ABSTRACT
OBJECTIVE@#To observe the effect of electroacupuncture (EA) on the proliferation of endogenous neural stem cells in the hippocampus of young mice with Alzheimer's disease (AD), so as to explore its mechanisms underlying improvement of AD.@*METHODS@#Forty 1.5-month-old APP/PS1 transgenic male mice were randomly divided into an EA group and a model group, 20 mice in each group, and other 20 C57BL/6J male mice of the same age were used as the normal control group. EA (intermittment wave 10 Hz, 2 mA) was applied to "Baihui" (GV 20), "Fengfu" (GV 16) and "Shenshu" (BL 23) for 20 min, once a day, 6 days a week for 16 weeks. H.E. staining was used to assess histopathological changes of neurons of the hippocampal dentate gyrus. Immunohistochemical stain was used to detect the expression of 5-bromodeoxyuridine (BrdU)-positive in the hippocampus, and immunofluorescence double-labeled technique was used to detect the number of proliferated positive neurons of hippocampal neural stem cells. The expression levels of brain derived neurotrophic factor (BDNF) and Nestin mRNA and protein were detected by using real-time PCR and Western blot, separately.@*RESULTS@#The immunoactivity of BrdU, and the expression levels of BDNF and Nestin mRNA and protein in the hippocampus in the model group were significantly lower than in the normal control group (P<0.01, P<0.05), and considerably higher in the EA group than in the model group (P<0.01, P<0.05). The number of BrdU/NeuN dual labeled neurons was slightly increased in the model group than in the normal control group (P>0.05), and evidently increased in the EA group relevant to the model group (P<0.05), suggesting a proliferation of hippocampal neural stem cells. After modeling, the neurons of hippocampal dentate gyrus were arranged loosely and irregularly and their structure was fuzzy, with an appearance of different degrees of nuclear pyknosis, whereas in the EA group, the neuronal contour was clear and the nuclear structure was relatively distinct.@*CONCLUSION@#EA can activate the proliferation of neural stem cells in the hippocampus in AD mice, which may contribute to its function in improving the neuronal structure by upregulating the expression of BDNF.
Subject(s)
Alzheimer Disease/therapy , Animals , Cell Proliferation , Electroacupuncture , Hippocampus , Male , Mice , Mice, Inbred C57BL , Neural Stem CellsABSTRACT
Objective@#The hippocampus is thought to be a vulnerable target of microwave exposure. The aim of the present study was to investigate whether 20-hydroxyecdysone (20E) acted as a fate regulator of adult rat hippocampal neural stem cells (NSCs). Furthermore, we investigated if 20E attenuated high power microwave (HMP) radiation-induced learning and memory deficits.@*Methods@#Sixty male Sprague-Dawley rats were randomly divided into three groups: normal controls, radiation treated, and radiation+20E treated. Rats in the radiation and radiation+20E treatment groups were exposed to HPM radiation from a microwave emission system. The learning and memory abilities of the rats were assessed using the Morris water maze test. Primary adult rat hippocampal NSCs were isolated in vitro and cultured to evaluate their proliferation and differentiation. In addition, hematoxylin & eosin staining, western blotting, and immunofluorescence were used to detect changes in the rat brain and the proliferation and differentiation of the adult rat hippocampal NSCs after HPM radiation exposure.@*Results@#The results showed that 20E induced neuronal differentiation of adult hippocampal NSCs from HPM radiation-exposed rats via the Wnt3a/β-catenin signaling pathway in vitro. Furthermore, 20E facilitated neurogenesis in the subgranular zone of the rat brain following HPM radiation exposure. Administration of 20E attenuated learning and memory deficits in HPM radiation-exposed rats and frizzled-related protein (FRZB) reduced the 20E-induced nuclear translocation of β-catenin, while FRZB treatment also reversed 20E-induced neuronal differentiation of NSCs in vitro.@*Conclusion@#These results suggested that 20E was a fate regulator of adult rat hippocampal NSCs, where it played a role in attenuating HPM radiation-induced learning and memory deficits.
