD), malondialdehyde (MDA) and glutathione (GSH) were detected in tissue homogenates. The BATMAN-TCM database was used to retrieve the chemical components and their corresponding targets of Qingfei oral solution by network pharmacology method, and then the component-target-disease network diagram was constructed. Finally, the pathway enrichment analysis was carried out to explore the molecular mechanism of Qingfei oral liquid against idiopathic fibrosis. Histopathology results showed that Qingfei oral liquid had a similar relieving effect on pulmonary fibrosis as the positive drug pirfenidone; TGF-β secretion had a significant reduction in lung tissues of Qingfei group; and Qingfei oral liquid had better regulatory effect on SOD, MDA and GSH than pirfenidone. The results of component-target-disease network and pathway enrichment analysis showed that the related molecular pathways were concentrated in inflammation, extracellular matrix and cytokines. Qingfei oral liquid has a good therapeutic effect on idiopathic pulmonary fibrosis in rats via regulation of inflammation, extracellular matrix and cytokines.


Subject(s)
Animals , Male , Rats , Bleomycin/pharmacology , Cytokines , Drugs, Chinese Herbal , Glutathione , Idiopathic Pulmonary Fibrosis/drug therapy , Inflammation , Lung/pathology , Network Pharmacology , Rats, Sprague-Dawley , Superoxide Dismutase/metabolism , Transforming Growth Factor beta/pharmacology
15.
Article in Chinese | WPRIM | ID: wpr-928175

ABSTRACT

This study aims to establish a method for analyzing the chemical constituents in Cistanches Herba by high performance liquid chromatography(HPLC) and quadrupole-time-of-flight tandem mass spectrometry(HPLC-Q-TOF-MS/MS), and to reveal the pharmacological mechanism based on network pharmacology for mining the quality markers(Q-markers) of Cistanches Herba. The chemical constituents of Cistanche deserticola and C. tubulosa were analyzed via HPLC-Q-TOF-MS/MS. The potential targets and pathways of Cistanches Herba were predicted via SwissTargetPrediction and DAVID. The compound-target-pathway-pharmacological action-efficacy network was constructed via Cytoscape. A total of 47 chemical constituents were identified, involving 95 targets and 56 signaling pathways. We preliminarily elucidated the pharmacological mechanisms of echinacoside, acteoside, isoacteoside, cistanoside F, 2'-acetylacteoside, cistanoside A, campneoside Ⅱ, salidroside, tubuloside B, 6-deoxycatalpol, 8-epi-loganic acid, ajugol, bartsioside, geniposidic acid, and pinoresinol 4-O-β-D-glucopyranoside, and predicted them to be the Q-markers of Cistanches Herba. This study identified the chemical constituents of Cistanches Herba, explained the pharmacological mechanism of the traditional efficacy of Cistanches Herba based on network pharmacology, and introduced the core concept of Q-markers to improve the quality evaluation of Cistanches Herba.


Subject(s)
Chromatography, High Pressure Liquid/methods , Cistanche , Drugs, Chinese Herbal/pharmacology , Network Pharmacology , Tandem Mass Spectrometry/methods
16.
Article in Chinese | WPRIM | ID: wpr-928098

ABSTRACT

Based on network pharmacology, the mechanism of Polygoni Cuspidati Rhizoma et Radix-Ligustri Lucidi Fructus(PL) combination against acute gouty arthritis(AGA) was explored and preliminarily verified by animal experiment. The chemical components and corresponding targets of PL were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP). The active components with oral bioavailability(OB)≥30% and drug-likeness(DL)≥0.18 were screened based on literature, and the related protein targets were collected. Then the protein targets were standardized with the help of UniProt database. The AGA-related targets were searched from GeneCards, NCBI, and DrugBank. The common targets of the disease and the medicinals were yielded by FunRich V3, and the protein-protein interaction(PPI) network was constructed to screen the key targets, followed by Gene Ontology(GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis of the key targets. Afterwards, some of the key targets were verified by sodium urate crystal-induced AGA mouse model. A total of 25 active components and 287 targets of PL, 811 targets of AGA, and 88 common targets were screened out. PPI network analysis showed that tumor necrosis factor(TNF), interleukin-6(IL-6), and interleukin-1β(IL-1β) may be the core targets of PL in the treatment of AGA. The key targets were mainly involved in 566 GO terms(P<0.05), including multiple biological processes such as inflammatory response and immune response. Moreover, they were related to 116 KEGG pathways and these pathways were involved in inflammation and immunity, mainly including NOD-like receptor signaling pathway and TNF signaling pathway. Animal experiment confirmed that PL can alleviate ankle swelling, improve abnormal gait, and down-regulate the protein expression of TNF-α, IL-6, and IL-1β in AGA mice, indicating that PL can treat AGA through TNF-α, IL-6, and IL-1β and the feasibility of network pharmacology to predict drug targets. This study preliminarily discussed the key targets and biological signaling pathways involved in the treatment of AGA with PL combination, which reflected the multi-pathway and multi-target action characteristics of Chinese medicine. Moreover, this study laid a scientific basis for research on the treatment of AGA with PL combination, as well as the mechanism of action.


