RESUMEN
Resumo Fundamento A regurgitação valvar pulmonar é uma importante complicação de longo prazo em pacientes com tetralogia de Fallot (TF). Objetivo O presente estudo tem como objetivo investigar os efeitos do implante valvar pulmonar (IVP) na anatomia e função do ventrículo direito (VD) e na evolução em longo prazo da prótese implantada em posição pulmonar. Métodos Uma análise de coorte retrospectiva e unicêntrica foi realizada em 56 pacientes consecutivos com TF submetidos a IVP. O estudo incluiu pacientes de ambos os gêneros, com idade ≥ 12 anos e compreendeu avaliação de dados clínicos e cirúrgicos, ressonância magnética cardiovascular pré e pós-operatória e dados ecocardiográficos obtidos mais de 1 ano após IVP. Resultados Após o IVP, houve uma diminuição significativa do volume sistólico final do VD indexado pela área de superfície corpórea (ASC), de 89 mL/ASC para 69 mL/ASC (p < 0,001) e do volume diastólico final indexado do VD, de 157 mL/ASC para 116 mL/ASC (p < 0,001). Além disso, houve aumento da fração de ejeção corrigida do VD [ FEVDc = fluxo pulmonar ajustado (fluxo pulmonar anterógrado − fluxo regurgitante) / volume diastólico final do VD ] de 23% para 35% (p < 0,001) e da fração de ejeção do ventrículo esquerdo de 58% para 60% (p = 0,008). No entanto, foi observado um aumento progressivo no gradiente de pico da válvula pulmonar ao longo do tempo, com 25% dos pacientes apresentando um gradiente superior a 60 mmHg. Próteses menores (tamanhos 19 a 23) foram associadas a um risco 4,3 vezes maior de gradiente > 60 mmHg em comparação com próteses maiores (tamanhos 25 a 27; p = 0,029; intervalo de confiança: 1,18 a 17,8). Conclusão Conforme esperado, o IVP demonstrou melhorias nos volumes e na função do VD. O acompanhamento e a vigilância a longo prazo são cruciais para avaliar a durabilidade da prótese e detectar potenciais complicações. O dimensionamento adequado das próteses é essencial para melhorar a longevidade da prótese.
Abstract Background Pulmonary valve regurgitation is a significant long-term complication in patients with tetralogy of Fallot (TOF). Objective This study aims to investigate the effects of pulmonary valve implantation (PVI) on the anatomy and function of the right ventricle (RV) and the long-term evolution of the implanted prosthesis in the pulmonary position. Methods A single-center retrospective cohort analysis was performed in 56 consecutive patients with TOF who underwent PVI. The study included patients of both sexes, aged ≥ 12 years, and involved assessing clinical and surgical data, pre- and post-operative cardiovascular magnetic resonance imaging, and echocardiogram data more than 1 year after PVI. Results After PVI, there was a significant decrease in RV end-systolic volume indexed by body surface area (BSA), from 89 mL/BSA to 69 mL/BSA (p < 0.001) and indexed RV end-diastolic volume, from 157 mL/BSA to 116 mL/BSA (p < 0.001). Moreover, there was an increase in corrected RV ejection fraction [ RVEFC = net pulmonary flow (pulmonary forward flow − regurgitant flow) / R V end-diastolic volume] from 23% to 35% (p < 0.001) and left ventricular ejection fraction from 58% to 60% (p = 0.008). However, a progressive increase in the peak pulmonary valve gradient was observed over time, with 25% of patients experiencing a gradient exceeding 60 mmHg. Smaller prostheses (sizes 19 to 23) were associated with a 4.3-fold higher risk of a gradient > 60 mmHg compared to larger prostheses (sizes 25 to 27; p = 0.029; confidence interval: 1.18 to 17.8). Conclusion As expected, PVI demonstrated improvements in RV volumes and function. Long-term follow-up and surveillance are crucial for assessing the durability of the prosthesis and detecting potential complications. Proper sizing of prostheses is essential for improved prosthesis longevity.
RESUMEN
Abstract Introduction: The Technical Performance Score (TPS) was developed and subsequently refined at the Boston Children's Hospital. Our objective was to translate and validate its application in a developing country. Methods: The score was translated into the Portuguese language and approved by the TPS authors. Subsequently, we studied 1,030 surgeries from June 2018 to October 2020. TPS could not be assigned in 58 surgeries, and these were excluded. Surgical risk score was evaluated using Risk Adjustment in Congenital Heart Surgery (or RACHS-1). The impact of TPS on outcomes was studied using multivariable linear and logistic regression adjusting for important perioperative covariates. Results: Median age and weight were 2.2 (interquartile range [IQR] = 0.5-13) years and 10.8 (IQR = 5.6-40) kilograms, respectively. In-hospital mortality was 6.58% (n=64), and postoperative complications occurred in 19.7% (n=192) of the cases. TPS was categorized as 1 in 359 cases (37%), 2 in 464 (47.7%), and 3 in 149 (15.3%). Multivariable analysis identified TPS class 3 as a predictor of longer hospital stay (coefficient: 6.6; standard error: 2.2; P=0.003), higher number of complications (odds ratio [OR]: 1.84; 95% confidence interval [CI]: 1.1-3; P=0.01), and higher mortality (OR: 3.2; 95% CI: 1.4-7; P=0.004). Conclusion: TPS translated into the Portuguese language was validated and showed to be able to predict higher mortality, complication rate, and prolonged postoperative hospital stay in a high-volume Latin-American congenital heart surgery program. TPS is generalizable and can be used as an outcome assessment tool in resource diverse settings.
Asunto(s)
Humanos , Lactante , Preescolar , Niño , Adolescente , Cardiopatías Congénitas , Procedimientos Quirúrgicos Cardíacos , Complicaciones Posoperatorias , Boston , Estudios Retrospectivos , Factores de Riesgo , Resultado del Tratamiento , Mortalidad Hospitalaria , Países en Desarrollo , Tiempo de InternaciónRESUMEN
Abstract Objective: ASSIST is the first Brazilian initiative in building a collaborative quality improvement program in pediatric cardiology and congenital heart disease. The purposes of this manuscript are: (a) to describe the development of the ASSIST project, including the historical, philosophical, organizational, and infrastructural components that will facilitate collaborative quality improvement in congenital heart disease care; (b) to report past and ongoing challenges faced; and (c) to report the first preliminary data analysis. Methods: A total of 614 operations were prospectively included in a comprehensive online database between September 2014 and December 2015 in two participating centers. Risk Adjustment for Congenital Heart Surgery (RACHS) 1 and Aristotle Basic Complexity (ABC) scores were obtained. Descriptive statistics were provided, and the predictive values of the two scores for mortality were calculated by multivariate logistic regression models. Results: Many barriers and challenges were faced and overcome. Overall mortality was 13.4%. Independent predictors of in-hospital death were: RACHS-1 categories (3, 4, and 5/6), ABC level 4, and age group (≤ 30 days, and 30 days - 1 year). Conclusion: The ASSIST project was successfully created over a solid base of collaborative work. The main challenges faced, and overcome, were lack of institutional support, funding, computational infrastructure, dedicated staff, and trust. RACHS-1 and ABC scores performed well in our case mix. Our preliminary outcome analysis shows opportunities for improvement.