Subject(s)
Animals , Cell Proliferation , Ecdysterone/pharmacology , Hippocampus/metabolism , Male , Memory Disorders , Microwaves , Neural Stem Cells/physiology , Rats , Rats, Sprague-Dawley , beta Catenin/metabolismABSTRACT
Objectives: To study the effects of Porphyromonas gingivalis (Pg) injected through tail vein on the molecular expression levels of biomarkers of neural stem cells (NSC) and neurons in the hippocampus of wild-type adult rats, and the effects on hippocampal neurogenesis. Methods: Eighteen male Sprague-Dawley (SD) rats were randomly divided into 3 groups based on the table of random numbers (n=6 in each group). In low-intensity group and high-intensity group, rats were injected intravenously through tail vein with 200 μl Pg ATCC33277 [1.0×103 and 1.0×108 colony forming unit (CFU), respectively] 3 times per week for 8 weeks. In the sham group, 200 μl of phosphate buffer saline (PBS) was given instead. Behavioral tests: the navigation and the exploration tests using Morris water maze (MWM) were applied to evaluate learning and memory ability of rats. Immunohistochemistry was performed to detect cells positively expressing nestin, doublecortin (DCX) and neuronal nuclei (NeuN) in the subgranular zone (SGZ) of rats in each group. Western blotting was used to evaluate the expression levels of nestin, DCX and NeuN in rat hippocampus. Results: Learning and memory abilities: on day 5 of navigation test, the lagency time was 22.83 (16.00, 38.34) s in the high-intensity group, significantly longer than the sham group [5.59 (5.41, 6.17) s] (t=-11.17, P<0.001). There were no significant differences between the low-intensity group [9.85 (8.75, 21.01) s] and the sham group (t=-6.83, P=0.080). Results in the exploration test showed that, in the high-intensity group, the number of fime crossing over the previous platform area within 60 s was 1.50 (1.00, 2.00), significantly less than the sham group [4.00 (2.75, 4.00)] (t=9.75, P=0.003); no significant differences between the low-intensity group [2.50 (2.00, 3.00)] and the sham one (t=4.50, P=0.382). Immunohistochemistry showed that the nestin+ cell density in the low-intensity group [(35.36±4.32) cell/mm2] and high-intensity group [(26.51±5.89) cell/mm2] were significantly lower than the sham group [(59.58±14.15) cell/mm2] (t=24.21, P=0.018; t=33.07, P=0.005); as for the mean absorbance of DCX+ cells, the low-intensity group (0.007±0.002) and the high-intensity group (0.006±0.002) were significantly lower than the sham group (0.011±0.001) (t=0.004, P=0.018; t=0.006, P=0.005); compared with the sham group [(1.13±0.14)×103 cell/mm2], the density of NeuN+ neurons in the high-intensity group [(0.75±0.08)×103 cell/mm2] was significantly reduced (t=0.38, P=0.017), and was not significantly changed in the low-intensity group [(0.88±0.19)×103 cell/mm2] (t=0.25, P=0.075). Western blotting results showed that, compared with the sham group, the expression levels of nestin, DCX, and NeuN were significantly reduced in the high-intensity group (t=0.74, P<0.001; t=0.18, P=0.014; t=0.35, P=0.008), but were not statistically changed in the low-intensity group (t=0.18, P=0.108; t=0.08, P=0.172; t=0.19, P=0.077). Conclusions: Pg injected through tail vein may reduce learning and memory abilities of wild-type rats, and may reduce the number of nestin, DCX, and NeuN-positive cells, and the protein expression levels of the above molecules in the hippocampus.
Subject(s)
Animals , Biomarkers/metabolism , Hippocampus/metabolism , Male , Nestin/metabolism , Neural Stem Cells/metabolism , Neurons/metabolism , Porphyromonas gingivalis/metabolism , Rats , Rats, Sprague-Dawley , Tail/metabolismABSTRACT
Chronic stress impairs radial neural stem cell (rNSC) differentiation and adult hippocampal neurogenesis (AHN), whereas promoting AHN can increase stress resilience against depression. Therefore, investigating the mechanism of neural differentiation and AHN is of great importance for developing antidepressant drugs. The nonpsychoactive phytocannabinoid cannabidiol (CBD) has been shown to be effective against depression. However, whether CBD can modulate rNSC differentiation and hippocampal neurogenesis is unknown. Here, by using the chronic restraint stress (CRS) mouse model, we showed that hippocampal rNSCs mostly differentiated into astrocytes under stress conditions. Moreover, transcriptome analysis revealed that the FoxO signaling pathway was involved in the regulation of this process. The administration of CBD rescued depressive-like symptoms in CRS mice and prevented rNSCs overactivation and differentiation into astrocyte, which was partly mediated by the modulation of the FoxO signaling pathway. These results revealed a previously unknown neural mechanism for neural differentiation and AHN in depression and provided mechanistic insights into the antidepressive effects of CBD.
