Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros








Intervalo de año
1.
Artículo en Chino | WPRIM | ID: wpr-1032310

RESUMEN

@#Digital intraoral scanning is a hot topic in the field of oral digital technology. In recent years, digital intraoral scanning has gradually become the mainstream technology in orthodontics, prosthodontics, and implant dentistry. The precision of digital intraoral scanning and the accuracy and stitching of data collection are the keys to the success of the impression. However, the operators are less familiar with the intraoral scanning characteristics, imaging processing, operator scanning method, oral tissue specificity of the scanned object, and restoration design. Thus far, no unified standard and consensus on digital intraoral scanning technology has been achieved at home or abroad. To deal with the problems encountered in oral scanning and improve the quality of digital scanning, we collected common expert opinions and sought to expound the causes of scanning errors and countermeasures by summarizing the existing evidence. We also describe the scanning strategies under different oral impression requirements. The expert consensus is that due to various factors affecting the accuracy of digital intraoral scanning and the reproducibility of scanned images, adopting the correct scanning trajectory can shorten clinical operation time and improve scanning accuracy. The scanning trajectories mainly include the E-shaped, segmented, and S-shaped methods. When performing fixed denture restoration, it is recommended to first scan the abutment and adjacent teeth. When performing fixed denture restoration, it is recommended to scan the abutment and adjacent teeth first. Then the cavity in the abutment area is excavated. Lastly, the cavity gap was scanned after completing the abutment preparation. This method not only meets clinical needs but also achieves the most reliable accuracy. When performing full denture restoration in edentulous jaws, setting markers on the mucosal tissue at the bottom of the alveolar ridge, simultaneously capturing images of the vestibular area, using different types of scanning paths such as Z-shaped, S-shaped, buccal-palatal and palatal-buccal pathways, segmented scanning of dental arches, and other strategies can reduce scanning errors and improve image stitching and overlap. For implant restoration, when a single crown restoration is supported by implants and a small span upper structure restoration, it is recommended to first pre-scan the required dental arch. Then the cavity in the abutment area is excavated. Lastly, scanning the cavity gap after installing the implant scanning rod. When repairing a bone level implant crown, an improved indirect scanning method can be used. The scanning process includes three steps: First, the temporary restoration, adjacent teeth, and gingival tissue in the mouth are scanned; second, the entire dental arch is scanned after installing a standard scanning rod on the implant; and third, the temporary restoration outside the mouth is scanned to obtain the three-dimensional shape of the gingival contour of the implant neck, thereby increasing the stability of soft tissue scanning around the implant and improving scanning restoration. For dental implant fixed bridge repair with missing teeth, the mobility of the mucosa increases the difficulty of scanning, making it difficult for scanners to distinguish scanning rods of the same shape and size, which can easily cause image stacking errors. Higher accuracy of digital implant impressions can be achieved by changing the geometric shape of the scanning rods to change the optical curvature radius. The consensus confirms that as the range of scanned dental arches and the number of data concatenations increases, the scanning accuracy decreases accordingly, especially when performing full mouth implant restoration impressions. The difficulty of image stitching processing can easily be increased by the presence of unstable and uneven mucosal morphology inside the mouth and the lack of relatively obvious and fixed reference objects, which results in insufficient accuracy. When designing restorations of this type, it is advisable to carefully choose digital intraoral scanning methods to obtain model data. It is not recommended to use digital impressions when there are more than five missing teeth.

2.
Artículo en Chino | WPRIM | ID: wpr-936402

RESUMEN

Objective @#To investigate the effects of N-cadherin silencing on the proliferation and migration of human dental pulp stem cells (DPSCs) and to provide experimental evidence for DPSCs-based dental pulp regeneration.@* Methods@# DPSCs were transfected with N-cadherin shRNA lentivirus, and the knockdown efficiency of N-cadherin at both the mRNA and protein levels was confirmed by qRT-PCR and Western blot. The experiment included a negative control group (shRNA -NC) and an N-cadherin shRNA silencing group. Cell proliferation was detected by the CCK-8 method. Cell cycle and apoptosis were assessed by flow cytometry, and cell migration was detected using the Transwell method.@*Results@#N-cadherin shRNA significantly reduced the expression levels of N-cadherin mRNA and protein in DPSCs (P<0.001). The proliferation activity of the N-cadherin shRNA group was significantly greater than that of the shRNA-NC group on the 3rd and 4th days after cell inoculation and lower than that of the shRNA-NC group from the 6th to 8th days (P<0.05). On the 3rd day after cell inoculation, the proportion of cells in S phase and G2 phase in the N-cadherin shRNA group was greater than that in the shRNA-NC group (P<0.05). On the 6th day after cell inoculation, the proportion of cells in S phase and G2 phase in the N-cadherin shRNA group was lower than that in the shRNA-NC group (P<0.05), and the proportion of apoptotic cells in the N-cadherin shRNA group was greater than that in the shRNA-NC group (P<0.01). Low densities cells and high densities cells were inoculated into Transwell upper chamber for 20 h, the number of cells passing through the membrane pores of upper chamber in the N-cadherin shRNA group was greater than that in the shRNA-NC group (P<0.001).@*Conclusion@#Silencing N-cadherin expression can promote the early proliferation and migration of DPSCs.

3.
Artículo en Chino | WPRIM | ID: wpr-756914

RESUMEN

@#Tooth defects due to dental caries, trauma, abrasion, etc., are extremely common and can be treated by direct or indirect restoration. Compared with resin directly filling the body, an inlay can better restore the occlusal contact relationship and the adjacent surface contact relationship and has good mechanical properties. In recent years, with the development of ceramic materials and bonding systems and the popularity of chairside CAD/CAM technology, the chairside CAD/CAM porcelain inlay restoration program has been well received by doctors and patients because of its accuracy, convenience, aesthetics, hardness and stability, and this program is widely used clinically. This review covers the research status of various aspects such as indications and contraindications for chairside CAD/CAM inlay restoration, pre-restoration preparation, tooth preparation, hole type, impression taking and design, porcelain block selection, bonding, polishing, postoperative doctor’s instructions, and common postoperative complications. It is expected to provide a reference for the clinical application of and research on chairside CAD/CAM inlay restoration technology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA