Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.017
Filter
1.
Int. j. morphol ; 42(2): 510-515, abr. 2024. ilus, tab
Article in English | LILACS | ID: biblio-1558120

ABSTRACT

SUMMARY: Despite comprehensive studies and reports about the properties of dental pulp stem cells (DPSCs) in vitro, we still need to confirm whether these in vitro characteristics coincide with the nature of DPSCs in situ. The anatomical location of DPSCs populations in the dental pulp has yet to be investigated. Moreover, the mesenchymal DPSCs have been much more studied than the neural crest-derived DPSCs. In this study, well-recognized neural/neural crest stem cell markers NCAM1, Nestin, SNAIL/SLUG, SOX9, and S100 are being investigated by immunohistochemistry to localize the precise location of these populations of DPSCs within the human adult dental pulp.All previously mentioned markers were expressed in the dental pulp, and their intensity and location of expression were reported.


A pesar de estudios e informes exhaustivos sobre las propiedades de las células madre de la pulpa dental (DPSC) in vitro, todavía necesitamos confirmar si estas características in vitro coinciden con la naturaleza de las DPSC in situ. La ubicación anatómica de las poblaciones de DPSC en la pulpa dental aún no se ha investigado. Además, las DPSC mesenquimales han sido mucho más estudiadas que las DPSC derivadas de la cresta neural. En este estudio, se están investigando mediante inmunohisto química marcadores de células madre de la cresta neural/ neural NCAM1, Nestin, SNAIL/SLUG, SOX9 y S100 para localizar la ubicación precisa de estas poblaciones de DPSC dentro de la pulpa dental humana adulta. Todos los marcadores mencionados anteriormente se expresaron en la pulpa dental y se informó su intensidad y ubicación de expresión.


Subject(s)
Humans , Adolescent , Young Adult , Stem Cells/metabolism , Dental Pulp/cytology , Neural Crest/cytology , Immunohistochemistry , S100 Proteins , CD56 Antigen , SOX9 Transcription Factor , Nestin
2.
Article in Chinese | WPRIM | ID: wpr-1009114

ABSTRACT

OBJECTIVE@#To explore the effect of chitosan (CS) hydrogel loaded with tendon-derived stem cells (TDSCs; hereinafter referred to as TDSCs/CS hydrogel) on tendon-to-bone healing after rotator cuff repair in rabbits.@*METHODS@#TDSCs were isolated from the rotator cuff tissue of 3 adult New Zealand white rabbits by Henderson step-by-step enzymatic digestion method and identified by multidirectional differentiation and flow cytometry. The 3rd generation TDSCs were encapsulated in CS to construct TDSCs/CS hydrogel. The cell counting kit 8 (CCK-8) assay was used to detect the proliferation of TDSCs in the hydrogel after 1-5 days of culture in vitro, and cell compatibility of TDSCs/CS hydrogel was evaluated by using TDSCs alone as control. Another 36 adult New Zealand white rabbits were randomly divided into 3 groups ( n=12): rotator cuff repair group (control group), rotator cuff repair+CS hydrogel injection group (CS group), and rotator cuff repair+TDSCs/CS hydrogel injection group (TDSCs/CS group). After establishing the rotator cuff repair models, the corresponding hydrogel was injected into the tendon-to-bone interface in the CS group and TDSCs/CS group, and no other treatment was performed in the control group. The general condition of the animals was observed after operation. At 4 and 8 weeks, real-time quantitative PCR (qPCR) was used to detect the relative expressions of tendon forming related genes (tenomodulin, scleraxis), chondrogenesis related genes (aggrecan, sex determining region Y-related high mobility group-box gene 9), and osteogenesis related genes (alkaline phosphatase, Runt-related transcription factor 2) at the tendon-to-bone interface. At 8 weeks, HE and Masson staining were used to observe the histological changes, and the biomechanical test was used to evaluate the ultimate load and the failure site of the repaired rotator cuff to evaluate the tendon-to-bone healing and biomechanical properties.@*RESULTS@#CCK-8 assay showed that the CS hydrogel could promote the proliferation of TDSCs ( P<0.05). qPCR results showed that the expressions of tendon-to-bone interface related genes were significantly higher in the TDSCs/CS group than in the CS group and control group at 4 and 8 weeks after operation ( P<0.05). Moreover, the expressions of tendon-to-bone interface related genes at 8 weeks after operation were significantly higher than those at 4 weeks after operation in the TDSCs/CS group ( P<0.05). Histological staining showed the clear cartilage tissue and dense and orderly collagen formation at the tendon-to-bone interface in the TDSCs/CS group. The results of semi-quantitative analysis showed that compared with the control group, the number of cells, the proportion of collagen fiber orientation, and the histological score in the TDSCs/CS group increased, the vascularity decreased, showing significant differences ( P<0.05); compared with the CS group, the proportion of collagen fiber orientation and the histological score in the TDSCs/CS group significantly increased ( P<0.05), while there was no significant difference in the number of cells and vascularity ( P>0.05). All samples in biomechanical testing failed at the repair site during the testing process. The ultimate load of the TDSCs/CS group was significantly higher than that of the control group ( P<0.05), but there was no significant difference compared to the CS group ( P>0.05).@*CONCLUSION@#TDSCs/CS hydrogel can induce cartilage regeneration to promote rotator cuff tendon-to-bone healing.


Subject(s)
Rabbits , Animals , Rotator Cuff/surgery , Chitosan , Hydrogels , Rotator Cuff Injuries/surgery , Wound Healing , Tendons/surgery , Collagen , Stem Cells , Biomechanical Phenomena
3.
Neuroscience Bulletin ; (6): 113-126, 2024.
Article in English | WPRIM | ID: wpr-1010674

ABSTRACT

Hearing loss has become increasingly prevalent and causes considerable disability, thus gravely burdening the global economy. Irreversible loss of hair cells is a main cause of sensorineural hearing loss, and currently, the only relatively effective clinical treatments are limited to digital hearing equipment like cochlear implants and hearing aids, but these are of limited benefit in patients. It is therefore urgent to understand the mechanisms of damage repair in order to develop new neuroprotective strategies. At present, how to promote the regeneration of functional hair cells is a key scientific question in the field of hearing research. Multiple signaling pathways and transcriptional factors trigger the activation of hair cell progenitors and ensure the maturation of newborn hair cells, and in this article, we first review the principal mechanisms underlying hair cell reproduction. We then further discuss therapeutic strategies involving the co-regulation of multiple signaling pathways in order to induce effective functional hair cell regeneration after degeneration, and we summarize current achievements in hair cell regeneration. Lastly, we discuss potential future approaches, such as small molecule drugs and gene therapy, which might be applied for regenerating functional hair cells in the clinic.