Subject(s)
Animals , Cannabidiol/pharmacology , Cell Differentiation , Depression/prevention & control , Hippocampus/metabolism , Humans , Mice , Neural Stem Cells , Neurogenesis/physiologyABSTRACT
The high neurogenic potential of dental and oral-derived stem cells due to their embryonic neural crest origin, coupled with their ready accessibility and easy isolation from clinical waste, make these ideal cell sources for neuroregeneration therapy. Nevertheless, these cells also have high propensity to differentiate into the osteo-odontogenic lineage. One strategy to enhance neurogenesis of these cells may be to recapitulate the natural physiological electrical microenvironment of neural tissues via electroactive or electroconductive tissue engineering scaffolds. Nevertheless, to date, there had been hardly any such studies on these cells. Most relevant scientific information comes from neurogenesis of other mesenchymal stem/stromal cell lineages (particularly bone marrow and adipose tissue) cultured on electroactive and electroconductive scaffolds, which will therefore be the focus of this review. Although there are larger number of similar studies on neural cell lines (i.e. PC12), neural stem/progenitor cells, and pluripotent stem cells, the scientific data from such studies are much less relevant and less translatable to dental and oral-derived stem cells, which are of the mesenchymal lineage. Much extrapolation work is needed to validate that electroactive and electroconductive scaffolds can indeed promote neurogenesis of dental and oral-derived stem cells, which would thus facilitate clinical applications in neuroregeneration therapy.
Subject(s)
Cell Differentiation , Mesenchymal Stem Cells/metabolism , Neural Stem Cells/metabolism , Neurogenesis , Tissue ScaffoldsABSTRACT
OBJECTIVE@#To study the effects of total ginsenosides (TG) extract from Panax ginseng on neural stem cell (NSC) proliferation and differentiation and their underlying mechanisms.@*METHODS@#The migration of NSCs after treatment with various concentrations of TG extract (50, 100, or 200 µ g/mL) were monitored. The proliferation of NSCs was examined by a combination of cell counting kit-8 and neurosphere assays. NSC differentiation mediated by TG extract was evaluated by Western blotting and immunofluorescence staining to monitor the expression of nestin and microtubule associated protein 2 (MAP2). The GSK-3β/β-catenin pathway in TG-treated NSCs was examined by Western blot assay. The NSCs with constitutively active GSK-3β mutant were made by adenovirus-mediated gene transfection, then the proliferation and differentiation of NSCs mediated by TG were further verified.@*RESULTS@#TG treatment significantly enhanced NSC migration (P<0.01 or P<0.05) and increased the proliferation of NSCs (P<0.01 or P<0.05). TG mediation also significantly upregulated MAP2 expression but downregulated nestin expression (P<0.01 or P<0.05). TG extract also significantly induced GSK-3β phosphorylation at Ser9, leading to GSK-3β inactivation and, consequently, the activation of the GSK-3β/β-catenin pathway (P<0.01 or P<0.05). In addition, constitutive activation of GSK-3β in NSCs by the transfection of GSK-3β S9A mutant was found to significantly suppress TG-mediated NSC proliferation and differentiation (P<0.01 or P<0.05).@*CONCLUSION@#TG promoted NSC proliferation and neuronal differentiation by inactivating GSK-3β.
Subject(s)
Animals , Cell Differentiation , Cell Proliferation , Ginsenosides/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism , Neural Stem Cells/metabolism , Panax , Plant Extracts/pharmacology , Rats , beta Catenin/metabolismABSTRACT
Objective@#Neonatal exposure to propofol has been reported to cause neurotoxicity and neurocognitive decline in adulthood; however, the underlying mechanism has not been established.@*Methods@#SD rats were exposed to propofol on postnatal day 7 (PND-7). Double-immunofluorescence staining was used to assess neurogenesis in the hippocampal dentate gyrus (DG). The expression of p-Akt and p27 were measured by western blotting. The Morris water maze, novel object recognition test, and object location test were used to evaluate neurocognitive function 2-month-old rats.@*Results@#Phosphorylation of Akt was inhibited, while p27 expression was enhanced after neonatal exposure to propofol. Propofol also inhibited proliferation of neural stem cells (NSCs) and decreased differentiation to neurons and astroglia. Moreover, the neurocognitive function in 2-month-old rats was weakened. Of significance, intra-hippocampal injection of the Akt activator, SC79, attenuated the inhibition of p-AKT and increase of p27 expression. SC79 also rescued the propofol-induced inhibition of NSC proliferation and differentiation. The propofol-induced neurocognition deficit was also partially reversed by SC79.@*Conclusion@#Taken together, these results suggest that neurogenesis is hindered by neonatal propofol exposure. Specifically, neonatal propofol exposure was shown to suppress the proliferation and differentiation of NSCs by inhibiting Akt/p27 signaling pathway.
