Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 512
Filter
1.
Bol. latinoam. Caribe plantas med. aromát ; 23(2): 180-198, mar. 2024. ilus, tab, graf
Article in English | LILACS | ID: biblio-1538281

ABSTRACT

India's commercial advancement and development depend heavily on agriculture. A common fruit grown in tropical settings is citrus. A professional judgment is required while analyzing an illness because different diseases have slight variati ons in their symptoms. In order to recognize and classify diseases in citrus fruits and leaves, a customized CNN - based approach that links CNN with LSTM was developed in this research. By using a CNN - based method, it is possible to automatically differenti ate from healthier fruits and leaves and those that have diseases such fruit blight, fruit greening, fruit scab, and melanoses. In terms of performance, the proposed approach achieves 96% accuracy, 98% sensitivity, 96% Recall, and an F1 - score of 92% for ci trus fruit and leave identification and classification and the proposed method was compared with KNN, SVM, and CNN and concluded that the proposed CNN - based model is more accurate and effective at identifying illnesses in citrus fruits and leaves.


El avance y desarrollo comercial de India dependen en gran medida de la agricultura. Un tipo de fruta comunmente cultivada en en tornos tropicales es el cítrico. Se requiere un juicio profesional al analizar una enfermedad porque diferentes enfermedades tienen ligeras variaciones en sus síntomas. Para reconocer y clasificar enfermedades en frutas y hojas de cítricos, se desarrolló e n esta investigación un enfoque personalizado basado en CNN que vincula CNN con LSTM. Al utilizar un método basado en CNN, es posible diferenciar automáticamente entre frutas y hojas más saludables y aquellas que tienen enfermedades como la plaga de frutas , el verdor de frutas, la sarna de frutas y las melanosis. En términos de desempeño, el enfoque propuesto alcanza una precisión del 96%, una sensibilidad del 98%, una recuperación del 96% y una puntuación F1 del 92% para la identificación y clasificación d e frutas y hojas de cítricos, y el método propuesto se comparó con KNN, SVM y CNN y se concluyó que el modelo basado en CNN propuesto es más preciso y efectivo para identificar enfermedades en frutas y hojas de cítricos.


Subject(s)
Plant Diseases/classification , Diagnosis, Computer-Assisted , Citrus , Neural Networks, Computer , Plant Leaves
2.
Rev. bras. oftalmol ; 83: e0006, 2024. tab, graf
Article in Portuguese | LILACS | ID: biblio-1535603

ABSTRACT

RESUMO Objetivo: Obter imagens de fundoscopia por meio de equipamento portátil e de baixo custo e, usando inteligência artificial, avaliar a presença de retinopatia diabética. Métodos: Por meio de um smartphone acoplado a um dispositivo com lente de 20D, foram obtidas imagens de fundo de olhos de pacientes diabéticos; usando a inteligência artificial, a presença de retinopatia diabética foi classificada por algoritmo binário. Resultados: Foram avaliadas 97 imagens da fundoscopia ocular (45 normais e 52 com retinopatia diabética). Com auxílio da inteligência artificial, houve acurácia diagnóstica em torno de 70 a 100% na classificação da presença de retinopatia diabética. Conclusão: A abordagem usando dispositivo portátil de baixo custo apresentou eficácia satisfatória na triagem de pacientes diabéticos com ou sem retinopatia diabética, sendo útil para locais sem condições de infraestrutura.


ABSTRACT Introduction: To obtain fundoscopy images through portable and low-cost equipment using artificial intelligence to assess the presence of DR. Methods: Fundus images of diabetic patients' eyes were obtained by using a smartphone coupled to a device with a 20D lens. By using artificial intelligence (AI), the presence of DR was classified by a binary algorithm. Results: 97 ocular fundoscopy images were evaluated (45 normal and 52 with DR). Through AI diagnostic accuracy around was 70% to 100% in the classification of the presence of DR. Conclusion: The approach using a low-cost portable device showed satisfactory efficacy in the screening of diabetic patients with or without diabetic retinopathy, being useful for places without infrastructure conditions.