Subject(s)
Infant, Newborn , Humans , Hair Cells, Auditory, Inner/physiology , Ear, Inner/physiology , Hair Cells, Auditory/physiology , Regeneration/genetics , Stem Cells
4.
Braz. dent. sci ; 27(2): 1-8, 2024. tab
Article in English | LILACS, BBO | ID: biblio-1568517

ABSTRACT

Objective: This study aimed to evaluate stem cell from human deciduous teeth (SHED) viability after exposure to different bioceramic materials. Material and Methods: Discs were constructed to obtain the material extracts according to the following groups: G1 - Bio-C Repair, G2 - MTA Repair HP, G3 - TheraCal LC, and G4 ­ Biodentine. Positive and negative control group were respectively maintained with αMEM + 10% FBS and αMEM + 1% FBS. SHED obtained through primary culture were in contact with material extracts for 24, 48, and 72h. MTT assay evaluated cell viability. Groups were plated in triplicate and the cell viability assay were repeated three times. Data were analyzed by two-way ANOVA followed by Tukey test (p<0.05). Results: The treatment and period comparisons showed statistically significant differences (p<0.000). G2 (MTA Repair HP) had greater cell viability values than the other experimental groups and negative control. MTA Repair HP and the control groups exhibited a similar behavior with cell viability values decreasing from 24h to 48h and increasing from 48h to 72h. Bio-C Repair, Biodentine, and Theracal LC did not show statistically significant differences among periods. Conclusions: SHED increased viability values after contact with MTA Repair HP in comparison with other bioceramic materials.(AU)


Objetivo: O objetivo desse estudo foi avaliar a viabilidade de células-tronco de dentes decíduos humanos (SHED) após o contato com diferentes materiais biocerâmicos. Material e Métodos: Foram confeccionados discos para obtenção dos extratos dos materiais de acordo com os seguintes grupos: G1 - Bio-C Repair, G2 - MTA Repair HP, G3 - TheraCal LC e G4 - Biodentine. Grupo de controle positivo e negativo foram mantidos respectivamente com αMEM + 10% FBS e αMEM + 1% FBS. SHED obtidas por cultura primária entraram em contato com os extratos de materiais por 24, 48 e 72h. O ensaio MTT avaliou a viabilidade celular. Os grupos foram semeados em triplicata e o ensaio de viabilidade celular foi repetido três vezes. Os dados foram analisados por ANOVA a dois critérios seguido pelo teste de Tukey (p<0,05). Resultados: As comparações de tratamentos e períodos mostraram diferenças estatisticamente significativas (p<0,000). O G2 (MTA Repair HP) apresentou maiores valores de viabilidade celular que os demais grupos experimentais e controle negativo. O MTA Repair HP e os grupos controle exibiram um comportamento semelhante com os valores de viabilidade celular diminuindo de 24h para 48h e aumentando de 48h para 72h. Bio-C Repair, Biodentine e Theracal LC não apresentaram diferenças estatisticamente significativas entre os períodos. Conclusões: SHED aumentou os valores de viabilidade após o contato com o MTA Repair HP em comparação com outros materiais biocerâmicos (AU)


Subject(s)
Stem Cells , Tooth, Deciduous , Materials Testing , Cell Survival
5.
Braz. j. biol ; 84: e253061, 2024. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1364520

ABSTRACT

Liver fibrosis is initial stage of any chronic liver disease and its end stage is develops into cirrhosis. Chronic liver diseases are a crucial global health issue and the cause of approximately 2 million deaths per year worldwide. Cirrhosis is currently the 11th most common cause of death globally. Mesenchymal stem cell (MSCs) treatment is the best way to treat acute and chronic liver disease. The aim of this study is to improve the therapeutic potential of MSCs combined with melatonin (MLT) to overcome CCl4-induced liver fibrosis and also investigate the individual impact of melatonin and MSCs against CCl4-induced liver impairment in animal model. Female BALB/c mice were used as CCL4-induced liver fibrotic animal model. Five groups of animal model were made; negative control, Positive control, CCl4+MSCs treated group, CCl4+MLT treated group and CCl4+MSCs+MLT treated group. Cultured MSCs from mice bone marrow were transplanted to CCl4-induced liver injured mice model, individually as well as together with melatonin. Two weeks after MSCs and MLT administration, all groups of mice were sacrificed for examination. Morphological and Histopathological results showed that combined therapy of MSCs+MLT showed substantial beneficial impact on CCl4-induced liver injured model, compared with MSCs and MLT individually. Biochemically, considerable reduction was observed in serum bilirubin and ALT levels of MLT+MSC treated mice, compared to other groups. PCR results shown down-regulation of Bax and up-regulation of Bcl-xl and Albumin, confirm a significant therapeutic effect of MSCs+MLT on CCI4-induced liver fibrosis. From the results, it is concluded that combined therapy of MSCs and MLT show strong therapeutic effect on CCL4-induced liver fibrosis, compared with MSCs and MLT individually.


A fibrose hepática é a fase inicial de qualquer doença hepática crônica, e em sua fase final desenvolve-se para cirrose. As doenças hepáticas crônicas são uma questão de saúde global crucial e a causa de aproximadamente 2 milhões de mortes por ano em todo o mundo. A cirrose, hoje em dia, é a 11ª causa mais comum de morte globalmente. O tratamento da célula-tronco mesenquimal (MSCs) é uma maneira eletiva de tratar a doença hepática aguda e crônica. O objetivo deste estudo é melhorar o potencial terapêutico dos MSCs combinados com a melatonina (MLT) para superar a fibrose hepática induzida por CCl4 e também investigar o impacto individual da melatonina e MSCs contra o comprometimento do fígado induzido por CCl4 no modelo animal. Os ratos BALB / C fêmeas foram usados ​​como modelo de animal fibrótico de fígado induzido por CCl4. Cinco grupos de modelo animal foram feitos: Controle Negativo, Controle Positivo, CCl4 + MSCs Tratados Grupo, Grupo Tratado CCl4 + MLT e Grupo Tratado CCl4 + MSCs + MLT. MSCs cultivados da medula óssea dos ratos foram transplantados para o modelo de camundongos de fígado induzido por CCl4, individualmente, bem como em conjunto com a melatonina. Duas semanas após a administração MSCs e MLT, todos os grupos de camundongos foram sacrificados para o exame. Os resultados morfológicos e histopatológicos mostraram que a terapia combinada do MSCs + MLT mostrou impacto benéfico substancial no modelo ferido no fígado induzido pelo CCl4, em comparação com o MSCs e o MLT individualmente. A redução bioquimicamente considerável foi observada em bilirrubina sérica e níveis ALT de ratinhos tratados com MLT + MSCs, em comparação com outros grupos. Os resultados de PCR mostraram regulação negativa do BAX e regulação positiva do BCL-XL e da albumina, confirmando um efeito terapêutico significativo do MSCs + MLT na fibrose hepática induzida por CCl4. Dos resultados, conclui-se que a terapia combinada de MSCs e MLT mostram um forte efeito terapêutico na fibrose hepática induzida por CCl4, em comparação com MSCs e MLT individualmente.