Subject(s)
Animals , Cell Proliferation , Hippocampus/metabolism , Neural Stem Cells , Propofol/toxicity , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Signal TransductionABSTRACT
OBJECTIVE@#To study the effect of advanced maternal age (AMA) on the development of hippocampal neural stem cells in offspring rats.@*METHODS@#Ten 3-month-old and ten 12-month-old female Sprague-Dawley rats were housed individually with 3-month-old male rats (1:1, n=20), whose offspring rats were assigned to a control group and an AMA group. A total of 40 rats were randomly selected from each group. Immunofluorescence assay and Western blot were used to localize and determine the levels of protein expression of Nestin and doublecortin (DCX) on day 7 as well as neuronal nuclear antigen (NeuN) and glial fibrillary acidic protein (GFAP) on day 28 (n=8 for each marker). Immunofluorescence assay was also used to localize the hippocampal expression of polysialylated isoforms of neural cell adhesion molecule (PSA-NCAM) on day 14 (n=8 for each marker).@*RESULTS@#According to the Western blot results, the AMA group had significantly lower protein expression of DCX than the control group (P0.05). According to the results of immunofluorescence assay, the AMA group had significantly lower protein expression of Nestin, DCX, and PSA-NCAM in the hippocampal dentate gyrus (DG) region than the control group (P0.05). The AMA group had significantly higher expression of NeuN in the hippocampal CA1 region than the control group (P0.05). The AMA group had significantly lower expression of GFAP in the hippocampal CA1, CA3, and DG regions than the control group (P<0.05).@*CONCLUSIONS@#AMA may cause inhibition of proliferation, survival, and migration of hippocampal neural stem cells. AMA may also affect their differentiation into neurons and astrocytes, which will eventually lead to developmental disorders of hippocampal neural stem cells in offspring rats.
Subject(s)
Animals , Female , Hippocampus , Male , Maternal Age , Neural Stem Cells , Neurons , Rats , Rats, Sprague-DawleyABSTRACT
O objetivo deste estudo foi verificar a capacidade de diferenciação das células-tronco da polpa dentária canina em células progenitoras neurais bem como quantificar obtenção e viabilidade celular, durante três passagens em cultura. As células foram extraídas da polpa dentária de dois cadáveres caninos, com aproximadamente dez meses de idade, que foram a óbito em decorrência de traumatismo automotivo. Após três subculturas, realizou-se avaliação da viabilidade celular por quantificação em câmara de Neubauer. A partir disso, induziu-se diferenciação neural em meio de cultura neurobasal (Gibco™), com células aderidas ao plástico ou suspensas em placas tratadas com agarose. Após sete e 14 dias em cultivo indutor, observou-se morfologia e perfil imunofenotípico utilizando citometria de fluxo e imunocitoquímica fluorescente. Aos 14 dias as células apresentaram alto grau de expressão para marcadores anti-nestina e anti-glial fibrillary acidic protein (anti-GFAP). Anteriormente, obteve-se ao 25º dia, média de 18x106 células viáveis indiferenciadas oriundas do tecido pulpar. Sugere-se que as células-tronco indiferenciadas da polpa dentária canina apresentem índices satisfatórios de diferenciação em células progenitoras neurais, aderidas ou suspensas em cultura. A polpa dentária dos dentes decíduos caninos, fornece células indiferenciadas viáveis em quantidade adequada.(AU)
The objective of this study was to verify the differentiation capacity of canine tooth pulp stem cells in neural progenitor cells as well as to quantify the attainment and viability during three culture passages. The cells were extracted from the dental pulp of two canine cadavers, with approximately ten months of age, which died due to automotive trauma. After three subcultures, cell viability evaluation was performed by Neubauer chamber quantification. Neural differentiation was induced in neurobasal culture medium (Gibco ™), with cells adhered to the plastic or suspended in agarose-treated plates. After seven and 14 days in inducer culture, morphology and immunophenotypic profile were observed using flow cytometry and fluorescent immunocytochemistry. At 14 days the cells had a high degree of expression for anti-nestin and anti-glial fibrillary acidic (anti-GFAP) markers. Previously, an average of 18x106 undifferentiated viable cells from the pulp tissue were obtained on the 25th day. It is suggested that the undifferentiated canine pulp stem cells present satisfactory differentiation indices in neural progenitor cells, adhered or suspended in culture. The dental pulp of deciduous canine teeth provides viable undifferentiated cells in adequate quantity.(AU)
Subject(s)
Animals , Dogs , Dental Pulp/ultrastructure , Neural Stem Cells , Cell- and Tissue-Based Therapy/veterinary , Demyelinating Diseases/veterinary , Flow Cytometry/veterinaryABSTRACT
OBJECTIVE@#To observe the effects of on the expression of β-tubulin Ⅲ and glial fibrillary acidic protein (GFAP) and the proliferation and differentiation of murine neural stem cells (NSCs) .@*METHODS@#An immortalized murine NSC line was divided into model control (MC) group, 10% drug-containing serum group (NLXT group), and 10% Naoluoxintong drug-containing serum with inhibitor Y27632 group (Y-27632 group) with corresponding treatments. The activity of the NSCs was detected after the treatments using MTT assay, and the migration of the cells was observed with Transwell assay. The expressions of β-tubulin Ⅲ, GFAP and MAP-2 proteins in the cells were detected with immunoblotting, and the expressions of DCX, NEUN, and β-tubulin Ⅲ were also detected with immunofluorescence assay.@*RESULTS@#Compared with that in MC group, the number of migrated cells in NLXT group and Y-27632 group increased significantly at 1 day and 3 days after induction ( < 0.05). The survival rate and the number of migrated cells in NLXT group and Y-27632 group increased significantly on day 7 ( < 0.01). Compared with those in MC group, the expressions of β-tubulin Ⅲ, MAP2 and GFAP protein in NLXT group and Y-27632 group were significantly increased on days 3 ( < 0.01) and 7 ( < 0.05). The numbers of β-tubulinⅢ/ GFAP, BrdU/DCX, and BrdU/NEUN labeled cells in the NLXT group and Y-27632 group were significantly greater than those in the MC group.@*CONCLUSIONS@# promotes the proliferation and differentiation of murine NSCs by regulating the expressions of β-tubulinⅢ/GFAP.