Subject(s)
Humans , Male , Female , Adolescent , Adult , Middle Aged , Aged , Algorithms , Artificial Intelligence , Diabetic Retinopathy/diagnostic imaging , Photograph/instrumentation , Fundus Oculi , Ophthalmoscopy/methods , Retina/diagnostic imaging , Mass Screening , Neural Networks, Computer , Diagnostic Techniques, Ophthalmological/instrumentation , Machine Learning , Smartphone , Deep Learning
4.
Rev. colomb. cir ; 38(3): 439-446, Mayo 8, 2023. fig, tab
Article in Spanish | LILACS | ID: biblio-1438420

ABSTRACT

Introducción. Debido a la ausencia de modelos predictivos estadísticamente significativos enfocados a las complicaciones postoperatorias en el manejo quirúrgico del neumotórax, desarrollamos un modelo, utilizando redes neurales, que identifica las variables independientes y su importancia para reducir la incidencia de complicaciones. Métodos. Se realizó un estudio retrospectivo en un centro asistencial, donde se incluyeron 106 pacientes que requirieron manejo quirúrgico de neumotórax. Todos fueron operados por el mismo cirujano. Se desarrolló una red neural artificial para manejo de datos con muestras limitadas; se optimizaron los datos y cada algoritmo fue evaluado de forma independiente y mediante validación cruzada, para obtener el menor error posible y la mayor precisión con el menor tiempo de respuesta. Resultados. Las variables de mayor importancia según su peso en el sistema de decisión de la red neural (área bajo la curva 0,991) fueron el abordaje por toracoscopia video asistida (OR 1,131), el uso de pleurodesis con talco (OR 0,994) y el uso de autosuturas (OR 0,792; p<0,05). Discusión. En nuestro estudio, los principales predictores independientes asociados a mayor riesgo de complicaciones fueron el neumotórax de etiología secundaria y el neumotórax recurrente. Adicionalmente, confirmamos que las variables asociadas a reducción de riesgo de complicaciones postoperatorias tuvieron significancia estadística. Conclusión. Identificamos la toracoscopia video asistida, el uso de autosuturas y la pleurodesis con talco como posibles variables asociadas a menor riesgo de complicaciones. Se plantea la posibilidad de desarrollar una herramienta que facilite y apoye la toma de decisiones, por lo cual es necesaria la validación externa en estudios prospectivos


Introduction. Due to the absence of statistically significant predictive models focused on postoperative complications in the surgical management of pneumothorax, we developed a model using neural networks that identify the independent variables and their importance in reducing the incidence of postoperative complications. Methods. A retrospective single-center study was carried out, where 106 patients who required surgical management of pneumothorax were included. All patients were operated by the same surgeon. An artificial neural network was developed to manage data with limited samples. The data is optimized and each algorithm is evaluated independently and through cross-validation to obtain the lowest possible error and the highest precision with the shortest response time. Results. The most important variables according to their weight in the decision system of the neural network (AUC 0.991) were the approach via video-assisted thoracoscopy (OR 1.131), use of pleurodesis with powder talcum (OR 0.994) and use of autosutures (OR 0.792, p<0.05). Discussion. In our study, the main independent predictors associated with a higher risk of complications are pneumothorax of secondary etiology and recurrent pneumothorax. Additionally, we confirm that the variables associated with a reduction in the risk of postoperative complications have statistical significance. Conclusion. We identify video-assisted thoracoscopy, use of autosuture and powder talcum pleurodesis as possible variables associated with a lower risk of complications and raise the possibility of developing a tool that facilitates and supports decision-making, for which external validation in prospective studies is necessary


Subject(s)
Humans , Pneumothorax , Artificial Intelligence , Neural Networks, Computer , Postoperative Complications , Talc , Thoracoscopy
5.
Article in English | WPRIM | ID: wpr-981115