Subject(s)
Animals , Mice , Arthritis, Gouty/drug therapy , Drugs, Chinese Herbal/therapeutic use , Ligustrum , Network Pharmacology , Rhizome
17.
Article in Chinese | WPRIM | ID: wpr-928063

ABSTRACT

UPLC-Q-TOF-MS combined with network pharmacology and experimental verification was used to explore the mechanism of acupoint sticking therapy(AST) in the intervention of bronchial asthma(BA). The chemical components of Sinapis Semen, Cory-dalis Rhizoma, Kansui Radix, Asari Radix et Rhizoma, and Zingiberis Rhizoma Recens were retrieved from TCMSP as self-built database. The active components in AST drugs were analyzed by UPLC-Q-TOF-MS, and the targets were screened out in TCMSP and Swiss-TargetPrediction. Targets of BA were collected from GeneCards, and the intersection of active components and targets was obtained by Venny 2.1.0. The potential targets were imported into STRING and DAVID for PPI, GO, and KEGG analyses. The asthma model induced by house dust mite(HDM) was established in mice. The mechanism of AST on asthmatic mice was explored by pulmonary function, Western blot, and flow cytometry. The results indicated that 54 active components were obtained by UPLC-Q-TOF-MS and 162 potential targets were obtained from the intersection. The first 53 targets were selected as key targets. PPI, GO, and KEGG analyses showed that AST presumedly acted on SRC, PIK3 CA, and other targets through active components such as sinoacutine, sinapic acid, dihydrocapsaicin, and 6-gingerol and regulated PI3 K-AKT, ErbB, chemokine, sphingolipid, and other signaling pathways to intervene in the pathological mechanism of BA. AST can improve lung function, down-regulate the expression of PI3 K and p-AKT proteins in lung tissues, enhance the expression of PETN protein, and reduce the level of type Ⅱ innate immune cells(ILC2 s) in lung tissues of asthmatic mice. In conclusion, AST may inhibit ILC2 s by down-regulating the PI3 K-AKT pathway to relieve asthmatic airway inflammation and reduce airway hyperresponsiveness.


Subject(s)
Animals , Mice , Acupuncture Points , Asthma/drug therapy , Drugs, Chinese Herbal , Immunity, Innate , Lymphocytes , Network Pharmacology
18.
Article in Chinese | WPRIM | ID: wpr-928062

ABSTRACT

This study aims to identify the active components and the mechanism of Jingqi Yukui Capsules(JQYK) in the treatment of gastric ulcer based on network pharmacology, and verify some key targets and signaling pathways through animal experiment. To be specific, first, the active components and targets of JQYK were retrieved from a Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine(BATMAN-TCM) and Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), and the targets of gastric ulcer from GeneCards and Online Mendelian Inheritance in Man(OMIM) with the search term "gastric ulcer". The common targets of the two were the potential targets of the prescription for the treatment of the di-sease. Then, protein-protein interaction(PPI) network of key targets were constructed based on STRING and Cytoscape 3.7.2, followed by Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment by matescape database and pathway visualization by Omicshare. For the animal experiment, the improved method of Okabe was used to induce gastric ulcer in rats, and the model rats were classified into the model group, JQYK high-dose(JQYK-H), medium-dose(JQYK-M), and low-dose(JQYK-L) groups, Anweiyang Capsules(WYA) group, and Rabeprazole Sodium Enteric Capsules(RBPZ) group. Normal rats were included in the blank group. Rats in the blank group and model group were given distilled water and those in the administration groups received corresponding drugs. Then gastric ulcer healing in rats was observed. The changes of the gastric histomorphology in rats were evaluated based on hematoxylin-eosin(HE) staining, and the content of inducible nitric oxide synthase(iNOS) in rat gastric tissue was detected with Coomassie brilliant blue method. The mRNA and protein levels of some proteins in rat gastric tissue were determined by real-time quantitative polymerase chain reaction(RT-qPCR) and Western blot(WB) to further validate some key targets and signaling pathways. A total of 206 active components and 535 targets of JQYK, 1 305 targets of gastric ulcer, and 166 common targets of the disease and the drug were yielded. According to PPI analysis and KEGG pathway enrichment analysis, multiple key targets, such as interleukin-6(IL-6), tumor necrosis factor(TNF), mitogen-activated protein kinase 1(MAPK1), MAPK3, and MAPK14, as well as nuclear factor kappa-B(NF-κB) signaling pathway, IL-17 signaling pathway, and leukocyte transendothelial migration in the top 20 key signaling pathways were closely related to inflammation. The key protein p38 MAPK and NF-κB signaling pathway were selected for further verification by animal experiment. The gastric ulcer in the JQYK-H group recovered nearly to the level in the blank group, with significant decrease in the content of iNOS in rat gastric tissue and significant reduction in the mRNA and phosphorylation levels of p38 MAPK and the mRNA and protein levels of NF-κB p65 in rat gastric tissue. The results indicated that JQYK can inhibit the phosphorylation of the key protein p38 MAPK and the expression of NF-κB p65 in the NF-κB signaling pathway, thereby exerting the anti-inflammatory effect and effectively improving the quality of gastric ulcer healing in rats. Thus, the animal experiment result verifies some predictions of network pharmacology.