Subject(s)
Animals , Cell Differentiation , Cell Proliferation , Glial Fibrillary Acidic Protein , Mice , Neural Stem Cells , TubulinABSTRACT
N-methyladenosine (mA), catalyzed by the methyltransferase complex consisting of Mettl3 and Mettl14, is the most abundant RNA modification in mRNAs and participates in diverse biological processes. However, the roles and precise mechanisms of mA modification in regulating neuronal development and adult neurogenesis remain unclear. Here, we examined the function of Mettl3, the key component of the complex, in neuronal development and adult neurogenesis of mice. We found that the depletion of Mettl3 significantly reduced mA levels in adult neural stem cells (aNSCs) and inhibited the proliferation of aNSCs. Mettl3 depletion not only inhibited neuronal development and skewed the differentiation of aNSCs more toward glial lineage, but also affected the morphological maturation of newborn neurons in the adult brain. mA immunoprecipitation combined with deep sequencing (MeRIP-seq) revealed that mA was predominantly enriched in transcripts related to neurogenesis and neuronal development. Mechanistically, mA was present on the transcripts of histone methyltransferase Ezh2, and its reduction upon Mettl3 knockdown decreased both Ezh2 protein expression and consequent H3K27me3 levels. The defects of neurogenesis and neuronal development induced by Mettl3 depletion could be rescued by Ezh2 overexpression. Collectively, our results uncover a crosstalk between RNA and histone modifications and indicate that Mettl3-mediated mA modification plays an important role in regulating neurogenesis and neuronal development through modulating Ezh2.
Subject(s)
Adenosine , Metabolism , Adult Stem Cells , Cell Biology , Metabolism , Animals , Brain , Metabolism , Cell Differentiation , Genetics , Cell Proliferation , Enhancer of Zeste Homolog 2 Protein , Metabolism , Gene Expression Regulation , Methyltransferases , Metabolism , Mice, Inbred C57BL , Neural Stem Cells , Cell Biology , Metabolism , Neurogenesis , Genetics , Neurons , Cell Biology , Metabolism , RNA, Messenger , Genetics , MetabolismABSTRACT
PURPOSE: In the present study, human neural stem cells (hNSCs) with tumor-tropic behavior were used as drug delivery vehicle to selectively target melanoma. A hNSC line (HB1.F3) was transduced into two types: one expressed only the cytosine deaminase (CD) gene (HB1.F3. CD) and the other expressed both CD and human interferon-β (IFN-β) genes (HB1.F3.CD. IFN-β). MATERIALS AND METHODS: This study verified the tumor-tropic migratory competence of engineered hNSCs on melanoma (A375SM) using a modified Boyden chamber assay in vitro and CM-DiI staining in vivo. The antitumor effect of HB1.F3.CD and HB1.F3.CD.IFN-β on melanoma was also confirmed using an MTT assay in vitro and xenograft mouse models. RESULTS: A secreted form of IFN-β from the HB1.F3.CD.IFN-β cells modified the epithelial-mesenchymal transition (EMT) process and metastasis of melanoma. 5-Fluorouracil treatment also accelerated the expression of the pro-apoptotic protein BAX and decelerated the expression of the anti-apoptotic protein Bcl-xL on melanoma cell line. CONCLUSION: Our results illustrate that engineered hNSCs prevented malignant melanoma cells from proliferating in the presence of the prodrug, and the form that secreted IFN-β intervened in the EMT process and melanoma metastasis. Hence, neural stem cell-directed enzyme/prodrug therapy is a plausible treatment for malignant melanoma.
