Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Rev. ADM ; 79(1): 28-31, ene.-feb. 2022.
Article in Spanish | LILACS | ID: biblio-1361815

ABSTRACT

Introducción: A finales de noviembre de 2021, la Organización Mundial de la Salud (OMS) designó a la cepa conocida como B.1.1.529 como una variante de preocupación y le otorgó la designación ómicron, con lo cual se convierte en la cuarta variante de preocupación enumerada, junto con las variantes alfa, beta, gamma y delta. El propósito de este estudio es presentar información de la aparición, características y algunos datos de la variante ómicron. Conclusiones: Las deficientes infraestructuras en los sistemas de salud que hay en nuestro país, la baja tasa de vacunación y la presencia de comorbilidades e inmunodeficiencia en la población inducen a que ésta sea más susceptible a la infección de estas nuevas variantes. Se requiere un esfuerzo global del gobierno, las industrias farmacéuticas/biotecnológicas y las instituciones académicas y sanitarias para contener eficazmente esta pandemia (AU)


Introduction: In late November 2021, the World Health Organization (WHO) designated the strain known as B.1.1.529 as a variant of concern, and granted it the omicron designation, making it the fourth variant of concern listed along with alpha, beta, gamma, and delta variants. The purpose of the study is to present information on the occurrence, characteristics and some data on the omicron variant. Conclusions: The deficient health infrastructures present in our country, the low vaccination rate and the presence of population with comorbidities and immunodeficiency or both, are more susceptible to infection to these new variants. A global effort by the government, pharmaceutical/biotechnology industries, and academic and health institutions is required to effectively contain this pandemic (AU)


Subject(s)
Humans , Male , Adult , Spike Glycoprotein, Coronavirus , SARS-CoV-2 , COVID-19 , Bioethics , Biotechnology , Global Health , Vaccination , Mexico
2.
Frontiers of Medicine ; (4): 252-263, 2021.
Article in English | WPRIM | ID: wpr-880970

ABSTRACT

An unexpected observation among the COVID-19 pandemic is that smokers constituted only 1.4%-18.5% of hospitalized adults, calling for an urgent investigation to determine the role of smoking in SARS-CoV-2 infection. Here, we show that cigarette smoke extract (CSE) and carcinogen benzo(a)pyrene (BaP) increase ACE2 mRNA but trigger ACE2 protein catabolism. BaP induces an aryl hydrocarbon receptor (AhR)-dependent upregulation of the ubiquitin E3 ligase Skp2 for ACE2 ubiquitination. ACE2 in lung tissues of non-smokers is higher than in smokers, consistent with the findings that tobacco carcinogens downregulate ACE2 in mice. Tobacco carcinogens inhibit SARS-CoV-2 spike protein pseudovirions infection of the cells. Given that tobacco smoke accounts for 8 million deaths including 2.1 million cancer deaths annually and Skp2 is an oncoprotein, tobacco use should not be recommended and cessation plan should be prepared for smokers in COVID-19 pandemic.


Subject(s)
Adult , Animals , COVID-19 , Epithelial Cells , Humans , Lung , Mice , Pandemics , Peptidyl-Dipeptidase A , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Ubiquitin-Protein Ligases/genetics
4.
Frontiers of Medicine ; (4): 644-648, 2021.
Article in English | WPRIM | ID: wpr-888748

ABSTRACT

The coronavirus disease 2019 (COVID-19) has caused global public health and economic crises. Thus, new therapeutic strategies and effective vaccines are urgently needed to cope with this severe pandemic. The development of a broadly neutralizing antibody against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is one of the attractive treatment strategies for COVID-19. Currently, the receptor-binding domain (RBD) of the spike (S) protein is the main target of neutralizing antibodies when SARS-CoV-2 enters human cells through an interaction between the S protein and the angiotensin-converting enzyme 2 expressed on various human cells. A single monoclonal antibody (mAb) treatment is prone to selective pressure due to increased possibility of targeted epitope mutation, leading to viral escape. In addition, the antibody-dependent enhancement effect is a potential risk of enhancing the viral infection. These risks can be reduced using multiple mAbs that target nonoverlapping epitopes. Thus, a cocktail therapy combining two or more antibodies that recognize different regions of the viral surface may be the most effective therapeutic strategy.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
5.
Rev inf cient ; 100(5): 1-12, 2021. ilus
Article in Spanish | LILACS, CUMED | ID: biblio-1348804