ABSTRACT

OBJECTIVES@#This study aims to predict the risk of deep caries exposure in radiographic images based on the convolutional neural network model, compare the prediction results of the network model with those of senior dentists, evaluate the performance of the model for teaching and training stomatological students and young dentists, and assist dentists to clarify treatment plans and conduct good doctor-patient communication before surgery.@*METHODS@#A total of 206 cases of pulpitis caused by deep caries were selected from the Department of Stomatological Hospital of Tianjin Medical University from 2019 to 2022. According to the inclusion and exclusion criteria, 104 cases of pulpitis were exposed during the decaying preparation period and 102 cases of pulpitis were not exposed. The 206 radiographic images collected were randomly divided into three groups according to the proportion: 126 radiographic images in the training set, 40 radiographic images in the validation set, and 40 radiographic images in the test set. Three convolutional neural networks, visual geometry group network (VGG), residual network (ResNet), and dense convolutional network (DenseNet) were selected to analyze the rules of the radiographic images in the training set. The radiographic images of the validation set were used to adjust the super parameters of the network. Finally, 40 radiographic images of the test set were used to evaluate the performance of the three network models. A senior dentist specializing in dental pulp was selected to predict whether the deep caries of 40 radiographic images in the test set were exposed. The gold standard is whether the pulp is exposed after decaying the prepared hole during the clinical operation. The prediction effect of the three network models (VGG, ResNet, and DenseNet) and the senior dentist on the pulp exposure of 40 radiographic images in the test set were compared using receiver operating characteristic (ROC) curve, area under the ROC curve (AUC), accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and F1 score to select the best network model.@*RESULTS@#The best network model was DenseNet model, with AUC of 0.97. The AUC values of the ResNet model, VGG model, and the senior dentist were 0.89, 0.78, and 0.87, respectively. Accuracy was not statistically different between the senior dentist (0.850) and the DenseNet model (0.850)(P>0.05). Kappa consistency test showed moderate reliability (Kappa=0.6>0.4, P<0.05).@*CONCLUSIONS@#Among the three convolutional neural network models, the DenseNet model has the best predictive effect on whether deep caries are exposed in imaging. The predictive effect of this model is equivalent to the level of senior dentists specializing in dental pulp.


Subject(s)
Humans , Deep Learning , Neural Networks, Computer , Pulpitis/diagnostic imaging , Reproducibility of Results , ROC Curve , Random Allocation
6.
Article in Chinese | WPRIM | ID: wpr-970672

ABSTRACT

In this paper, we propose a multi-scale mel domain feature map extraction algorithm to solve the problem that the speech recognition rate of dysarthria is difficult to improve. We used the empirical mode decomposition method to decompose speech signals and extracted Fbank features and their first-order differences for each of the three effective components to construct a new feature map, which could capture details in the frequency domain. Secondly, due to the problems of effective feature loss and high computational complexity in the training process of single channel neural network, we proposed a speech recognition network model in this paper. Finally, training and decoding were performed on the public UA-Speech dataset. The experimental results showed that the accuracy of the speech recognition model of this method reached 92.77%. Therefore, the algorithm proposed in this paper can effectively improve the speech recognition rate of dysarthria.


Subject(s)
Humans , Dysarthria/diagnosis , Speech , Speech Perception , Algorithms , Neural Networks, Computer
7.
Article in Chinese | WPRIM | ID: wpr-970673

ABSTRACT

Fetal electrocardiogram (ECG) signals provide important clinical information for early diagnosis and intervention of fetal abnormalities. In this paper, we propose a new method for fetal ECG signal extraction and analysis. Firstly, an improved fast independent component analysis method and singular value decomposition algorithm are combined to extract high-quality fetal ECG signals and solve the waveform missing problem. Secondly, a novel convolutional neural network model is applied to identify the QRS complex waves of fetal ECG signals and effectively solve the waveform overlap problem. Finally, high quality extraction of fetal ECG signals and intelligent recognition of fetal QRS complex waves are achieved. The method proposed in this paper was validated with the data from the PhysioNet computing in cardiology challenge 2013 database of the Complex Physiological Signals Research Resource Network. The results show that the average sensitivity and positive prediction values of the extraction algorithm are 98.21% and 99.52%, respectively, and the average sensitivity and positive prediction values of the QRS complex waves recognition algorithm are 94.14% and 95.80%, respectively, which are better than those of other research results. In conclusion, the algorithm and model proposed in this paper have some practical significance and may provide a theoretical basis for clinical medical decision making in the future.


Subject(s)
Algorithms , Neural Networks, Computer , Electrocardiography , Databases, Factual , Fetus
8.
Article in Chinese | WPRIM | ID: wpr-970734

ABSTRACT

Objective: To construct and verify a light-weighted convolutional neural network (CNN), and explore its application value for screening the early stage (subcategory 0/1 and stage Ⅰ of pneumoconiosis) of coal workers' pneumoconiosis (CWP) from digital chest radiography (DR) . Methods: A total of 1225 DR images of coal workers who were examined at an Occupational Disease Prevention and Control Institute in Anhui Province from October 2018 to March 2021 were retrospectively collected. All DR images were collectively diagnosed by 3 radiologists with diagnostic qualifications and gave diagnostic results. There were 692 DR images with small opacity profusion 0/- or 0/0 and 533 DR images with small opacity profusion 0/1 to stage Ⅲ of pneumoconiosis. The original chest radiographs were preprocessed differently to generate four datasets, namely 16-bit grayscale original image set (Origin16), 8-bit grayscale original image set (Origin 8), 16-bit grayscale histogram equalized image set (HE16) and 8-bit grayscale histogram equalized image set (HE8). The light-weighted CNN, ShuffleNet, was applied to train the generated prediction model on the four datasets separately. The performance of the four models for pneumoconiosis prediction was evaluated on a test set containing 130 DR images using measures such as the receiver operating characteristic (ROC) curve, accuracy, sensitivity, specificity, and Youden index. The Kappa consistency test was used to compare the agreement between the model predictions and the physician diagnosed pneumoconiosis results. Results: Origin16 model achieved the highest ROC area under the curve (AUC=0.958), accuracy (92.3%), specificity (92.9%), and Youden index (0.8452) for predicting pneumoconiosis, with a sensitivity of 91.7%. And the highest consistency between identification and physician diagnosis was observed for Origin16 model (Kappa value was 0.845, 95%CI: 0.753-0.937, P<0.001). HE16 model had the highest sensitivity (98.3%) . Conclusion: The light-weighted CNN ShuffleNet model can efficiently identify the early stages of CWP, and its application in the early screening of CWP can effectively improve physicians' work efficiency.


Subject(s)
Humans , Retrospective Studies , Anthracosis/diagnostic imaging , Pneumoconiosis/diagnostic imaging , Coal Mining , Neural Networks, Computer , Coal
9.
Article in Chinese | WPRIM | ID: wpr-971301

ABSTRACT

OBJECTIVE@#To use the low-cost anesthesia monitor for realizing anesthesia depth monitoring, effectively assist anesthesiologists in diagnosis and reduce the cost of anesthesia operation.@*METHODS@#Propose a monitoring method of anesthesia depth based on artificial intelligence. The monitoring method is designed based on convolutional neural network (CNN) and long and short-term memory (LSTM) network. The input data of the model include electrocardiogram (ECG) and pulse wave photoplethysmography (PPG) recorded in the anesthesia monitor, as well as heart rate variability (HRV) calculated from ECG, The output of the model is in three states of anesthesia induction, anesthesia maintenance and anesthesia awakening.@*RESULTS@#The accuracy of anesthesia depth monitoring model under transfer learning is 94.1%, which is better than all comparison methods.@*CONCLUSIONS@#The accuracy of this study meets the needs of perioperative anesthesia depth monitoring and the study reduces the operation cost.