Subject(s)
Animals , Cell Line , Cytosine Deaminase , Epithelial-Mesenchymal Transition , Flucytosine , Fluorouracil , Heterografts , Humans , In Vitro Techniques , Melanoma , Mental Competency , Mice , Neoplasm Metastasis , Neural Stem Cells , Stem CellsABSTRACT
The present study was aimed to investigate the effects and mechanisms of electro-acupuncture (EA) on proliferation and differentiation of neural stem cells in the hippocampus of C57 mice exposed to different doses of X-ray radiation. Thirty-day-old C57BL/6J mice were randomly divided into control, irradiation, and EA groups. The control group was not treated with irradiation. The irradiation groups were exposed to different doses of X-ray (4, 8 or 16 Gy) for 10 min. The EA groups were electro-acupunctured at Baihui, Fengfu and bilateral Shenyu for 3 courses of treatment after X-ray radiation. Immunohistochemistry was used to evaluate proliferation and differentiation of the hippocampal neural stem cell. RT-PCR and Western blot were used to detect mRNA and protein expressions of Notch1 and Mash1 in the hippocampus, respectively. The results showed that, compared with the control group, the numbers of BrdU positive cells (4, 8 Gy subgroup) and BrdU/NeuN double-labeling positive cells (3 dose subgroups) were decreased significantly in the irradiation group, but the above changes could be reversed by EA. Compared with the control group, the number of BrdU/GFAP double-labeling positive cells in each dose subgroup of irradiation group was decreased significantly, while EA could reverse the change of 4 and 8 Gy dose subgroups. In addition, compared with the control group, the expression levels of Notch1 mRNA and protein in hippocampus were up-regulated, and the expression levels of Mash1 mRNA and protein were significantly decreased in each dose subgroup of irradiation group. Compared with irradiation group, the expression levels of Notch1 mRNA and protein in hippocampus of EA group were decreased significantly in each dose subgroup, and the expression levels of Mash1 mRNA and protein were increased significantly in 4 and 8 Gy subgroups. These results suggest that irradiation affects the proliferation and differentiation of neural stem cells in hippocampus of mice, whereas EA may significantly increase the proliferation and differentiation of hippocampal neural stem cells via the regulation of Notch signaling pathway.
Subject(s)
Animals , Basic Helix-Loop-Helix Transcription Factors , Metabolism , Cell Differentiation , Cell Proliferation , Electroacupuncture , Hippocampus , Cell Biology , Radiation Effects , Mice, Inbred C57BL , Neural Stem Cells , Cell Biology , Radiation Effects , Random Allocation , Receptor, Notch1 , Metabolism , X-RaysABSTRACT
Neural stem cell therapy, as a new therapeutic method for neural diseases, has aroused a wide concern for over 20 years since neural stem cells were first found in 1992. Ischemic stroke is highly concerned because of its high incidence, mortality and disability rates. Because the brain has a limited ability to repair itself, to improve neural function and promote neural regeneration may help to prevent occurrence and development of neurological diseases. It is noteworthy that some stroke patients showed an ability to repair brain several months after the stroke happened, suggesting an existence of endogenous nerve repair in these patients. The research advances in functions of endogenous neural stem cells in neural regeneration and the related regulators after ischemic stroke are summarized in this review to provide new views of the mechanism of neural functional recovery after ischemic stroke.
Subject(s)
Brain Ischemia , Therapeutics , Humans , Nerve Regeneration , Neural Stem Cells , Cell Biology , Stroke , TherapeuticsABSTRACT
OBJECTIVE@#To investigate the effects of optical genetic techniques on new neurons through the Wnt/β-Catenin pathway.@*METHODS@#Neural stem cells (ESCs)were extracted from the cerebral cortex of fetal rat and transfected by lentivirus carrying DCX-ChR2-EGFP gene and the expression of DCX of newborn neurons differentiated from neural stem cells were observed. All cells were divided into 3 groups(n=9): control group, NSCs+EGFP and NSCs+ChR2 groups. The control group was normal cultured NSCs (NSCs group); the neural stem cells in NSCs+EGFP group were transfected with lentivirus carrying EGFP gene. The neural stem cells in NSCs+ChR2 group were infected with lentivirus carrying DCX-ChR2-EGFP gene. After 48 hours of lentivirus infection, 470 nm blue laser irradiation was performed for 3 consecutive days. NeuN positive cell density(the maturation of neural stem cells)and the ratio of NeuN/Hoechst in each group were observed. Western blot was used to detect the expression levels of MAP2, NeuN, Neurog2, NeuroD1 and GluR2. Western blot was used to detect the expressions of β-catenin and TCF4 associated with Wnt/β-catenin signaling channel. Verapamil (100 μmol/L, L-type calcium channel blockers) and Dkk1 (50 μg/ml, β-catenin inhibitor) were used to treat stem cells of the NSCs+ChR2 group and then the expressions of MAP2, NeuN, Neurog2, NeuroD1 and GluR were detected by Western blot.@*RESULTS@#After 3 days of 470 nm blue laser irradiation, NeuN positive cell density(the maturation of neural stem cells)and the ratio of NeuN/Hoechst, the expression levels of the protein MAP2, NeuN, Neurog2, NeuroD1, GluR and the protein β-catenin and TCF4 associated with Wnt/β-catenin signaling channel detected by Western blot were significantly increased in the group of NSCs+ChR2, compared with NSCs and NSCs+EGFP groups. The expressions of MAP2, NeuN, Neurog2, NeuroD1 and GluR were remarkably decreased after treated by verapamil and Dkk1 in the group of NSCs+ChR2. It was proved that the opening of ChR2 channel producing cationic influx promoted the maturation of neural stem cells and induced by the Wnt/β-catenin signaling pathway.@*CONCLUSION@#Optical genetic promoted the maturation of newborn neurons through the Wnt/β-catenin signaling pathway.