ABSTRACT

Introducción: La COVID-19 causada por el virus del SARS-CoV-2 es una pandemia que ha cobrado la vida de millones de personas y sobrecargado los servicios sanitarios de todo el mundo. Objetivo: Describir la relación entre la proteína de la espícula (proteína S, proteína espicular o spike) del SARS-CoV-2 y enzima convertidora de angiotensina 2 como desencadenante primario de la infección por la COVID-19. Método: Se realizó una búsqueda bibliográfica en Google Académico, SciELO y PubMed, con los descriptores iniciales COVID-19 y SARS-CoV-2. El periodo de publicación seleccionado fue entre los años 2019-2021, sin restricciones en cuanto al tipo de artículo. Los trabajos debieron estar disponibles en español e inglés a texto completo. Resultados: La proteína de la espícula del SARS-CoV-2, que desempeña un papel clave en el reconocimiento del receptor y en el proceso de fusión de la membrana celular, está compuesta por dos subunidades, S1 y S2. La subunidad S1 contiene un dominio de unión al receptor RBD (por sus siglas en inglés, receptor-binding domain) que se une al receptor del huésped, la enzima convertidora de angiotensina 2, mientras que la subunidad S2 interviene en la fusión de la membrana viral y celular. La ubicuidad tisular de la enzima convertidora de angiotensina 2 explica las múltiples manifestaciones clínicas de la enfermedad. Conclusiones: El conocimiento de la relación entre el SARS-CoV-2 y su receptor enzima convertidora de angiotensina 2 permite no solo conocer la fisiopatología de la COVID-19, sino el diseño de fármacos antivirales y vacunas que contribuyen a la prevención y tratamiento de esta enfermedad viral.


Introduction: COVID-19 caused by the SARS-CoV-2 virus is a pandemic that has claimed the lives of millions of people and overloaded health services around the world. Objective: To describe the relationship between the spike protein (S) of SARS-CoV-2 and the angiotensin-converting enzyme 2 as the primary trigger of COVID-19 infection. Method: A bibliographic search was carried out in Google Scholar, SciELO and PubMed, with the initial descriptors COVID-19 and SARS-CoV-2. The publication period selected was between the years 2019 to 2021, without restrictions regarding the type of article. The papers had to be available in full text in Spanish and English. Results: The spike protein of SARS-CoV-2, which plays a key role in receptor recognition and in the cell membrane fusion process, is composed of two subunits, S1 and S2. The S1 subunit contains a receptor-binding domain (RBD) that binds to the host's receptor, angiotensin-converting enzyme 2, while the S2 subunit is involved in the viral and cellular membrane fusion. The tissue ubiquity of angiotensin converting enzyme 2 explains the multiple clinical manifestations of the disease. Conclusions: The knowledge of the relationship between SARS-CoV-2 and its receptor the angiotensin-converting enzyme 2, allows not only to know the pathophysiology of COVID-19, but also the design of antiviral drugs and vaccines that contribute to the prevention and treatment of this viral disease.


Introdução: COVID-19 causada pelo vírus SARS-CoV-2 é uma pandemia que ceifou a vida de milhões de pessoas e sobrecarregou os serviços de saúde em todo o mundo. Objetivo: Descrever a relação entre a proteína spike (S) do SARS-CoV-2 e a enzima conversora de angiotensina 2 como o principal fator desencadeante da infecção por COVID-19. Método: Foi realizada uma busca bibliográfica no Google Scholar, SciELO e PubMed, com os descritores iniciais COVID-19 e SARS-CoV-2. O período de publicação selecionado foi entre os anos de 2019 a 2021, sem restrições quanto ao tipo de artigo. Os artigos deveriam estar disponíveis na íntegra em espanhol e inglês. Resultados: A proteína spike do SARS-CoV-2, que desempenha um papel fundamental no reconhecimento do receptor e no processo de fusão da membrana celular, é composta por duas subunidades, S1 e S2. A subunidade S1 contém um domínio de ligação ao receptor (RBD) que se liga ao receptor do hospedeiro, a enzima conversora de angiotensina 2, enquanto a subunidade S2 está envolvida na fusão da membrana viral e celular. A onipresença tecidual da enzima conversora da angiotensina 2 explica as múltiplas manifestações clínicas da doença. Conclusões: O conhecimento da relação entre o SARS-CoV-2 e seu receptor, a enzima conversora de angiotensina 2, permite não só conhecer a fisiopatologia da COVID-19, mas também o desenho de antivirais e vacinas que contribuam para a prevenção e tratamento desta doença viral.