Subject(s)
Rats , Stem Cells , Fibrosis , Liver , Liver Diseases , Melatonin
6.
Rev. Fac. Odontol. (B.Aires) ; 39(91): 49-55, 2024. ilus
Article in Spanish | LILACS | ID: biblio-1555011

ABSTRACT

Los procedimientos endodónticos regenerativos (REPs) representan una evolución significativa en el campo de la endodoncia, buscando no sólo tratar la infección o lesión presente en el diente, sino tam-bién promover la regeneración de los tejidos denta-rios afectados. El presente caso clínico muestra un incisivo lateral superior izquierdo con apexogénesis incompleta y diagnóstico de absceso alveolar crónico reagudizado en una paciente de 22 años, en el que se aplicó un procedimiento de endodoncia regenerativa (REPs). La estrategia terapéutica elegida se basó en los principios de ingeniería tisular, incorporando la novedosa aplicación de la membrana amniótica hu-mana liofilizada esterilizada como andamio bioactivo intraconducto. Las evaluaciones clínicas, radiográ-ficas y tomográficas a corto, mediano y largo plazo revelaron el éxito de la terapia. La resolución exitosa mostró en los controles a la pieza dentaria asintomá-tica, con una notable remisión de la patología apical, aumento de la longitud radicular y disminución del calibre apical. Se ha podido destacar la eficacia de los REPs, con una exitosa aplicabilidad de la membra-na amniótica como andamio innovador (AU)


Regenerative endodontic procedures (REPs) represent a significant evolution in the field of endodontics, aiming not only to address the infection or injury within the tooth, but also to promote the regeneration of the affected dental tissues. In this clinical case, an upper left lateral incisor with incomplete apexogenesis and diagnosis of acute exacerbation of a chronic periapical lesion in a 22-year-old patient is presented. A regenerative endodontic procedure (REPs) was applied. The chosen therapeutic strategy was based on tissue engineering principles, incorporating the innovative use of sterilized lyophilized human amniotic membrane as an intraconduct bioactive scaffold. Clinical, radiographic, and tomographic assessments at short, medium, and long-term follow-up revealed the success of the therapy. Successful resolution demonstrated an asymptomatic tooth in the follow-up, with a notable resolution of apical pathology, increased root length, and decreased apical caliber. The effectiveness of REPs has been highlighted, demonstrating the successful applicability of amniotic membrane as an innovative scaffold (AU)


Subject(s)
Humans , Female , Adult , Stem Cells/physiology , Tissue Scaffolds , Argentina , Schools, Dental , Dental Papilla , Freeze Drying/methods
7.
Acta Physiologica Sinica ; (6): 205-215, 2023.
Article in Chinese | WPRIM | ID: wpr-980998

ABSTRACT

Vascular wall-resident stem cells (VW-SCs) play a critical role in maintaining normal vascular function and regulating vascular repair. Understanding the basic functional characteristics of the VW-SCs will facilitate the study of their regulation and potential therapeutic applications. The aim of this study was to establish a stable method for the isolation, culture, and validation of the CD34+ VW-SCs from mice, and to provide abundant and reliable cell sources for further study of the mechanisms involved in proliferation, migration and differentiation of the VW-SCs under various physiological and pathological conditions. The vascular wall cells of mouse aortic adventitia and mesenteric artery were obtained by the method of tissue block attachment and purified by magnetic microbead sorting and flow cytometry to obtain the CD34+ VW-SCs. Cell immunofluorescence staining was performed to detect the stem cell markers (CD34, Flk-1, c-kit, Sca-1), smooth muscle markers (SM22, SM MHC), endothelial marker (CD31), and intranuclear division proliferation-related protein (Ki-67). To verify the multipotency of the isolated CD34+ VW-SCs, endothelial differentiation medium EBM-2 and fibroblast differentiation medium FM-2 were used. After culture for 7 days and 3 days respectively, endothelial cell markers and fibroblast markers of the differentiated cells were evaluated by immunofluorescence staining and q-PCR. Furthermore, the intracellular Ca2+ release and extracellular Ca2+ entry signaling were evaluated by TILLvisION system in Fura-2/AM loaded cells. The results showed that: (1) High purity (more than 90%) CD34+ VW-SCs from aortic adventitia and mesenteric artery of mice were harvested by means of tissue block attachment method and magnetic microbead sorting; (2) CD34+ VW-SCs were able to differentiate into endothelial cells and fibroblasts in vitro; (3) Caffeine and ATP significantly activated intracellular Ca2+ release from endoplasmic reticulum of CD34+ VW-SCs. Store-operated Ca2+ entry (SOCE) was activated by using thapsigargin (TG) applied in Ca2+-free/Ca2+ reintroduction protocol. This study successfully established a stable and efficient method for isolation, culture and validation of the CD34+ VW-SCs from mice, which provides an ideal VW-SCs sources for the further study of cardiovascular diseases.