Subject(s)
Animals , Cells, Cultured , Neural Stem Cells , Cell Biology , Neurons , Cell Biology , Optogenetics , Rats , Transfection , Wnt Signaling PathwayABSTRACT
OBJECTIVE@#To study the effect of exendin-4(Ex-4) on the differentiation of neural stem cells(NSCs) in adult mouse subventricular zone(SVZ)and its mechanism .@*METHODS@#NSCs in the SVZ were derived from 5-week C57BL/6J mice and the expression of nestin was detected by immunofluorescence. The cell morphology was observed after the cells treatmed with 100 nmol/L Ex-4 for 14 days.The expressions of nestin and glucagon-like peptide-1 receptor (GLP-1R) were detected by immunofluorescence. GLP-1R was knocked down by using shRNA and the study was divided into four groups: control group, Ex-4 group, GLP-1R knockdown group, GLP-1R knockdown + Ex-4 group. After treatment with 100 nmol/L Ex-4 for 14 d, β-tublin III and glial fibrillary acidic protein (GFAP) were labeled by immunofluorescence and then the proportion of β-tublin III positive cells were counted. Western blot was used to detect the activation of cAMP-response element binding protein (CREB) in NSCs. In order to further study the effects of Ex-4 on mitogen-activated protein kinase(MAPK) and phosphatidylinositol 3-hydroxy kinase (PI3K) pathways, the cells were pretreated with MAPK inhibitor U0126 at a concentration of 0.07 μmol/L for 30 min or PI3K inhibitor LY294002 at 50 μmol for 2 h, respectively. The study was divided into six groups: control group, Ex-4 group, U0126 group, U0126 + Ex-4 group, LY294002 group, LY294002 + Ex-4 group. The activation of CREB in each group was detected by Western blot. The experiment was repeated three times independently.@*RESULTS@#NSCs were successfully extracted from SVZ of C57BL/6J mice. Immunofluorescence showed that nestin and GLP-1R were positive in NSCs. Compared with the control group, the proportion of neurons differentiated from Ex-4 group was higher. The percentage of neurons in GLP-1R knockdown + Ex-4 group was basically the same as that in control group (P<0.01). The positive cells of beta-tublin III showed positive activation of GLP-1R and CREB. Western blot showed that CREB was significantly activated in the Ex-4 group, and knockdown of GLP-1R abolished its activation (P<0.01). U0126 did not affect Ex-4-mediated CERB activation, and LY294002 significantly reduced Ex-4-mediated CREB activation (P<0.01).@*CONCLUSION@#Ex-4 promotes the differentiation of NSCs into neurons in SVZ of adult mice through GLP-1R receptor, which may be achieved through PI3K/CREB pathway.
Subject(s)
Animals , Cell Differentiation , Cells, Cultured , Cyclic AMP Response Element-Binding Protein , Metabolism , Exenatide , Pharmacology , Gene Knockdown Techniques , Glucagon-Like Peptide-1 Receptor , Genetics , Metabolism , Lateral Ventricles , Cell Biology , Mice , Mice, Inbred C57BL , Neural Stem Cells , Cell Biology , Phosphatidylinositol 3-KinasesABSTRACT
To compare the biological functions of astrocytes cultured by two methods. Methods The primary astrocytes were cultured from rodent neonatal brain,whereas the differentiated astrocytes were prepared by differentiating neural stem cells with fetal bovine serum.The morphologies of these two different types of astrocytes were observed under microscope and the expression of glial fibrillary acidic protein(GFAP),an astrocyte-specific marker,was detected by immunofluorescence staining after treatment with 10 cytokines.Changes in GFAP,glutamate synthetase(GS),glutamate-aspartic acid transporter(xCT),neuregulin-1(NRG),N-methyl-D-aspartic acid receptor(NMDA),lipoprotein lipase(LPL)were detected and compared. Results The morphologies and GFAP expression differed between these two astrocyte types.Microarray showed that the expressions of GFAP,GS,xCT,NRG,NMDA,and LPL were significantly higher in primary astrocytes than in differentiated astrocytes.None of these 10 cytokines increased the expression of GFAP in primary astrocytes,whereas treatment with transforming growth factor-β(TGF-β)significantly increased the expression of GFAP in the differentiated astrocytes. Conclusion Compared with the differentiated astrocytes,the primary astrocytes are more similar to reactive astrocytes,and TGF-β can promote the transition of differentiated cells to reactive cells.