Subject(s)
Spike Glycoprotein, Coronavirus/analysis , Spike Glycoprotein, Coronavirus/classification , Spike Glycoprotein, Coronavirus/ultrastructure , Angiotensin-Converting Enzyme 2/physiology , COVID-19 Vaccines , COVID-19/physiopathology
7.
Univ. salud ; 22(3,supl.1): 299-314, dic. 2020. tab, graf
Article in Spanish | LILACS, COLNAL | ID: biblio-1156997

ABSTRACT

Resumen Introducción: OVID-19 es una enfermedad respiratoria inédita que se reportó inicialmente como una neumonía atípica en diciembre de 2019. SARS-CoV-2, agente etiológico de esta patología, probablemente originado a partir de un virus de murciélago. La inesperada capacidad de transmisión y patogenicidad que adquirió este coronavirus transformó a COVID-19 en una pandemia de sintomatología variada y compleja. Objetivo: Analizar aspectos evolutivos, moleculares, biológicos, inmunológicos y epidemiológicos de esta enfermedad. Materiales y métodos: Se realizó una revisión narrativa de literatura científica publicada en Pubmed, sobre estos aspectos desde enero 2020. Resultados: SARS-CoV-2 es un nuevo coronavirus que utiliza su proteína superficial S para infectar células humanas que exhiben el receptor ACE2. Este patógeno se transmite por secreciones respiratorias e induce un incremento nocivo de mediadores químicos proinflamatorios en individuos vulnerables, reacción inmune conocida como tormenta de citoquinas. Esta respuesta hiper-inflamatoria es la causante de las lesiones alveolares que desencadenan la insuficiencia respiratoria observada en casos severos de COVID-19. Conclusiones: En individuos susceptibles, SARS-CoV-2 puede desencadenar una disfunción pulmonar que requiere soporte ventilatorio asistido y tratamiento con inmunosupresores. Se están desarrollando nuevas estrategias terapéuticas y de prevención para disminuir los elevados índices de contagio y la mortalidad asociados con COVID-19.


Abstract Introduction: COVID-19 is a new respiratory disease reported initially as an atypical pneumonia in December 2019. SARS-CoV-2, the etiological agent of this pathology, probably originated from a bat viral pathogen. The unexpected transmission and pathogenicity capacities that this coronavirus acquired turned COVID-19 into a pandemic with a wide and complex arrangement of symptoms. Objective: To analyze evolutionary, molecular, biological, immunological and epidemiological aspects of this disease. Materials and methods: A narrative review of the literature concerning these topics was conducted, which was published in Pubmed mostly from January 2020. Results: SARS-CoV-2 is a new coronavirus that uses its surface protein S to infect human cells that exhibit ACE2 receptors. This pathogen is transmitted through respiratory secretions and triggers a harmful increase in pro-inflammatory chemical mediators in vulnerable individuals, an immune reaction known as cytokine storm. This hyper-inflammatory response is the cause of the alveolar lesions behind the respiratory failure observed in severe cases of COVID-19. Conclusions: In susceptible individuals, SARS-CoV-2 triggers an acute respiratory distress syndrome that requires assisted ventilatory support and immunomodulatory therapy. New therapeutic and prevention strategies are being developed to reduce the high transmission and mortality rates associated with COVID-19.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , Spike Glycoprotein, Coronavirus , Betacoronavirus , Inflammation
8.
Rev. colomb. nefrol. (En línea) ; 7(supl.2): 183-193, jul.-dic. 2020. graf
Article in Spanish | LILACS, COLNAL | ID: biblio-1251584

ABSTRACT

Resumen Cada vez sabemos más sobre este enemigo mortal de la familia de los Betacoronavirus, llamado inicialmente 19-nCoV, causante de la COVID-19 (Coronavirus infectous disease por su sigla en inglés), hoy clasificado SARS-CoV-2, porque es responsable de producir el SARS (síndrome respiratorio agudo severo, por sus siglas en inglés) y que comparte una fuerte homología de secuencia con el SARS-CoV, su primo hermano causante de la epidemia en 2003 del SARS, ambos capaces de diseminarse rápidamente, en particular este, y causar un gran caos mundial como ha sucedido con esta pandemia. Con base en estudios previos de focalización en el SARS-CoV, y también en el virus causante del MERS (síndrome respiratorio del Oriente Medio, por sus siglas en inglés), y con el conocimiento que se tiene actualmente sobre el SARS-CoV-2, se exploran en este artículo algunas opciones terapéuticas para el manejo de la infección por este virus complejo y con capacidad letal, mencionando algunos aspectos de relevancia patogénica. Se enfatizó en las posibles alternativas de manejo desde la fisiopatología y patogénesis hasta la evidencia actualmente disponible. Exploraremos el uso probable de ECA2 recombinante, algunas moléculas experimentales, revisaremos los antimaláricos (cloroquina e hidroxicloroquina), esteroides, azitromicina, antivirales específicos como remdesivir, lopinavir/ritonavir, biológicos como tocilizumab, anticuerpos monoclonales antivirales, y haremos énfasis en la trasfusión de plasma de convalecientes desde el principio de inmunización pasiva, de gran utilidad.