Subject(s)
Mice , Animals , Endothelial Cells , Cell Differentiation/physiology , Stem Cells , Adventitia , Fibroblasts , Cells, Cultured , Antigens, CD34/metabolism
8.
Article in English | WPRIM | ID: wpr-981109

ABSTRACT

OBJECTIVES@#This study aimed to investigate how naringenin (Nar) affected the anti-inflammatory, vascula-rization, and osteogenesis differentiation of human periodontal ligament stem cells (hPDLSCs) stimulated by lipopolysaccharide (LPS) and to preliminarily explore the underlying mechanism.@*METHODS@#Cell-counting kit-8 (CCK8), cell scratch test, and Transwell assay were used to investigate the proliferation and migratory capabilities of hPDLSCs. Alkaline phosphatase (ALP) staining, alizarin red staining, lumen-formation assay, enzyme-linked immunosorbent assay, quantitative timed polymerase chain reaction, and Western blot were used to measure the expression of osteopontin (OPN), Runt-related transcription factor 2 (RUNX2), vascular endothlial growth factor (VEGF), basic fibroblast growth factor (bFGF), von Willebrand factor (vWF), tumor necrosis factor-α (TNF-α), and interleukin (IL)-6.@*RESULTS@#We observed that 10 μmol/L Nar could attenuate the inflammatory response of hPDLSCs stimulated by 10 μg/mL LPS and promoted their proliferation, migration, and vascularization differentiation. Furthermore, 0.1 μmol/L Nar could effectively restore the osteogenic differentiation of inflammatory hPDLSCs. The effects of Nar's anti-inflammatory and promotion of osteogenic differentiation significantly decreased and inflammatory vascularization differentiation increased after adding AMD3100 (a specific CXCR4 inhibitor).@*CONCLUSIONS@#Nar demonstrated the ability to promote the anti-inflammatory, vascularization, and osteogenic effects of hPDLSCs stimulated by LPS, and the ability was associated with the stromal cell-derived factor/C-X-C motif chemokine receptor 4 signaling axis.


Subject(s)
Humans , Anti-Inflammatory Agents/pharmacology , Cell Differentiation , Cell Proliferation , Cells, Cultured , Chemokine CXCL12 , Lipopolysaccharides/pharmacology , Osteogenesis , Periodontal Ligament/metabolism , Receptors, Chemokine/metabolism , Stem Cells , Interleukin-8/metabolism
9.
Acta Physiologica Sinica ; (6): 17-26, 2023.
Article in Chinese | WPRIM | ID: wpr-970102

ABSTRACT

Previous studies have shown that long-term spermatogonial stem cells (SSCs) have the potential to spontaneously transform into pluripotent stem cells, which is speculated to be related to the tumorigenesis of testicular germ cells, especially when p53 is deficient in SSCs which shows a significant increase in the spontaneous transformation efficiency. Energy metabolism has been proved to be strongly associated with the maintenance and acquisition of pluripotency. Recently, we compared the difference in chromatin accessibility and gene expression profiles between wild-type (p53+/+) and p53 deficient (p53-/-) mouse SSCs using the Assay for Targeting Accessible-Chromatin with high-throughput sequencing (ATAC-seq) and transcriptome sequencing (RNA-seq) techniques, and revealed that SMAD3 is a key transcription factor in the transformation of SSCs into pluripotent cells. In addition, we also observed significant changes in the expression levels of many genes related to energy metabolism after p53 deletion. To further reveal the role of p53 in the regulation of pluripotency and energy metabolism, this paper explored the effects and mechanism of p53 deletion on energy metabolism during the pluripotent transformation of SSCs. The results of ATAC-seq and RNA-seq from p53+/+ and p53-/- SSCs revealed that gene chromatin accessibility related to positive regulation of glycolysis and electron transfer and ATP synthesis was increased, and the transcription levels of genes encoding key glycolytic enzymes and regulating electron transport-related enzymes were markedly increased. Furthermore, transcription factors SMAD3 and SMAD4 promoted glycolysis and energy homeostasis by binding to the chromatin of the Prkag2 gene which encodes the AMPK subunit. These results suggest that p53 deficiency activates the key enzyme genes of glycolysis in SSCs and enhances the chromatin accessibility of genes associated with glycolysis activation to improve glycolysis activity and promote transformation to pluripotency. Moreover, SMAD3/SMAD4-mediated transcription of the Prkag2 gene ensures the energy demand of cells in the process of pluripotency transformation and maintains cell energy homeostasis by promoting AMPK activity. These results shed light on the importance of the crosstalk between energy metabolism and stem cell pluripotency transformation, which might be helpful for clinical research of gonadal tumors.


Subject(s)
Animals , Mice , Male , AMP-Activated Protein Kinases , Chromatin , Energy Metabolism , Gene Deletion , Stem Cells , Tumor Suppressor Protein p53/genetics , Spermatogonia/cytology
10.
Acta Physiologica Sinica ; (6): 36-48, 2023.
Article in English | WPRIM | ID: wpr-970104

ABSTRACT

Myocardial infarction (MI) is one of the leading causes of death in the world. With the improvement of clinical therapy, the mortality of acute MI has been significantly reduced. However, as for the long-term impact of MI on cardiac remodeling and cardiac function, there is no effective prevention and treatment measures. Erythropoietin (EPO), a glycoprotein cytokine essential to hematopoiesis, has anti-apoptotic and pro-angiogenetic effects. Studies have shown that EPO plays a protective role in cardiomyocytes in cardiovascular diseases, such as cardiac ischemia injury and heart failure. EPO has been demonstrated to protect ischemic myocardium and improve MI repair by promoting the activation of cardiac progenitor cells (CPCs). This study aimed to investigate whether EPO can promote MI repair by enhancing the activity of stem cell antigen 1 positive stem cells (Sca-1+ SCs). Darbepoetin alpha (a long-acting EPO analog, EPOanlg) was injected into the border zone of MI in adult mice. Infarct size, cardiac remodeling and performance, cardiomyocyte apoptosis and microvessel density were measured. Lin- Sca-1+ SCs were isolated from neonatal and adult mouse hearts by magnetic sorting technology, and were used to identify the colony forming ability and the effect of EPO, respectively. The results showed that, compared to MI alone, EPOanlg reduced the infarct percentage, cardiomyocyte apoptosis ratio and left ventricular (LV) chamber dilatation, improved cardiac performance, and increased the numbers of coronary microvessels in vivo. In vitro, EPO increased the proliferation, migration and clone formation of Lin- Sca-1+ SCs likely via the EPO receptor and downstream STAT-5/p38 MAPK signaling pathways. These results suggest that EPO participates in the repair process of MI by activating Sca-1+ SCs.