Subject(s)
Animals , Humans , Rats , Animal Experimentation , Capsules , Gastric Mucosa/metabolism , Network Pharmacology , Stomach Ulcer/genetics
19.
Article in Chinese | WPRIM | ID: wpr-928025

ABSTRACT

This study aimed to explore the anti-depressant components of Rehmanniae Radix and its action mechanism based on network pharmacology combined with molecular docking. The main components of Rehmanniae Radix were identified by ultra-high performance liquid chromatography-quadrupole/Orbitrap high resolution mass spectrometry(UPLC-Q-Orbitrap HRMS), and the related targets were predicted using SwissTargetPrediction. Following the collection of depression-related targets from GeneCards, OMIM and TTD, a protein-protein interaction(PPI) network was constructed using STRING. GO and KEGG pathway enrichment analysis was performed by Metascape. Cytoscape 3.7.2 was used to construct the networks of "components-targets-disease" and "components-targets-pathways", based on which the key targets and their corresponding components were obtained and then preliminarily verified by molecular docking. Rehmanniae Radix contained 85 components including iridoids, ionones, and phenylethanoid glycosides. The results of network analysis showed that the main anti-depressant components of Rehmanniae Radix were catalpol, melittoside, genameside C, gardoside, 6-O-p-coumaroyl ajugol, genipin-1-gentiobioside, jiocarotenoside A1, neo-rehmannioside, rehmannioside C, jionoside C, jionoside D, verbascoside, rehmannioside, cistanoside F, and leucosceptoside A, corresponding to the following 16 core anti-depression targets: AKT1, ALB, IL6, APP, MAPK1, CXCL8, VEGFA, TNF, HSP90 AA1, SIRT1, CNR1, CTNNB1, OPRM1, DRD2, ESR1, and SLC6 A4. As revealed by molecular docking, hydrogen bonding and hydrophobicity might be the main action forms. The key anti-depression targets of Rehmanniae Radix were concentrated in 24 signaling pathways, including neuroactive ligand-receptor interaction, neurodegenerative disease-multiple diseases pathway, phosphatidylinositol 3-kinase/protein kinase B pathway, serotonergic synapse, and Alzheimer's disease.


Subject(s)
Humans , Drugs, Chinese Herbal/pharmacology , Molecular Docking Simulation , Network Pharmacology , Neurodegenerative Diseases , Plant Extracts , Rehmannia
20.
Article in Chinese | WPRIM | ID: wpr-928024

ABSTRACT

This study analyzed the molecular mechanism of Huangjing Qianshi Decoction(HQD) in the treatment of prediabetes based on network pharmacology and molecular docking. The active components of HQD were identified and screened based on Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP, http://Lsp.nwu.edu.cn/tcmsp.php) and then the targets of the components and the genes related to prediabetes were retrieved, followed by identifying the common targets of the decoction and the disease. The medicinal component-target network was constructed by Cytoscape to screen key components. The protein-protein interaction(PPI) network was established by STRING and hub genes were identified by Cytoscape-CytoNCA, followed by Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) of the hub genes with R-clusterProfi-ler. Thereby, the possible signaling pathways were predicted and the molecular mechanism was deduced. A total of 79 active components of HQD and 785 diabetes-related targets of the components were screened out. The hub genes mainly involved the GO terms of tricarboxylic acid cycle, peptide binding, amide binding, hydrolase activity, and kinase activity regulation, and the KEGG pathways of AGE-RAGE signaling pathway, TNF signaling pathway, AMPK signaling pathway, IL-17 signaling pathway, and insulin signaling pathway. Western blot result showed that HQD-containing serum significantly reduced the expression of AKT1, AGE, and RAGE proteins in insulin resistance model cells. HQD's treatment of prediabetes is characterized by multiple pathways, multiple targets, and multiple levels. The main mechanism is that the components zhonghualiaoine, baicalein, kaempferol, and luteolin act on AKT1 and inhibit the AGE-RAGE axis.


Subject(s)
Humans , Drugs, Chinese Herbal/pharmacology , Medicine, Chinese Traditional , Molecular Docking Simulation , Network Pharmacology , Prediabetic State/genetics
SELECTION OF CITATIONS
SEARCH DETAIL