Abstract We know more and more about this deadly enemy of the Betacoronavirus family, initially called 19- nCoV that causes COVID-19 (Coronavirus infectous disease), today classified SARS-CoV-2, because it is responsible for producing SARS (severe acute respiratory syndrome), It shares a strong sequence homology with SARS-CoV, its cousin that caused the 2003 SARS epidemic, both capable of spreading rapidly, particularly this one and causing great global chaos as has happened with this pandemic. Based on previous studies targeting SARS-CoV, and also on the virus that causes MERS (Middle East Respiratory Syndrome); and with the current knowledge about SARS-CoV-2, we will explore some therapeutic options for the management of infection by this complex and lethal virus, mentioning some aspects of pathogenic relevance. Possible management alternatives from the pathophysiology and pathogenesis to the evidence currently available were emphasized. We will explore the probable use of ECA2 recombinate, some experimental molecules, we will review some of the antimalarials (chloroquine and hydroxychloroquine), steroids, azithromycin, specific antivirals such as remdesivir, lopinavir / ritonavir, biologics such as tocilizumab, monoclonal antiviral antibodies, and we will emphasize transfusion of convalescent plasma from the passive immunization principle, very useful.


Subject(s)
Humans , Male , Female , Therapeutics , COVID-19 , Antiviral Agents , Vaccines , Chloroquine , Immunization, Passive , Colombia , Pandemics , Spike Glycoprotein, Coronavirus
9.
Rev. méd. Maule ; 35(1): 18-24, oct. 2020. tab
Article in Spanish | LILACS | ID: biblio-1366379

ABSTRACT

The development of an effective vaccine against SARSCoV-2 has turned into a global priority in order to stop the advance of this ongoing COVID-19 pandemic. To date there are 25 candidate vaccines currently in a clinical trial stage, 3 of which have been subjected to phase I/II preliminary reports (ChAdOx1 nCoV-19, BNT162b1 and mRNA-1273). These vaccines have demonstrated to elicit robust cellular and humoral immune responses when compared to convalescent patients serum samples and have shown an acceptable safety profile with no reported severe side effects. Here we discuss the reported evidence regarding these vaccines.


Subject(s)
Humans , Viral Vaccines/immunology , Pandemics/prevention & control , COVID-19 , Spike Glycoprotein, Coronavirus/immunology , Immunogenicity, Vaccine , COVID-19 Vaccines
10.
Int. braz. j. urol ; 46(supl.1): 181-194, July 2020. tab, graf
Article in English | LILACS | ID: biblio-1134290

ABSTRACT

ABSTRACT COVID-19 disease caused by infection with the SARS-CoV-2 virus produces respiratory symptoms, predominantly of the upper airways, which can progress to pneumonia after 7 days with persistent fever, cough and dyspnea, and even develop a syndrome of acute respiratory distress (ARDS), multi-organ failure and death. Since COVID-19 disease was declared by the WHO there has been a redistribution of the healthcare system for these types of patients, especially in the front line, which is, in primary care, emergencies and in intensive care units (ICU). In primary care, the fundamental role is the diagnosis of the suspected patients, follow-up mainly by telemedicine (specially telephone calls) to detect warning signs in case of worsening and subsequent referral to the emergency department; as well as explaining home isolation measures. In the emergency department, it is included the management of suspicious cases and, if it any risk factor is found, complementary tests are carried out for precise diagnosis and admission assessment; In case of oxygen saturation <95% and poor general condition, valuation is requested for admission to the ICU. Depending on the severity of the patient, he/she would be or not a candidate for invasive mechanical ventilation, which must be performed by trained personnel to prevent the spread of the infection minimizing the risk of contagion. ARDS's treatment strategies include pulmonary protection ventilation, prone position, recruitment maneuvers and, less frequently, oxygenation by extracorporeal membrane. Among the specific treatments for COVID-19 stand out mainly drugs to reduce viral load, although sometimes specific drugs will be needed to treat hyperinflammation, hypercoagulability and concomitant infections. One of the goals to be achieved is for patients to recover and be able to successfully return to work; for this purpose, an adequate physical and psychological rehabilitation program is essential, as about 50% have symptoms of anxiety and depression.