Subject(s)
Artificial Intelligence , Neural Networks, Computer , Heart Rate , Electrocardiography , Photoplethysmography/methods , Anesthesia
10.
Article in English | WPRIM | ID: wpr-969646

ABSTRACT

With the advent of artificial intelligence (AI), machines are increasingly being used to complete complicated tasks, yielding remarkable results. Machine learning (ML) is the most relevant subset of AI in medicine, which will soon become an integral part of our everyday practice. Therefore, physicians should acquaint themselves with ML and AI, and their role as an enabler rather than a competitor. Herein, we introduce basic concepts and terms used in AI and ML, and aim to demystify commonly used AI/ML algorithms such as learning methods including neural networks/deep learning, decision tree and application domain in computer vision and natural language processing through specific examples. We discuss how machines are already being used to augment the physician's decision-making process, and postulate the potential impact of ML on medical practice and medical research based on its current capabilities and known limitations. Moreover, we discuss the feasibility of full machine autonomy in medicine.


Subject(s)
Humans , Artificial Intelligence , Machine Learning , Algorithms , Neural Networks, Computer , Medicine
11.
Article in Chinese | WPRIM | ID: wpr-981531

ABSTRACT

Aiming at the problems of missing important features, inconspicuous details and unclear textures in the fusion of multimodal medical images, this paper proposes a method of computed tomography (CT) image and magnetic resonance imaging (MRI) image fusion using generative adversarial network (GAN) and convolutional neural network (CNN) under image enhancement. The generator aimed at high-frequency feature images and used double discriminators to target the fusion images after inverse transform; Then high-frequency feature images were fused by trained GAN model, and low-frequency feature images were fused by CNN pre-training model based on transfer learning. Experimental results showed that, compared with the current advanced fusion algorithm, the proposed method had more abundant texture details and clearer contour edge information in subjective representation. In the evaluation of objective indicators, Q AB/F, information entropy (IE), spatial frequency (SF), structural similarity (SSIM), mutual information (MI) and visual information fidelity for fusion (VIFF) were 2.0%, 6.3%, 7.0%, 5.5%, 9.0% and 3.3% higher than the best test results, respectively. The fused image can be effectively applied to medical diagnosis to further improve the diagnostic efficiency.


Subject(s)
Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Tomography, X-Ray Computed , Magnetic Resonance Imaging/methods , Algorithms
12.
Article in Chinese | WPRIM | ID: wpr-981532

ABSTRACT

Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disease. Neuroimaging based on magnetic resonance imaging (MRI) is one of the most intuitive and reliable methods to perform AD screening and diagnosis. Clinical head MRI detection generates multimodal image data, and to solve the problem of multimodal MRI processing and information fusion, this paper proposes a structural and functional MRI feature extraction and fusion method based on generalized convolutional neural networks (gCNN). The method includes a three-dimensional residual U-shaped network based on hybrid attention mechanism (3D HA-ResUNet) for feature representation and classification for structural MRI, and a U-shaped graph convolutional neural network (U-GCN) for node feature representation and classification of brain functional networks for functional MRI. Based on the fusion of the two types of image features, the optimal feature subset is selected based on discrete binary particle swarm optimization, and the prediction results are output by a machine learning classifier. The validation results of multimodal dataset from the AD Neuroimaging Initiative (ADNI) open-source database show that the proposed models have superior performance in their respective data domains. The gCNN framework combines the advantages of these two models and further improves the performance of the methods using single-modal MRI, improving the classification accuracy and sensitivity by 5.56% and 11.11%, respectively. In conclusion, the gCNN-based multimodal MRI classification method proposed in this paper can provide a technical basis for the auxiliary diagnosis of Alzheimer's disease.