Subject(s)
Animals , Animals, Newborn , Astrocytes , Cell Biology , Cell Differentiation , Cells, Cultured , Glial Fibrillary Acidic Protein , Metabolism , Neural Stem Cells , Cell Biology , Rodentia , Transforming Growth Factor beta , PharmacologyABSTRACT
Diffuse intrinsic pontine glioma (DIPG) is the main cause of brain tumor-related death among children. Until now, there is still a lack of effective therapy with prolonged overall survival for this disease. A typical strategy for preclinical cancer research is to find out the molecular differences between tumor tissue and para-tumor normal tissue, in order to identify potential therapeutic targets. Unfortunately, it is impossible to obtain normal tissue for DIPG because of the vital functions of the pons. Here we report the human fetal hindbrain-derived neural progenitor cells (pontine progenitor cells, PPCs) as normal control cells for DIPG. The PPCs not only harbored similar cell biological and molecular signatures as DIPG glioma stem cells, but also had the potential to be immortalized by the DIPG-specific mutation H3K27M in vitro. These findings provide researchers with a candidate normal control and a potential medicine carrier for preclinical research on DIPG.
Subject(s)
Animals , Brain Stem Neoplasms , Genetics , Metabolism , Pathology , Cell Line, Tumor , Cellular Senescence , Female , Glioma , Genetics , Metabolism , Pathology , Histones , Genetics , Humans , Mice, Inbred NOD , Mice, SCID , Neoplasm Transplantation , Neoplastic Stem Cells , Metabolism , Pathology , Neural Stem Cells , Metabolism , Pathology , Pons , Embryology , Metabolism , Pathology , Primary Cell CultureABSTRACT
MicroRNA-132 (miR-132), a small RNA that regulates gene expression, is known to promote neurogenesis in the embryonic nervous system and adult brain. Although exposure to psychoactive substances can increase miR-132 expression in cultured neural stem cells (NSCs) and the adult brain of rodents, little is known about its role in opioid addiction. So, we set out to determine the effect of miR-132 on differentiation of the NSCs and whether this effect is involved in opioid addiction using the rat morphine self-administration (MSA) model. We found that miR-132 overexpression enhanced the differentiation of NSCs in vivo and in vitro. Similarly, specific overexpression of miR-132 in NSCs of the adult hippocampal dentate gyrus (DG) during the acquisition stage of MSA potentiated morphine-seeking behavior. These findings indicate that miR-132 is involved in opioid addiction, probably by promoting the differentiation of NSCs in the adult DG.
Subject(s)
Animals , Cell Differentiation , Cell Line, Tumor , Dentate Gyrus , Metabolism , Gene Expression Regulation , Male , MicroRNAs , Metabolism , Neural Stem Cells , Metabolism , Opioid-Related Disorders , Metabolism , Rats, Sprague-DawleyABSTRACT
PSMD10(Gankyrin), a proteasome assembly chaperone, is a widely known oncoprotein which aspects many hall mark properties of cancer. However, except proteasome assembly chaperon function its role in normal cell function remains unknown. To address this issue, we induced PSMD10(Gankyrin) overexpression in HEK293 cells and the resultant large-scale changes in gene expression profile were analyzed. We constituted networks from microarray data of these differentially expressed genes and carried out extensive topological analyses. The overrecurring yet consistent theme that appeared throughout analysis using varied network metrics is that all genes and interactions identified as important would be involved in neurogenesis and neuronal development. Intrigued we tested the possibility that PSMD10(Gankyrin) may be strongly associated with cell fate decisions that commit neural stem cells to differentiate into neurons. Overexpression of PSMD10(Gankyrin) in human neural progenitor cells facilitated neuronal differentiation via β-catenin Ngn1 pathway. Here for the first time we provide preliminary and yet compelling experimental evidence for the involvement of a potential oncoprotein – PSMD10(Gankyrin), in neuronal differentiation.