Subject(s)
Humans , Male , Female , Pneumonia, Viral/diagnosis , Pneumonia, Viral/therapy , Pneumonia, Viral/epidemiology , Primary Health Care/organization & administration , Health Personnel/psychology , Coronavirus Infections/diagnosis , Coronavirus Infections/therapy , Coronavirus Infections/epidemiology , Betacoronavirus , Emergencies , Pandemics , Spike Glycoprotein, Coronavirus , SARS-CoV-2 , COVID-19 , Intensive Care Units/organization & administration
11.
Braz. J. Vet. Res. Anim. Sci. (Online) ; 57(2): e166086, mai. 2020. ilus, tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1122174

ABSTRACT

Avian coronavirus (AvCoV) infects a range of tissues in chickens and several other avian species. Although the virus can be isolated in chicken embryos, only a few strains of the 6 genotypes/33 lineages can grow in cell lines, with the Beaudette strain (GI-1 lineage) being the most used for in vitro studies. Considering the differences between cell lines and chicken embryos as habitats for AvCoV, this study aimed to assess the diversity of the genes coding for the nonstructural protein 3 (nsp3) and spike envelope protein (S) after serial passages in BHK-21 and Vero cells. After 14 passages of an embryo-adapted Beaudette strain, the virus loads fluctuated in both cell lines, with the highest loads being 8.72 log genome copies/µL for Vero and 6.36 log genome copies/µL for BHK-21 cells. No polymorphisms were found for nsp3; regarding S, not only aa substitutions (Vero: 8th passage A150S, and 14th S150A; BHK-21: 4th S53F, 8th F53Y, and 8th S95R), but also minor variants could be detected on chromatograms with fluctuating intensities. As the regions of these aa substitutions are within the receptor-binding domain of S, it can be speculated that differences in cell receptors between Vero and BHK-21 cells and the speed of cell death led to the selection of different dominant strains, while the stability of nsp3 supports its function as a protease involved in AvCoV replication. In conclusion, AvCoV quasispecies evolution is influenced by the biological model under consideration, and a gradual transition is seen for minor and major variants.(AU)


O Coronavírus aviário AvCoV infecta uma variedade de tecidos de galinhas e de outras espécies aviárias. Apesar de este vírus poder ser isolado em ovos embrionados de galinha, apenas alguns dos 6 genótipos / 33 linhagens podem crescer em cultivo celular, sendo a cepa Beuadette (linhagem GI-11) a mais utilizada para estudos in vitro. Considerando as diferentes linhagens celulares e ovos embrionados como habitats para o AvCoV, este estudo teve por objetivo estudar a diversidade de genes que codificam para a proteína não-estrutural 3 (nsp3) e espícula (S) após passagens seriadas em células BHK-21 e VERO. Após 14 passagens, de uma amostra Beuadette adaptada a ovos embrionados, os títulos virais variaram em ambas as células, com os maiores títulos sendo de 8,72 log cópias genômicas/µL para Vero e 6,36 cópias genômicas/µL para BHK-21. Nenhum polimorfismo foi encontrando para nsp3. Considerando a proteína S, não somente foram encontradas substituições de aminoácidos (Vero: 8a passagem A150S e 14a passagem S150A; BHK-21: 4a passagem S53F, 8a passagem F53Y e S95R), mas também, variantes subconsensuais foram detectadas pelos cromatogramas com intensidades flutuantes. Uma vez que as regiões destes aa se encontram no domínio de ligação de receptor de S, pode-se especular que diferenças em receptores celulares entre Vero e BHK-21, além da velocidade da morte celular, levaram à seleção de diferentes cepas dominantes, enquanto que a estabilidade de nsp3 concorda com sua função como protease com papel na replicação de AvCoV. Como conclusão, a evolução de quase-espécies de AvCoV é influenciada pelo modelo biológico sob consideração e uma transição gradual é vista para variantes dominantes e subdominantes.(AU)


Subject(s)
Chick Embryo , Viral Nonstructural Proteins , Coronavirus Infections/veterinary , Spike Glycoprotein, Coronavirus , Gammacoronavirus
12.
Article in Chinese | WPRIM | ID: wpr-828173

ABSTRACT

Recently a COVID-19 pneumonia pandemic caused by a novel coronavirus 2019-nCoV has broken out over the world. In order to better control the spread of the pandemic, there's an urgent need to extensively study the virus' origin and the mechanisms for its infectivity and pathogenicity. Spike protein is a special structural protein on the surface of coronavirus. It contains important information about the evolution of the virus and plays critical roles in the processes of cellular recognition and entry. In the past decades, spike protein has always been one of the most important objects in research works on coronaviruses closely related to human life. In this review we introduce these research works related to spike proteins, hoping it will provide reasonable ideas for the control of the current pandemic, as well as for the diagnosis and treatment of COVID-19.