Subject(s)
Animals , Mice , Ventricular Remodeling , Erythropoietin , Myocardial Infarction , Heart , Stem Cells
11.
Article in Chinese | WPRIM | ID: wpr-971130

ABSTRACT

OBJECTIVE@#To establish an intestinal organoid model that mimic acute graft versus host disease (aGVHD) caused intestinal injuries by using aGVHD murine model serum and organoid culture system, and explore the changes of aGVHD intestine in vitro by advantage of organoid technology.@*METHODS@#20-22 g female C57BL/6 mice and 20-22 g female BALB/c mice were used as donors and recipients for bone marrow transplantation, respectively. Within 4-6 h after receiving a lethal dose (8.0 Gy) of γ ray total body irradiation, a total of 0.25 ml of murine derived bone marrow cells (1×107/mice, n=20) and spleen nucleated cells (5×106/mice, n=20) was infused to establish a mouse model of aGVHD (n=20). The aGVHD mice were anesthetized at the 7th day after transplantation, and the veinal blood was harvested by removing the eyeballs, and the serum was collected by centrifugation. The small intestinal crypts of healthy C57BL/6 mice were harvested and cultivated in 3D culture system that maintaining the growth and proliferation of intestinal stem cells in vitro. In our experiment, 5%, 10%, 20% proportions of aGVHD serum were respectively added into the organoid culture system for 3 days. The formation of small intestinal organoids were observed under an inverted microscope and the morphological characteristics of intestinal organoids in each groups were analyzed. For further evaluation, the aGVHD intestinal organoids were harvested and their pathological changes were observed. Combined with HE staining, intestinal organ morphology evaluation was performed. Combined with Alcian Blue staining, the secretion function of aGVHD intestinal organoids was observed. The distribution and changes of Lgr5+ and Clu+ intestinal stem cells in intestinal organoids were analyzed under the conditions of 5%, 10% and 20% serum concentrations by immunohistochemical stainings.@*RESULTS@#The results of HE staining showed that the integrity of intestinal organoids in the 5% concentration serum group was better than that in the 10% and 20% groups. The 5% concentration serum group showed the highest number of organoids, the highest germination rate and the lowest pathological score among experimental groups, while the 20% group exhibited severe morphological destruction and almost no germination was observed, and the pathological score was the highest among all groups(t=3.668, 4.334,5.309,P<0.05). The results of Alican blue staining showed that the secretion function of intestinal organoids in serum culture of aGVHD in the 20% group was weaker than that of the 5% group and 10% of the organoids, and there was almost no goblet cells, and mucus was stainned in the 20% aGVHD serum group. The immunohistochemical results showed that the number of Lgr5+ cells of intestinal organoids in the 5% group was more than that of the intestinal organoids in the 10% aGVHD serum group and 20% aGVHD serum group. Almost no Clu+ cells were observed in the 5% group. The Lgr5+ cells in the 20% group were seriously injuried and can not be observed. The proportion of Clu+ cells in the 20% group significantly increased.@*CONCLUSION@#The concentration of aGVHD serum in the culture system can affect the number and secretion function of intestinal organoids as well as the number of intestinal stem cells in organoids. The higher the serum concentration, the greater the risk of organoid injury, which reveal the characteristics of the formation and functional change of aGVHD intestinal organoids, and provide a novel tool for the study of intestinal injury in aGVHD.


Subject(s)
Mice , Female , Animals , Mice, Inbred C57BL , Bone Marrow Transplantation , Graft vs Host Disease , Stem Cells , Organoids
12.
Chinese Journal of Burns ; (6): 81-84, 2023.
Article in Chinese | WPRIM | ID: wpr-971154

ABSTRACT

In recent years, with the problem of aging population in China being prominant, the number of patients with chronic wounds such as diabetic foot, pressure ulcer, and vascular ulcer is increasing. Those diseases seriously affect the life quality of patients and increase the economy and care burden of the patients' family, which have been one of the most urgent clinical problems. Many researches have confirmed that adipose stem cells can effectively promote wound healing, while exogenous protease is needed, and there are ethical and many other problems, which limit the clinical application of adipose stem cells. Adipose stem cell matrix gel is a gel-like mixture of biologically active extracellular matrix and stromal vascular fragment obtained from adipose tissue by the principle of fluid whirlpool and flocculation precipitation. It contains rich adipose stem cells, hematopoietic stem cells, endothelial progenitor cells, and macrophages, etc. The preparation method of adipose stem cell matrix gel is simple and the preparation time is short, which is convenient for clinical application. Many studies at home and abroad showed that adipose stem cell matrix gel can effectively promote wound healing by regulating inflammatory reaction, promoting microvascular reconstruction and collagen synthesis. Therefore, this paper summarized the preparation of adipose stem cell matrix gel, the mechanism and problems of the matrix gel in promoting wound repair, in order to provide new methods and ideas for the treatment of chronic refractory wounds in clinic.


Subject(s)
Humans , Aged , Wound Healing/physiology , Adipocytes , Adipose Tissue , Extracellular Matrix , Stem Cells
13.
Chinese Journal of Burns ; (6): 132-140, 2023.
Article in Chinese | WPRIM | ID: wpr-971162