Subject(s)
Humans , Alzheimer Disease/diagnostic imaging , Neurodegenerative Diseases , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Neuroimaging/methods , Cognitive Dysfunction/diagnosis
13.
Article in Chinese | WPRIM | ID: wpr-981535

ABSTRACT

Cardiovascular disease is the leading cause of death worldwide, accounting for 48.0% of all deaths in Europe and 34.3% in the United States. Studies have shown that arterial stiffness takes precedence over vascular structural changes and is therefore considered to be an independent predictor of many cardiovascular diseases. At the same time, the characteristics of Korotkoff signal is related to vascular compliance. The purpose of this study is to explore the feasibility of detecting vascular stiffness based on the characteristics of Korotkoff signal. First, the Korotkoff signals of normal and stiff vessels were collected and preprocessed. Then the scattering features of Korotkoff signal were extracted by wavelet scattering network. Next, the long short-term memory (LSTM) network was established as a classification model to classify the normal and stiff vessels according to the scattering features. Finally, the performance of the classification model was evaluated by some parameters, such as accuracy, sensitivity, and specificity. In this study, 97 cases of Korotkoff signal were collected, including 47 cases from normal vessels and 50 cases from stiff vessels, which were divided into training set and test set according to the ratio of 8 : 2. The accuracy, sensitivity and specificity of the final classification model was 86.4%, 92.3% and 77.8%, respectively. At present, non-invasive screening method for vascular stiffness is very limited. The results of this study show that the characteristics of Korotkoff signal are affected by vascular compliance, and it is feasible to use the characteristics of Korotkoff signal to detect vascular stiffness. This study might be providing a new idea for non-invasive detection of vascular stiffness.


Subject(s)
Humans , Vascular Stiffness , Neural Networks, Computer , Cardiovascular Diseases/diagnosis , Sensitivity and Specificity
14.
Article in Chinese | WPRIM | ID: wpr-981558

ABSTRACT

The brain-computer interface (BCI) based on motor imagery electroencephalography (MI-EEG) enables direct information interaction between the human brain and external devices. In this paper, a multi-scale EEG feature extraction convolutional neural network model based on time series data enhancement is proposed for decoding MI-EEG signals. First, an EEG signals augmentation method was proposed that could increase the information content of training samples without changing the length of the time series, while retaining its original features completely. Then, multiple holistic and detailed features of the EEG data were adaptively extracted by multi-scale convolution module, and the features were fused and filtered by parallel residual module and channel attention. Finally, classification results were output by a fully connected network. The application experimental results on the BCI Competition IV 2a and 2b datasets showed that the proposed model achieved an average classification accuracy of 91.87% and 87.85% for the motor imagery task, respectively, which had high accuracy and strong robustness compared with existing baseline models. The proposed model does not require complex signals pre-processing operations and has the advantage of multi-scale feature extraction, which has high practical application value.


Subject(s)
Humans , Time Factors , Brain , Electroencephalography , Imagery, Psychotherapy , Neural Networks, Computer
15.
Article in Chinese | WPRIM | ID: wpr-981562

ABSTRACT

The recurrent neural network architecture improves the processing ability of time-series data. However, issues such as exploding gradients and poor feature extraction limit its application in the automatic diagnosis of mild cognitive impairment (MCI). This paper proposed a research approach for building an MCI diagnostic model using a Bayesian-optimized bidirectional long short-term memory network (BO-BiLSTM) to address this problem. The diagnostic model was based on a Bayesian algorithm and combined prior distribution and posterior probability results to optimize the BO-BiLSTM network hyperparameters. It also used multiple feature quantities that fully reflected the cognitive state of the MCI brain, such as power spectral density, fuzzy entropy, and multifractal spectrum, as the input of the diagnostic model to achieve automatic MCI diagnosis. The results showed that the feature-fused Bayesian-optimized BiLSTM network model achieved an MCI diagnostic accuracy of 98.64% and effectively completed the diagnostic assessment of MCI. In conclusion, based on this optimization, the long short-term neural network model has achieved automatic diagnostic assessment of MCI, providing a new diagnostic model for intelligent diagnosis of MCI.