Subject(s)
Betacoronavirus , Coronavirus Infections , Diagnosis , Therapeutics , Evolution, Molecular , Humans , Pandemics , Pneumonia, Viral , Diagnosis , Therapeutics , Spike Glycoprotein, Coronavirus
13.
Article in English | WPRIM | ID: wpr-881040

ABSTRACT

As a representative drug for the treatment of severe community-acquired pneumonia and sepsis, Xuebijing (XBJ) injection is also one of the recommended drugs for the prevention and treatment of coronavirus disease 2019 (COVID-19), but its treatment mechanism for COVID-19 is still unclear. Therefore, this study aims to explore the potential mechanism of XBJ injection in the treatment of COVID-19 employing network pharmacology and molecular docking methods. The corresponding target genes of 45 main active ingredients in XBJ injection and COVID-19 were obtained by using multiple database retrieval and literature mining. 102 overlapping targets of them were screened as the core targets for analysis. Then built the PPI network, TCM-compound-target-disease, and disease-target-pathway networks with the help of Cytoscape 3.6.1 software. After that, utilized DAVID to perform gene ontology (GO) function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis to predict the action mechanism of overlapping targets. Finally, by applying molecular docking technology, all compounds were docked with COVID-19 3 CL protease(3CLpro), spike protein (S protein), and angiotensin-converting enzyme II (ACE2). The results indicated that quercetin, luteolin, apigenin and other compounds in XBJ injection could affect TNF, MAPK1, IL6 and other overlapping targets. Meanwhile, anhydrosafflor yellow B (AHSYB), salvianolic acid B (SAB), and rutin could combine with COVID-19 crucial proteins, and then played the role of anti-inflammatory, antiviral and immune response to treat COVID-19. This study revealed the multiple active components, multiple targets, and multiple pathways of XBJ injection in the treatment of COVID-19, which provided a new perspective for the study of the mechanism of traditional Chinese medicine (TCM) in the treatment of COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Biological Availability , COVID-19/virology , Coronavirus 3C Proteases/metabolism , Drugs, Chinese Herbal/therapeutic use , Humans , Medicine, Chinese Traditional/methods , Molecular Docking Simulation/methods , Protein Interaction Mapping/methods , SARS-CoV-2/physiology , Signal Transduction/drug effects , Spike Glycoprotein, Coronavirus/metabolism
14.
Article in Chinese | WPRIM | ID: wpr-828493

ABSTRACT

The three known highly pathogenic human coronaviruses are severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human highly pathogenic coronaviruses are composed of non-structural proteins, structural proteins, accessory proteins and ribonucleic acid. Viral particles recognize host receptors via spike glycoprotein (S protein), enter host cells by membrane fusion, replicate in host cells through large replication-transcription complexes, and promote proliferation by interfering with and suppressing the host's immune response. Highly pathogenic human coronaviruses are hosted by humans and vertebrates. Viral particles are transmitted through droplets, contact and aerosols or likely through digestive tract, urine, eyes and other routes. This review discusses the mechanisms of replication and transmission of highly pathogenic human coronaviruses providing basis for future studies on interrupting the transmission and pathogenicity of these pathogenic viruses.


Subject(s)
Animals , Betacoronavirus , Coronavirus Infections , Humans , Middle East Respiratory Syndrome Coronavirus , Pandemics , Pneumonia, Viral , Spike Glycoprotein, Coronavirus
15.
Article in Chinese | WPRIM | ID: wpr-828487