ABSTRACT

Objective: To investigate the influence of autologous adipose stem cell matrix gel on wound healing and scar hyperplasia of full-thickness skin defects in rabbit ears, and to analyze the related mechanism. Methods: Experimental research methods were adopted. The complete fat pads on the back of 42 male New Zealand white rabbits aged 2 to 3 months were cut to prepare adipose stem cell matrix gel, and a full-thickness skin defect wound was established on the ventral side of each ear of each rabbit. The left ear wounds were included in adipose stem cell matrix gel group (hereinafter referred to as matrix gel group), and the right ear wounds were included in phosphate buffer solution (PBS) group, which were injected with autologous adipose stem cell matrix gel and PBS, respectively. The wound healing rate was calculated on post injury day (PID) 7, 14, and 21, and the Vancouver scar scale (VSS) scoring of scar tissue formed on the wound (hereinafter referred to as scar tissue) was performed in post wound healing month (PWHM) 1, 2, 3, and 4. Hematoxylin-eosin staining was performed to observe and measure the histopathological changes of wound on PID 7, 14, and 21 and the dermal thickness of scar tissue in PWHM 1, 2, 3, and 4. Masson staining was performed to observe the collagen distribution in wound tissue on PID 7, 14, and 21 and scar tissue in PWHM 1, 2, 3, and 4, and the collagen volume fraction (CVF) was calculated. The microvessel count (MVC) in wound tissue on PID 7, 14, and 21 and the expressions of transforming growth factor β1 (TGF-β1) and α smooth muscle actin (α-SMA) in scar tissue in PWHM 1, 2, 3, and 4 were detected by immunohistochemical method, and the correlation between the expression of α-SMA and that of TGF-β1 in scar tissue in matrix gel group was analyzed. The expressions of vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF) in wound tissue were detected by enzyme-linked immunosorbent assay on PID 7, 14, and 21. The number of samples at each time point in each group was 6. Data were statistically analyzed with analysis of variance for repeated measurement, analysis of variance for factorial design, paired sample t test, least significant difference test, and Pearson correlation analysis. Results: On PID 7, the wound healing rate in matrix gel group was (10.3±1.7)%, which was close to (8.5±2.1)% in PBS group (P>0.05). On PID 14 and 21, the wound healing rates in matrix gel group were (75.5±7.0)% and (98.7±0.8)%, respectively, which were significantly higher than (52.7±6.7)% and (90.5±1.7)% in PBS group (with t values of 5.79 and 10.37, respectively, P<0.05). In PWHM 1, 2, 3, and 4, the VSS score of scar tissue in matrix gel group was significantly lower than that in PBS group (with t values of -5.00, -2.86, -3.31, and -4.45, respectively, P<0.05). Compared with the previous time point within the group, the VSS score of scar tissue at each time point after wound healing in the two groups was significantly increased (P<0.05), except for PWHM 4 in matrix gel group (P>0.05). On PID 7, the granulation tissue regeneration and epithelialization degree of the wounds between the two groups were similar. On PID 14 and 21, the numbers of fibroblasts, capillaries, and epithelial cell layers in wound tissue of matrix gel group were significantly more than those in PBS group. In PWHM 1, 2, 3, and 4, the dermal thickness of scar tissue in matrix gel group was significantly thinner than that in PBS group (with t values of -4.08, -5.52, -6.18, and -6.30, respectively, P<0.05). Compared with the previous time point within the group, the dermal thickness of scar tissue in the two groups thickened significantly at each time point after wound healing (P<0.05). Compared with those in PBS group, the collagen distribution in wound tissue in matrix gel group was more regular and the CVF was significantly increased on PID 14 and 21 (with t values of 3.98 and 3.19, respectively, P<0.05), and the collagen distribution in scar tissue was also more regular in PWHM 1, 2, 3, and 4, but the CVF was significantly decreased (with t values of -7.38, -4.20, -4.10, and -4.65, respectively, P<0.05). Compared with the previous time point within the group, the CVFs in wound tissue at each time point after injury and scar tissue at each time point after wound healing in the two groups were significantly increased (P<0.05), except for PWHM 1 in matrix gel group (P>0.05). On PID 14 and 21, the MVC in wound tissue in matrix gel group was significantly higher than that in PBS group (with t values of 4.33 and 10.10, respectively, P<0.05). Compared with the previous time point within the group, the MVC of wound at each time point after injury in the two groups was increased significantly (P<0.05), except for PID 21 in PBS group (P>0.05). In PWHM 1, 2, 3, and 4, the expressions of TGF-β1 and α-SMA in scar tissue in matrix gel group were significantly lower than those in PBS group (with t values of -2.83, -5.46, -5.61, -8.63, -10.11, -5.79, -8.08, and -11.96, respectively, P<0.05). Compared with the previous time point within the group, the expressions of TGF-β1 and α-SMA in scar tissue in the two groups were increased significantly at each time point after wound healing (P<0.05), except for the α-SMA expression in matrix gel group in PWHM 4 (P>0.05). There was a significantly positive correlation between the expression of α-SMA and that of TGF-β1 in scar tissue in matrix gel group (r=0.92, P<0.05). On PID 14 and 21, the expressions of VEGF (with t values of 6.14 and 6.75, respectively, P<0.05) and EGF (with t values of 8.17 and 5.85, respectively, P<0.05) in wound tissue in matrix gel group were significantly higher than those in PBS group. Compared with the previous time point within the group, the expression of VEGF of wound at each time point after injury in the two groups was increased significantly (P<0.05), and the expression of EGF was decreased significantly (P<0.05). Conclusions: Adipose stem cell matrix gel may significantly promote the wound healing of full-thickness skin defects in rabbit ears by promoting collagen deposition and expressions of VEGF and EGF in wound tissue, and may further inhibit the scar hyperplasia after wound healing by inhibiting collagen deposition and expressions of TGF-β1 and α-SMA in scar tissue.


Subject(s)
Male , Rabbits , Animals , Cicatrix , Vascular Endothelial Growth Factor A , Epidermal Growth Factor , Hyperplasia , Wound Healing , Stem Cells , Transforming Growth Factor beta
14.
Article in English | WPRIM | ID: wpr-971596

ABSTRACT

Fusobacterium nucleatum (F. nucleatum) is an early pathogenic colonizer in periodontitis, but the host response to infection with this pathogen remains unclear. In this study, we built an F. nucleatum infectious model with human periodontal ligament stem cells (PDLSCs) and showed that F. nucleatum could inhibit proliferation, and facilitate apoptosis, ferroptosis, and inflammatory cytokine production in a dose-dependent manner. The F. nucleatum adhesin FadA acted as a proinflammatory virulence factor and increased the expression of interleukin(IL)-1β, IL-6 and IL-8. Further study showed that FadA could bind with PEBP1 to activate the Raf1-MAPK and IKK-NF-κB signaling pathways. Time-course RNA-sequencing analyses showed the cascade of gene activation process in PDLSCs with increasing durations of F. nucleatum infection. NFκB1 and NFκB2 upregulated after 3 h of F. nucleatum-infection, and the inflammatory-related genes in the NF-κB signaling pathway were serially elevated with time. Using computational drug repositioning analysis, we predicted and validated that two potential drugs (piperlongumine and fisetin) could attenuate the negative effects of F. nucleatum-infection. Collectively, this study unveils the potential pathogenic mechanisms of F. nucleatum and the host inflammatory response at the early stage of F. nucleatum infection.


Subject(s)
Humans , Fusobacterium nucleatum/metabolism , NF-kappa B/metabolism , Periodontal Ligament/metabolism , Signal Transduction , Fusobacterium Infections/pathology , Stem Cells/metabolism
15.
Article in Chinese | WPRIM | ID: wpr-981681

ABSTRACT

OBJECTIVE@#To determine the expression level of Sonic hedgehog (Shh) in the passage of hair follicle stem cells (HFSCs), analyze the effect of Shh overexpression on the proliferation activity of HFSCs, and explore the survival of HFSCs after Shh overexpression and its effect on hair follicle regeneration.@*METHODS@#Hair follicles from the normal area (H1 group) and alopecia area (H2 group) of the scalp donated by 20 female alopecia patients aged 40-50 years old were taken, and the middle part of the hair follicle was cut under the microscope to culture, and the primary HFSCs were obtained and passaged; the positive markers (CD29, CD71) and negative marker (CD34) on the surface of the fourth generation HFSCs were identified by flow cytometry. The two groups of HFSCs were transfected with Shh-overexpressed lentivirus. Flow cytometry and cell counting kit 8 assay were used to detect the cell cycle changes and cell proliferation of HFSCs before and after transfection, respectively. Then the HFSCs transfected with Shh lentivirus were transplanted subcutaneously into the back of nude mice as the experimental group, and the same amount of saline was injected as the control group. At 5 weeks after cell transplantation, the expression of Shh protein in the back skin tissue of nude mice was detected by Western blot. HE staining and immunofluorescence staining were used to compare the number of hair follicles and the survival of HFSCs between groups.@*RESULTS@#The isolated and cultured cells were fusiform and firmly attached to the wall; flow cytometry showed that CD29 and CD71 were highly expressed on the surface of the cells, while CD34 was lowly expressed, suggesting that the cultured cells were HFSCs. The results of real-time fluorescence quantitative PCR and Western blot showed that the expression levels of Shh protein and gene in the 4th, 7th, and 10th passages of cells in H1 and H2 groups decreased gradually with the prolongation of culture time in vitro. After overexpression of Shh, the proliferation activity of HFSCs in the two groups was significantly higher than that in the blank group (not transfected with lentivirus) and the negative control group (transfected with negative control lentivirus), and the proliferation activity of HFSCs in H1 group was significantly higher than that in H2 group before and after transfection, showing significant differences ( P<0.05). At 5 weeks after cell transplantation, Shh protein was stably expressed in the dorsal skin of each experimental group; the number of hair follicles and the expression levels of HFSCs markers (CD71, cytokeratin 15) in each experimental group were significantly higher than those in the control group, and the number of hair follicles and the expression levels of HFSCs markers in H1 group were significantly higher than those in H2 group, and the differences were significant ( P<0.05).@*CONCLUSION@#Lentivirus-mediated Shh can be successfully transfected into HFSCs, the proliferation activity of HFSCs significantly increase after overexpression of Shh, which can secrete and express Shh continuously and stably, and promote hair follicle regeneration by combining the advantages of stem cells and Shh.


Subject(s)
Animals , Female , Mice , Alopecia/surgery , Hair Follicle , Hedgehog Proteins/genetics , Mice, Nude , Regeneration , Stem Cells
16.
Chinese Journal of Hepatology ; (12): 781-784, 2023.
Article in Chinese | WPRIM | ID: wpr-986212

ABSTRACT

Hepatic parenchymal cells are a type of liver cells that performs important functions such as metabolism and detoxification. The contribution of hepatic parenchymal cells, bile duct cells, and hepatic stem/progenitor cells to new hepatic parenchymal cells in the process of liver injury repair has become a controversial issue due to their strong proliferation ability. Lineage tracing technology, which has emerged in the past decade as a new method for exploring the origin of cells, can trace specific type of cells and their daughter cells by labeling cells that express the specific gene and their progeny. The article reviews the current literature on the origin and contribution of hepatic parenchymal cells by this technique. About 98% of new hepatic parenchymal cells originate from the existing hepatic parenchymal cells during liver homeostasis and after acute injury. However, under conditions of severe liver injury, such as inhibition of hepatic parenchymal cell proliferation, bile duct cells (mainly liver stem/progenitor cells) become the predominant source of hepatic parenchymal cells, contributing a steady increased hepatocyte regeneration with the extension of time.


Subject(s)
Hepatocytes/metabolism , Liver/metabolism , Bile Ducts , Stem Cells , Liver Regeneration/physiology , Cell Differentiation
17.
Chinese Journal of Biotechnology ; (12): 4901-4914, 2023.
Article in Chinese | WPRIM | ID: wpr-1008067

ABSTRACT

With the rapid development of gene editing technology, the study of spermatogonial stem cells (SSCs) holds great significance in understanding spermatogenesis and its regulatory mechanism, developing transgenic animals, gene therapy, infertility treatment and protecting rare species. Biogenesis of lysosome-related organelles complex 1 subunit 1 (BLOC1S1) is believed to have anti-brucella potential. Exploring the impack of BLOC1S1 on goat SSCs not only helps investigate the ability of BLOC1S1 to promote SSCs proliferation, but also provides a cytological basis for disease-resistant breeding research. In this study, a BLOC1S1 overexpression vector was constructed by homologous recombination. The BLOC1S1 overexpression cell line of goat spermatogonial stem cells was successfully constructed by lentivirus packaging, transfection and puromycin screening. The overexpression efficiency of BLOC1S1 was found to be 18 times higher using real time quantitative PCR (RT-qPCR). Furthermore, the results from cell growth curve analysis, flow cytometry for cell cycle detection, and 5-ethynyl-2'-deoxyuridine (EdU) staining showed that BLOC1S1 significantly increased the proliferation activity of goat SSCs. The results of RT-qPCR, immunofluorescence staining and Western blotting analyses revealed up-regulation of proliferation-related genes (PCNA, CDK2, CCND1), and EIF2S3Y, a key gene regulating the proliferation of spermatogonial stem cells. These findings strongly suggest that the proliferative ability of goat SSCs can be enhanced through the EIF2S3Y/ERK pathway. In summary, this study successfully created a goat spermatogonial stem cell BLOC1S1 overexpression cell line, which exhibited improved proliferation ability. This research laid the groundwork for exploring the regulatory role of BLOC1S1 in goat spermatogonia and provided a cell platform for further study into the biological function of BLOC1S1. These findings also establish a foundation for breeding BLOC1S1 overexpressing goats.