Subject(s)
Humans , Bayes Theorem , Neural Networks, Computer , Algorithms , Brain , Cognitive Dysfunction/diagnosis
16.
Article in Chinese | WPRIM | ID: wpr-981565

ABSTRACT

In the diagnosis of cardiovascular diseases, the analysis of electrocardiogram (ECG) signals has always played a crucial role. At present, how to effectively identify abnormal heart beats by algorithms is still a difficult task in the field of ECG signal analysis. Based on this, a classification model that automatically identifies abnormal heartbeats based on deep residual network (ResNet) and self-attention mechanism was proposed. Firstly, this paper designed an 18-layer convolutional neural network (CNN) based on the residual structure, which helped model fully extract the local features. Then, the bi-directional gated recurrent unit (BiGRU) was used to explore the temporal correlation for further obtaining the temporal features. Finally, the self-attention mechanism was built to weight important information and enhance model's ability to extract important features, which helped model achieve higher classification accuracy. In addition, in order to mitigate the interference on classification performance due to data imbalance, the study utilized multiple approaches for data augmentation. The experimental data in this study came from the arrhythmia database constructed by MIT and Beth Israel Hospital (MIT-BIH), and the final results showed that the proposed model achieved an overall accuracy of 98.33% on the original dataset and 99.12% on the optimized dataset, which demonstrated that the proposed model can achieve good performance in ECG signal classification, and possessed potential value for application to portable ECG detection devices.


Subject(s)
Humans , Electrocardiography , Algorithms , Cardiovascular Diseases , Databases, Factual , Neural Networks, Computer
17.
Article in Chinese | WPRIM | ID: wpr-981573

ABSTRACT

Photoplethysmography (PPG) is often affected by interference, which could lead to incorrect judgment of physiological information. Therefore, performing a quality assessment before extracting physiological information is crucial. This paper proposed a new PPG signal quality assessment by fusing multi-class features with multi-scale series information to address the problems of traditional machine learning methods with low accuracy and deep learning methods requiring a large number of samples for training. The multi-class features were extracted to reduce the dependence on the number of samples, and the multi-scale series information was extracted by a multi-scale convolutional neural network and bidirectional long short-term memory to improve the accuracy. The proposed method obtained the highest accuracy of 94.21%. It showed the best performance in all sensitivity, specificity, precision, and F1-score metrics, compared with 6 quality assessment methods on 14 700 samples from 7 experiments. This paper provides a new method for quality assessment in small samples of PPG signals and quality information mining, which is expected to be used for accurate extraction and monitoring of clinical and daily PPG physiological information.


Subject(s)
Photoplethysmography , Machine Learning , Neural Networks, Computer
18.
Article in Chinese | WPRIM | ID: wpr-981574

ABSTRACT

The synergistic effect of drug combinations can solve the problem of acquired resistance to single drug therapy and has great potential for the treatment of complex diseases such as cancer. In this study, to explore the impact of interactions between different drug molecules on the effect of anticancer drugs, we proposed a Transformer-based deep learning prediction model-SMILESynergy. First, the drug text data-simplified molecular input line entry system (SMILES) were used to represent the drug molecules, and drug molecule isomers were generated through SMILES Enumeration for data augmentation. Then, the attention mechanism in the Transformer was used to encode and decode the drug molecules after data augmentation, and finally, a multi-layer perceptron (MLP) was connected to obtain the synergy value of the drugs. Experimental results showed that our model had a mean squared error of 51.34 in regression analysis, an accuracy of 0.97 in classification analysis, and better predictive performance than the DeepSynergy and MulinputSynergy models. SMILESynergy offers improved predictive performance to assist researchers in rapidly screening optimal drug combinations to improve cancer treatment outcomes.


Subject(s)
Electric Power Supplies , Neural Networks, Computer , Antineoplastic Agents/pharmacology
19.
Chinese Journal of Stomatology ; (12): 540-546, 2023.
Article in Chinese | WPRIM | ID: wpr-986108

ABSTRACT

Objective: To construct a kind of neural network for eliminating the metal artifacts in CT images by training the generative adversarial networks (GAN) model, so as to provide reference for clinical practice. Methods: The CT data of patients treated in the Department of Radiology, West China Hospital of Stomatology, Sichuan University from January 2017 to June 2022 were collected. A total of 1 000 cases of artifact-free CT data and 620 cases of metal artifact CT data were obtained, including 5 types of metal restorative materials, namely, fillings, crowns, titanium plates and screws, orthodontic brackets and metal foreign bodies. Four hundred metal artifact CT data and 1 000 artifact-free CT data were utilized for simulation synthesis, and 1 000 pairs of simulated artifacts and metal images and simulated metal images (200 pairs of each type) were constructed. Under the condition that the data of the five metal artifacts were equal, the entire data set was randomly (computer random) divided into a training set (800 pairs) and a test set (200 pairs). The former was used to train the GAN model, and the latter was used to evaluate the performance of the GAN model. The test set was evaluated quantitatively and the quantitative indexes were root-mean-square error (RMSE) and structural similarity index measure (SSIM). The trained GAN model was employed to eliminate the metal artifacts from the CT data of the remaining 220 clinical cases of metal artifact CT data, and the elimination results were evaluated by two senior attending doctors using the modified LiKert scale. Results: The RMSE values for artifact elimination of fillings, crowns, titanium plates and screws, orthodontic brackets and metal foreign bodies in test set were 0.018±0.004, 0.023±0.007, 0.015±0.003, 0.019±0.004, 0.024±0.008, respectively (F=1.29, P=0.274). The SSIM values were 0.963±0.023, 0.961±0.023, 0.965±0.013, 0.958±0.022, 0.957±0.026, respectively (F=2.22, P=0.069). The intra-group correlation coefficient of 2 evaluators was 0.972. For 220 clinical cases, the overall score of the modified LiKert scale was (3.73±1.13), indicating a satisfactory performance. The scores of modified LiKert scale for fillings, crowns, titanium plates and screws, orthodontic brackets and metal foreign bodies were (3.68±1.13), (3.67±1.16), (3.97±1.03), (3.83±1.14), (3.33±1.12), respectively (F=1.44, P=0.145). Conclusions: The metal artifact reduction GAN model constructed in this study can effectively remove the interference of metal artifacts and improve the image quality.


Subject(s)
Humans , Tomography, X-Ray Computed/methods , Deep Learning , Titanium , Neural Networks, Computer , Metals , Image Processing, Computer-Assisted/methods , Algorithms
20.
Journal of Forensic Medicine ; (6): 601-607, 2023.
Article in English | WPRIM | ID: wpr-1009393

ABSTRACT

Age estimation based on tissues or body fluids is an important task in forensic science. The changes of DNA methylation status with age have certain rules, which can be used to estimate the age of the individuals. Therefore, it is of great significance to discover specific DNA methylation sites and develop new age estimation models. At present, statistical models for age estimation have been developed based on the rule that DNA methylation status changes with age. The commonly used models include multiple linear regression model, multiple quantile regression model, support vector machine model, artificial neural network model, random forest model, etc. In addition, there are many factors that affect the level of DNA methylation, such as the tissue specificity of methylation. This paper reviews these modeling methods and influencing factors for age estimation based on DNA methylation, with a view to provide reference for the establishment of age estimation models.


Subject(s)
Humans , DNA Methylation , CpG Islands , Forensic Genetics , Neural Networks, Computer , Linear Models , Aging/genetics
SELECTION OF CITATIONS
SEARCH DETAIL