ABSTRACT

OBJECTIVE@#To provide data support for the study of pathogenic mechanism of SARS-CoV-2 at the molecular level, and provide suitable candidate targets for vaccine, antibody and drug research and development through comparative analysis for structural characteristics and epitopes of S protein of SARS-CoV-2 and SARS-CoV.@*METHODS@#Based on the reference sequences of S protein, physical and chemical properties, hydrophobicity, signal peptide, transmembrane region, domain, secondary structure, tertiary structure analysis and antigenic epitopes prediction were carried out. Meanwhile, the tissue expression, related pathways and reactome pathways of angiotensis Ⅰ converting enzyme 2 (ACE2) and C-type lectin domain family 4 member M (CLEC4M) receptors were analyzed.@*RESULTS@#The amino acid sequence of S protein of SARS-CoV-2 and SARS-CoV has a 75.80% consistency. The structural characteristics of the two coronaviruses are highly consistent, but the secondary structure and tertiary structure of SARS-CoV-2 is not as obvious as SARS-CoV. ACE2 and CLEC4M are expressed in alimentary system, heart, kidney, lung and placenta. The main related the pathways of renin-angiotensin system, protein digestion and absorption pathway, and the reactome pathways of metabolism of angiotensinogen to angiotensins, GPCR ligand binding, are related to typical symptoms of coronavirus disease 2019 induced by SARS-CoV-2. Three pairs of highly or completely homologous epitopes of S protein were obtained. The 600-605, 695-703 and 888-896 amino acid residues in SARS-CoV-2 were highly homologous with 586-591, 677-685 and 870-878 amino acid residues in SARS-CoV, respectively.@*CONCLUSIONS@#The similarity of S protein of SARS-CoV-2 and SARS-CoV determines that they have similar infection patterns and clinical manifestations. The candidate epitopes with high reliability can provide reference for virus diagnosis and vaccine development.


Subject(s)
Betacoronavirus , Cell Adhesion Molecules , Coronavirus Infections , Epitopes , Humans , Lectins, C-Type , Ligands , Pandemics , Peptidyl-Dipeptidase A , Pneumonia, Viral , Receptors, Cell Surface , Receptors, Virus , Reproducibility of Results , Spike Glycoprotein, Coronavirus
16.
Article in English | WPRIM | ID: wpr-826631

ABSTRACT

Pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection emerged in Wuhan City, Hubei Province, China in December 2019. By Feb. 11, 2020, the World Health Organization (WHO) officially named the disease resulting from infection with SARS-CoV-2 as coronavirus disease 2019 (COVID-19). COVID-19 represents a spectrum of clinical manifestations that typically include fever, dry cough, and fatigue, often with pulmonary involvement. SARS-CoV-2 is highly contagious and most individuals within the population at large are susceptible to infection. Wild animal hosts and infected patients are currently the main sources of disease which is transmitted via respiratory droplets and direct contact. Since the outbreak, the Chinese government and scientific community have acted rapidly to identify the causative agent and promptly shared the viral gene sequence, and have carried out measures to contain the epidemic. Meanwhile, recent research has revealed critical aspects of SARS-CoV-2 biology and disease pathogenesis; other studies have focused on epidemiology, clinical features, diagnosis, management, as well as drug and vaccine development. This review aims to summarize the latest research findings and to provide expert consensus. We will also share ongoing efforts and experience in China, which may provide insight on how to contain the epidemic and improve our understanding of this emerging infectious disease, together with updated guidance for prevention, control, and critical management of this pandemic.


Subject(s)
Amino Acid Motifs , Animals , Antiviral Agents , Betacoronavirus , Genetics , China , Epidemiology , Communicable Disease Control , Methods , Coronavirus Infections , Diagnosis , Epidemiology , Therapeutics , Humans , Immunization, Passive , Medicine, Chinese Traditional , Pandemics , Pneumonia, Viral , Diagnosis , Epidemiology , Therapeutics , Protein Domains , Spike Glycoprotein, Coronavirus , Chemistry , Viral Vaccines
17.
Int. j. high dilution res ; 19(4): 2-9, 2020.
Article in English | LILACS, HomeoIndex | ID: biblio-1146533

ABSTRACT

IntroductionNosodes, the homeopathicpreparationssourcedfrom biological materials including clinical samples, cultures of organisms, and diseased tissues have been in use against the source-specific infections as well as other diseases. The nosodes have demonstrated some efficacy in managing epidemics, such as influenza, dengue, and leptospirosis.This article presents the need and process of development ofnosodes from the SARS-CoV-2 to explore its prophylactic and therapeutic potentials against certain related viral diseases.Materials and methodsA clinical sample of SARS-Cov-2 positive patient,based on the cycle threshold (CT) value of the qRT-PCR, heat-inactivated SARS-CoV-2, and spike glycoprotein all were processed for making nosodesas per the method described in Homoeopathy Pharmacopoeia of India.Molecular tests, such as qRT-PCR and sterility tests were performed to establish the live organisms, RNA material, and the absence of contamination.ResultsThree variants of CoronavirusNosodewere developed using a clinical sample,heat-inactivatedSARS-CoV-2, and spike glycoprotein.In potencies 3c and above, no detectableSARS-CoV-2 RNA material was found by PCR.The analytical results for nosodes were reported as compliant for sterility testing as per the IP.ConclusionThree variants of Coronavirus nosodes were preparedwhich need to be evaluated further through pre-clinical and clinical studies.(AU)


Subject(s)
Humans , Nosodes (Homeopathy)/pharmacology , Coronavirus Infections/therapy , Drug Compounding , Spike Glycoprotein, Coronavirus , Betacoronavirus , Virus Inactivation , Betacoronavirus/drug effects
19.
Chinese Journal of Virology ; (6): 62-69, 2016.
Article in Chinese | WPRIM | ID: wpr-296216

ABSTRACT

We wished to ascertain the prevalence as well as the genetic and antigenic variation of infectious bronchitis viruses (IBVs) circulating in the Guangxi Province of China in recent years. The S1 gene of 15 IBV field isolates during 2012-2013 underwent analyses in terms of the similarity of amino-acid sequences, creation of phylogenetic trees, recombination, and serologic identification. Similarities in amino-acid sequences among the 15 isolates of the S1 gene were 54.3%-99.6%, and 43.3%-99.3% among 15 isolates and reference strains. Compared with the vaccine strain H120, except for GX-YL130025, the other 14 isolates showed a lower similarity of amino-acid sequences of the S1 gene (65.1-81.4%). Phylogenetic analyses of the S1 gene suggested that 15 IBV isolates were classified into eight genotypes, with the predominant genotype being new-type II. Recombination analyses demonstrated that the S1 gene of the GX-NN130048 isolate originated from recombination events between vaccine strain 4/91 and a LX4-like isolate. Serotyping results suggested that seven serotypes prevailed during 2012-2013 in Guangxi Province, and that only one isolate was consistent with the vaccine strain H120 in serotype (which has been used widely in recent years). The serotype of recombinant isolate GX-NN130048 was different from those of its parent strains. These results suggested that not only the genotype, but also the serotype of IBV field isolates in Guangxi Province had distinct variations, and that increasing numbers of genotypes and serotypes are in circulation. We showed that recombination events can lead to the emergence of new serotypes. Our study provides new evidence for understanding of the molecular mechanisms of IBV variations, and the development of new vaccines against IBVs.


Subject(s)
Animals , Antibodies, Viral , Blood , Chickens , China , Coronavirus Infections , Blood , Virology , Genetic Variation , Genotype , Infectious bronchitis virus , Classification , Genetics , Allergy and Immunology , Molecular Sequence Data , Phylogeny , Poultry Diseases , Blood , Virology , Sequence Homology, Amino Acid , Spike Glycoprotein, Coronavirus , Chemistry , Genetics , Allergy and Immunology
20.
Chinese Journal of Virology ; (6): 77-81, 2016.
Article in Chinese | WPRIM | ID: wpr-296214

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) was identified as a novel human coronavirus and posed great threat to public health world wide,which calls for the development of effective and safe vaccine urgently. In the study, peptide epitopes tagrgeting spike antigen were predicted based on bioinformatics methods. Nine polypeptides with high scores were synthesized and linked to keyhole limpet hemocyanin (KLH). Female BALB/C mice were immunized with individual polypeptide-KLH, and the total IgG was detected by ELISA as well as the cellular mediated immunity (CMI) was analyzed using ELIs-pot assay. The results showed that an individual peptide of YVDVGPDSVKSACIEVDIQQTFFDKTWPRPIDVSKADGI could induce the highest level of total IgG as well as CMI (high frequency of IFN-γ secretion) against MERS-CoV antigen in mice. Our study identified a promising peptide vaccine candidate against MERS-CoV and provided an experimental support for bioinformatics-based design of peptide vaccine.


Subject(s)
Animals , Antibodies, Viral , Allergy and Immunology , Computational Biology , Coronavirus Infections , Allergy and Immunology , Virology , Female , Humans , Immunization , Mice , Mice, Inbred BALB C , Middle East Respiratory Syndrome Coronavirus , Genetics , Allergy and Immunology , Peptides , Genetics , Allergy and Immunology , Spike Glycoprotein, Coronavirus , Genetics , Allergy and Immunology , Viral Vaccines , Genetics , Allergy and Immunology
SELECTION OF CITATIONS
SEARCH DETAIL