Subject(s)
Animals , Male , Goats , Stem Cells , Spermatogonia/metabolism , Cell Proliferation , Flow Cytometry , Testis/metabolism
18.
Article in Chinese | WPRIM | ID: wpr-1008879

ABSTRACT

Stem cells have been regarded with promising application potential in tissue engineering and regenerative medicine due to their self-renewal and multidirectional differentiation abilities. However, their fate is relied on their local microenvironment, or niche. Recent studied have demonstrated that biophysical factors, defined as physical microenvironment in which stem cells located play a vital role in regulating stem cell committed differentiation. In vitro, synthetic physical microenvironments can be used to precisely control a variety of biophysical properties. On this basis, the effect of biophysical properties such as matrix stiffness, matrix topography and mechanical force on the committed differentiation of stem cells was further investigated. This paper summarizes the approach of mechanical models of artificial physical microenvironment and reviews the effects of different biophysical characteristics on stem cell differentiation, in order to provide reference for future research and development in related fields.


Subject(s)
Cues , Stem Cells , Cell Differentiation , Regenerative Medicine , Tissue Engineering
19.
Article in Chinese | WPRIM | ID: wpr-1009015

ABSTRACT

OBJECTIVE@#To investigate the effect of Kartogenin (KGN) combined with adipose-derived stem cells (ADSCs) on tendon-bone healing after anterior cruciate ligament (ACL) reconstruction in rabbits.@*METHODS@#After the primary ADSCs were cultured by passaging, the 3rd generation cells were cultured with 10 μmol/L KGN solution for 72 hours. The supernatant of KGN-ADSCs was harvested and mixed with fibrin glue at a ratio of 1∶1; the 3rd generation ADSCs were mixed with fibrin glue as a control. Eighty adult New Zealand white rabbits were taken and randomly divided into 4 groups: saline group (group A), ADSCs group (group B), KGN-ADSCs group (group C), and sham-operated group (group D). After the ACL reconstruction model was prepared in groups A-C, the saline, the mixture of ADSCs and fibrin glue, and the mixture of supernatant of KGN-ADSCs and fibrin glue were injected into the tendon-bone interface and tendon gap, respectively. ACL was only exposed without other treatment in group D. The general conditions of the animals were observed after operation. At 6 and 12 weeks, the tendon-bone interface tissues and ACL specimens were taken and the tendon-bone healing was observed by HE staining, c-Jun N-terminal kinase (JNK) immunohistochemical staining, and TUNEL apoptosis assay. The fibroblasts were counted, and the positive expression rate of JNK protein and apoptosis index (AI) were measured. At the same time point, the tensile strength test was performed to measure the maximum load and the maximum tensile distance to observe the biomechanical properties.@*RESULTS@#Twenty-eight rabbits were excluded from the study due to incision infection or death, and finally 12, 12, 12, and 16 rabbits in groups A-D were included in the study, respectively. After operation, the tendon-bone interface of groups A and B healed poorly, while group C healed well. At 6 and 12 weeks, the number of fibroblasts and positive expression rate of JNK protein in group C were significantly higher than those of groups A, B, and D (P<0.05). Compared with 6 weeks, the number of fibroblasts gradually decreased and the positive expression rate of JNK protein and AI decreased in group C at 12 weeks after operation, with significant differences (P<0.05). Biomechanical tests showed that the maximum loads at 6 and 12 weeks after operation in group C were higher than in groups A and B, but lower than those in group D, while the maximum tensile distance results were opposite, but the differences between groups were significant (P<0.05).@*CONCLUSION@#After ACL reconstruction, local injection of a mixture of KGN-ADSCs and fibrin glue can promote the tendon-bone healing and enhance the mechanical strength and tensile resistance of the tendon-bone interface.


Subject(s)
Animals , Rabbits , Adipocytes , Anterior Cruciate Ligament Reconstruction , Fibrin Tissue Adhesive/therapeutic use , Stem Cells
20.
Article in Chinese | WPRIM | ID: wpr-1009094

ABSTRACT

OBJECTIVE@#To investigate the effect of human subcutaneous adipose-derived stem cells (hADSCs) local transplantation on orthodontically induced root resorption (OIRR) and provide theoretical and experimental basis for the clinical application of hADSCs to inhibit OIRR.@*METHODS@#Forty 8-week-old male Sprague Dawley rats were randomly divided into experimental group and control group, with 20 rats in each group, to establish the first molar mesial orthodontic tooth movement (OTM) model of rat right maxillary. The rats in the experimental group were injected with 25 μL of cell suspension containing 2.5×10 5 hADSCs on the 1st, 4th, 8th, and 12th day of modeling, while the rats in the control group were injected with 25 μL of PBS. The rat maxillary models were obtained before and after 7 and 14 days of force application, and 10 rats in each group were killed and sampled after 7 and 14 days of force application. The OTM distance was measured by stereomicroscope, the root morphology of the pressure side was observed by scanning electron microscope and the root resorption area ratio was measured. The root resorption and periodontal tissue remodeling of the pressure side were observed by HE staining and the root resorption index was calculated. The number of cementoclast and osteoclast in the periodontal tissue on the pressure side was counted by tartrate resistant acid phosphatase staining.@*RESULTS@#The TOM distance of both groups increased with the extension of the force application time, and there was no significant difference ( P<0.05). There was no significant difference in OTM distance between the experimental group and the control group after 7 and 14 days of force application ( P>0.05). Scanning electron microscope observation showed that small and shallow scattered resorption lacunae were observed on the root surface of the experimental group and the control group after 7 days of force application, and there was no significant difference in the root resorption area ratio between the two groups ( P>0.05); after 14 days of application, the root resorption lacunae deepened and became larger in both groups, and the root resorption area ratio in the experimental group was significantly lower than that in the control group ( P<0.05). The range and depth of root absorption in the experimental group were smaller and shallower than those in the control group, and the root absorption index in the experimental group was significantly lower than that in the control group after 14 days of force application ( P<0.05). The number of cementoclast in the experimental group was significantly lower than that in the control group after 7 and 14 days of force application ( P<0.05); the number of osteoclasts in the experimental group was significantly lower than that in the control group after 14 days of force application ( P<0.05).@*CONCLUSION@#Local transplantation of hADSCs may reduce the area and depth of root resorption by reducing the number of cementoclasts and osteoclasts during OTM in rats, thereby inhibiting orthodontic-derived root resorption.


Subject(s)
Rats , Male , Humans , Animals , Root Resorption/therapy , Rats, Sprague-Dawley , Osteoclasts , Tooth Movement Techniques , Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL