Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 567
Filtrar
1.
Int. j. morphol ; 42(1): 127-136, feb. 2024. ilus
Artículo en Inglés | LILACS | ID: biblio-1528822

RESUMEN

SUMMARY: The objective of this study was to investigate the therapeutic wound healing potential and molecular mechanisms of shikonin as small molecules in vitro. A mouse burn model was used to explore the potential therapeutic effect of shikonin; we traced proliferating cells in vivo to locate the active area of skin cell proliferation. Through the results of conventional pathological staining, we found that shikonin has a good effect on the treatment of burned skin and promoted the normal distribution of skin keratin at the damaged site. At the same time, shikonin also promoted the proliferation of skin cells at the damaged site; importantly, we found a significant increase in the number of fibroblasts at the damaged site treated with shikonin. Most importantly, shikonin promotes fibroblasts to repair skin wounds by regulating the PI3K/AKT signaling pathway. This study shows that shikonin can effectively promote the proliferation of skin cell, and local injection of fibroblasts in burned skin can play a certain therapeutic role.


El objetivo de este trabajo fue investigar el potencial terapéutico de cicatrización de heridas y los mecanismos moleculares de la shikonina como moléculas pequeñas in vitro. Se utilizó un modelo de quemaduras en ratones para explorar el posible efecto terapéutico de la shikonina; Rastreamos las células en proliferación in vivo para localizar el área activa de proliferación de células de la piel. A través de los resultados de la tinción para patología convencional, encontramos que la shikonina tiene un buen efecto en el tratamiento de la piel quemada y promueve la distribución normal de la queratina de la piel en el sitio dañado. Al mismo tiempo, la shikonina también promovió la proliferación de células de la piel en el sitio dañado. Es importante destacar que encontramos un aumento significativo en la cantidad de fibroblastos en el sitio dañado tratado con shikonina. Lo más importante es que la shikonina promueve la función reparadora de fibroblastos en las heridas de la piel regulando la vía de señalización PI3K/ AKT. Este estudio muestra que la shikonina puede promover eficazmente la proliferación de células de la piel y que la inyección local de fibroblastos en la piel quemada puede desempeñar un cierto papel terapéutico.


Asunto(s)
Animales , Ratones , Cicatrización de Heridas/efectos de los fármacos , Quemaduras/tratamiento farmacológico , Naftoquinonas/administración & dosificación , Piel , Técnicas In Vitro , Naftoquinonas/farmacología , Fosfatidilinositol 3-Quinasas , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Proteínas Proto-Oncogénicas c-akt , Fibroblastos , Ratones Endogámicos C57BL
2.
Chinese Journal of Lung Cancer ; (12): 919-933, 2024.
Artículo en Chino | WPRIM | ID: wpr-1010100

RESUMEN

BACKGROUND@#Lung cancer is a major threat to human health. The molecular mechanisms related to the occurrence and development of lung cancer are complex and poorly known. Exploring molecular markers related to the development of lung cancer is helpful to improve the effect of early diagnosis and treatment. Long non-coding RNA (lncRNA) THAP7-AS1 is known to be highly expressed in gastric cancer, but has been less studied in other cancers. The aim of the study is to explore the role and mechanism of methyltransferase-like 3 (METTL3) mediated up-regulation of N6-methyladenosine (m6A) modified lncRNA THAP7-AS1 expression in promoting the development of lung cancer.@*METHODS@#Samples of 120 lung cancer and corresponding paracancerous tissues were collected. LncRNA microarrays were used to analyze differentially expressed lncRNAs. THAP7-AS1 levels were detected in lung cancer, adjacent normal tissues and lung cancer cell lines by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The diagnostic value of THAP7-AS1 in lung cancer and the relationship between THAP7-AS1 expression and survival rate and clinicopathological parameters were analyzed. Bioinformatics analysis, methylated RNA immunoprecipitation (meRIP), RNA pull-down and RNA-immunoprecipitation (RIP) assay were used to investigate the molecular regulation mechanism of THAP7-AS1. Cell proliferation, migration, invasion and tumorigenesis of SPC-A-1 and NCI-H1299 cells were determined by MTS, colony-formation, scratch, Transwell and xenotransplantation in vivo, respectively. Expression levels of phosphoinositide 3-kinase/protein kenase B (PI3K/AKT) signal pathway related protein were detected by Western blot.@*RESULTS@#Expression levels of THAP7-AS1 were higher in lung cancer tissues and cell lines (P<0.05). THAP7-AS1 has certain diagnostic value in lung cancer [area under the curve (AUC)=0.737], and its expression associated with overall survival rate, tumor size, tumor-node-metastasis (TNM) stage and lymph node metastasis (P<0.05). METTL3-mediated m6A modification enhanced THAP7-AS1 expression. The cell proliferation, migration, invasion and the volume and mass of transplanted tumor were all higher in the THAP7-AS1 group compared with the NC group and sh-NC group of SPC-A-1 and NCI-H1299 cells, while the cell proliferation, migration and invasion were lower in the sh-THAP7-AS1 group (P<0.05). THAP7-AS1 binds specifically to Cullin 4B (CUL4B). The cell proliferation, migration, invasion, and expression levels of phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), phosphoinositide-3 kinase, catalytic subunit delta (PIK3CD), phospho-phosphatidylinositol 3-kinase (p-PI3K), phospho-protein kinase B (p-AKT) and phospho-mammalian target of rapamycin (p-mTOR) were higher in the THAP7-AS1 group compared with the Vector group of SPC-A-1 and NCI-H1299 cells (P<0.05).@*CONCLUSIONS@#LncRNA THAP7-AS1 is stably expressed through m6A modification mediated by METTL3, and combines with CUL4B to activate PI3K/AKT signal pathway, which promotes the occurrence and development of lung cancer.


Asunto(s)
Humanos , Neoplasias Pulmonares/patología , ARN Largo no Codificante/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Regulación hacia Arriba , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Metiltransferasas/metabolismo , Proteínas Cullin/genética
3.
Biomedical and Environmental Sciences ; (12): 42-53, 2024.
Artículo en Inglés | WPRIM | ID: wpr-1007907

RESUMEN

OBJECTIVE@#This study aimed to investigate the effect and underlying mechanism of Fructus lycii in improving exercise fatigue.@*METHODS@#A network pharmacological approach was used to explore potential mechanisms of action of Fructus lycii. Skeletal muscle C2C12 cells and immunofluorescence were employed to verify the effect and mechanism of the representative components in Fructus lycii predicted by network pharmacological analysis.@*RESULTS@#Six potential active components, namely quercetin, β-sitosterol, stigmasterol, 7-O-methylluteolin-6-C-beta-glucoside_qt, atropine, and glycitein, were identified to have potency in improving exercise fatigue via multiple pathways, such as the PI3K-Akt, neuroactive ligand-receptor interaction, IL-17, TNF, and MAPK signaling pathways. The immunofluorescence results indicated that quercetin, a significant active component in Fructus lycii, increased the mean staining area of 2-NBDG, TMRM, and MitoTracker, and decreased the area of CellRox compared to the control. Furthermore, the protein expression levels of p-38 MAPK, p-MAPK, p-JNK, p-PI3K, and p-AKT markedly increased after quercetin treatment.@*CONCLUSION@#Fructus lycii might alleviate exercise fatigue through multiple components and pathways. Among these, quercetin appears to improve exercise fatigue by enhancing energy metabolism and reducing oxidative stress. The PI3K-AKT and MAPK signaling pathways also appear to play a role in this process.


Asunto(s)
Humanos , Quercetina/uso terapéutico , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Medicamentos Herbarios Chinos , Fatiga/tratamiento farmacológico
4.
Chinese journal of integrative medicine ; (12): 251-259, 2024.
Artículo en Inglés | WPRIM | ID: wpr-1010332

RESUMEN

OBJECTIVE@#To explore the mechanism of electroacupuncture (EA) in promoting recovery of the facial function with the involvement of autophagy, glial cell line-derived neurotrophic factor (GDNF), and phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway.@*METHODS@#Seventy-two male Sprague-Dawley rats were randomly allocated into the control, sham-operated, facial nerve injury (FNI), EA, EA+3-methyladenine (3-MA), and EA+GDNF antagonist groups using a random number table, with 12 rats in each group. An FNI rat model was established with facial nerve crushing method. EA intervention was conducted at Dicang (ST 4), Jiache (ST 6), Yifeng (SJ 17), and Hegu (LI 4) acupoints for 2 weeks. The Simone's 10-Point Scale was utilized to monitor the recovery of facial function. The histopathological evaluation of facial nerves was performed using hematoxylin-eosin (HE) staining. The levels of Beclin-1, light chain 3 (LC3), and P62 were detected by immunohistochemistry (IHC), immunofluorescence, and reverse transcription-polymerase chain reaction, respectively. Additionally, IHC was also used to detect the levels of GDNF, Rai, PI3K, and mTOR.@*RESULTS@#The facial functional scores were significantly increased in the EA group than the FNI group (P<0.05 or P<0.01). HE staining showed nerve axons and myelin sheaths, which were destroyed immediately after the injury, were recovered with EA treatment. The expressions of Beclin-1 and LC3 were significantly elevated and the expression of P62 was markedly reduced in FNI rats (P<0.01); however, EA treatment reversed these abnormal changes (P<0.01). Meanwhile, EA stimulation significantly increased the levels of GDNF, Rai, PI3K, and mTOR (P<0.01). After exogenous administration with autophagy inhibitor 3-MA or GDNF antagonist, the repair effect of EA on facial function was attenuated (P<0.05 or P<0.01).@*CONCLUSIONS@#EA could promote the recovery of facial function and repair the facial nerve damages in a rat model of FNI. EA may exert this neuroreparative effect through mediating the release of GDNF, activating the PI3K/mTOR signaling pathway, and further regulating the autophagy of facial nerves.


Asunto(s)
Ratas , Masculino , Animales , Ratas Sprague-Dawley , Electroacupuntura , Fosfatidilinositol 3-Quinasa/metabolismo , Traumatismos del Nervio Facial/terapia , Fosfatidilinositol 3-Quinasas/metabolismo , Beclina-1 , Factor Neurotrófico Derivado de la Línea Celular Glial , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Autofagia , Mamíferos/metabolismo
5.
Chinese journal of integrative medicine ; (12): 243-250, 2024.
Artículo en Inglés | WPRIM | ID: wpr-1010328

RESUMEN

OBJECTIVE@#To investigate the effects of Danmu Extract Syrup (DMS) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and explore the mechanism.@*METHODS@#Seventy-two male Balb/C mice were randomly divided into 6 groups according to a random number table (n=12), including control (normal saline), LPS (5 mg/kg), LPS+DMS 2.5 mL/kg, LPS+DMS 5 mL/kg, LPS+DMS 10 mL/kg, and LPS+Dexamethasone (DXM, 5 mg/kg) groups. After pretreatment with DMS and DXM, the ALI mice model was induced by LPS, and the bronchoalveolar lavage fluid (BALF) were collected to determine protein concentration, cell counts and inflammatory cytokines. The lung tissues of mice were stained with hematoxylin-eosin, and the wet/dry weight ratio (W/D) of lung tissue was calculated. The levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1 β in BALF of mice were detected by enzyme linked immunosorbent assay. The expression levels of Claudin-5, vascular endothelial (VE)-cadherin, vascular endothelial growth factor (VEGF), phospho-protein kinase B (p-Akt) and Akt were detected by Western blot analysis.@*RESULTS@#DMS pre-treatment significantly ameliorated lung histopathological changes. Compared with the LPS group, the W/D ratio and protein contents in BALF were obviously reduced after DMS pretreatment (P<0.05 or P<0.01). The number of cells in BALF and myeloperoxidase (MPO) activity decreased significantly after DMS pretreatment (P<0.05 or P<0.01). DMS pre-treatment decreased the levels of TNF-α, IL-6 and IL-1 β (P<0.01). Meanwhile, DMS activated the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway and reversed the expressions of Claudin-5, VE-cadherin and VEGF (P<0.01).@*CONCLUSIONS@#DMS attenuated LPS-induced ALI in mice through repairing endothelial barrier. It might be a potential therapeutic drug for LPS-induced lung injury.


Asunto(s)
Ratones , Masculino , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Lipopolisacáridos , Fosfatidilinositol 3-Quinasas/metabolismo , Interleucina-1beta/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Claudina-5/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Pulmón/patología , Interleucina-6/metabolismo , Medicamentos Herbarios Chinos
6.
Chinese journal of integrative medicine ; (12): 213-221, 2024.
Artículo en Inglés | WPRIM | ID: wpr-1010320

RESUMEN

OBJECTIVE@#To investigate the effect and possible mechanism of hydroxysafflor yellow A (HSYA) on human immortalized keratinocyte cell proliferation and migration.@*METHODS@#HaCaT cells were treated with HSYA. Cell proliferation was detected by the cell counting kit-8 assay, and cell migration was measured using wound healing assay and Transwell migration assay. The mRNA and protein expression levels of heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF), EGF receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-1α (HIF-1α) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot, respectively. Circ_0084443-overexpressing HaCaT cells and empty plasmid HaCaT cells were constructed using the lentiviral stable transfection and treated with HSYA. The expression of circ_0084443 was detected by qRT-PCR.@*RESULTS@#HSYA (800 µmol/L) significantly promoted HaCaT cell proliferation and migration (P<0.05 or P<0.01). It also increased the mRNA and protein expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and increased the phosphorylation levels of PI3K and AKT (P<0.05 or P<0.01). Furthermore, HSYA promoted HaCaT cell proliferation and migration via the HBEGF/EGFR and PI3K/AKT/mTOR signaling pathways (P<0.01). Circ_0084443 attenuated the mRNA expression levels of HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α (P<0.05). HSYA inhibited the circ_0084443 expression, further antagonized the inhibition of circ_0084443 on HBEGF, EGFR, PI3K, AKT, mTOR and HIF-1α, and promoted the proliferation of circ_0084443-overexpressing HaCaT cells (P<0.05 or P<0.01). However, HSYA could not influence the inhibitory effect of circ_0084443 on HaCaT cell migration (P>0.05).@*CONCLUSION@#HSYA played an accelerative role in HaCaT cell proliferation and migration, which may be attributable to activating HBEGF/EGFR and PI3K/AKT signaling pathways, and had a particular inhibitory effect on the keratinocyte negative regulator circ_0084443.


Asunto(s)
Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores ErbB/genética , Serina-Treonina Quinasas TOR/metabolismo , Proliferación Celular , ARN Mensajero/genética , Movimiento Celular , Línea Celular Tumoral , Chalcona/análogos & derivados , Quinonas
7.
Biol. Res ; 56: 16-16, 2023. ilus, graf
Artículo en Inglés | LILACS | ID: biblio-1439483

RESUMEN

BACKGROUND/AIMS: Diabetes mellitus (DM) is highly susceptible to diabetic hind limb ischemia (DHI). MicroRNA (MiR)-17-5p is downregulated in DM and plays a key role in vascular protection. Endothelial progenitor cell (EPC)-released exosomes (EPC-EXs) contribute to vascular protection and ischemic tissue repair by transferring their contained miRs to target cells. Here, we investigated whether miR-17-5p-enriched EPC-EXs (EPC-EXsmiR-17-5p) had conspicuous effects on protecting vascular and skeletal muscle in DHI in vitro and in vivo. METHODS: EPCs transfected with scrambled control or miR-17-5p mimics were used to generate EPC-EXs and EPC-EXsmiR-17-5p. Db/db mice were subjected to hind limb ischemia. After the surgery, EPC-EXs and EPC-EXsmiR-17-5p were injected into the gastrocnemius muscle of the hind limb once every 7 days for 3 weeks. Blood flow, microvessel density, capillary angiogenesis, gastrocnemius muscle weight, structure integrity, and apoptosis in the hind limb were assessed. Vascular endothelial cells (ECs) and myoblast cells (C2C12 cells) were subjected to hypoxia plus high glucose (HG) and cocultured with EPC-EXs and EPC-EXsmiR-17-5p. A bioinformatics assay was used to analyze the potential target gene of miR-17-5p, the levels of SPRED1, PI3K, phosphorylated Akt, cleaved caspase-9 and cleaved caspase-3 were measured, and a PI3K inhibitor (LY294002) was used for pathway analysis. RESULTS: In the DHI mouse model, miR-17-5p was markedly decreased in hind limb vessels and muscle tissues, and infusion of EPC-EXsmiR-17-5p was more effective than EPC-EXs in increasing miR-17-5p levels, blood flow, microvessel density, and capillary angiogenesis, as well as in promoting muscle weight, force production and structural integrity while reducing apoptosis in gastrocnemius muscle. In Hypoxia plus HG-injured ECs and C2C12 cells, we found that EPC-EXsmiR-17-5p could deliver their carried miR-17-5p into target ECs and C2C12 cells and subsequently downregulate the target protein SPRED1 while increasing the levels of PI3K and phosphorylated Akt. EPC-EXsmiR-17-5p were more effective than EPC-EXs in decreasing apoptosis and necrosis while increasing viability, migration, and tube formation in Hypoxia plus HG-injured ECs and in decreasing apoptosis while increasing viability and myotube formation in C2C12 cells. These effects of EPC-EXsmiR-17-5p could be abolished by a PI3K inhibitor (LY294002). CONCLUSION: Our results suggest that miR-17-5p promotes the beneficial effects of EPC-EXs on DHI by protecting vascular ECs and muscle cell functions.


Asunto(s)
Animales , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Diabetes Mellitus , Movimiento Celular , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinasas , Células Endoteliales , Isquemia , Hipoxia
8.
Chinese Journal of Otorhinolaryngology Head and Neck Surgery ; (12): 681-689, 2023.
Artículo en Chino | WPRIM | ID: wpr-986945

RESUMEN

Objective: To investigate whether tanshinone ⅡA can protect the apoptosis of mice cochlear pericytes induced by high glucose and its specific protective mechanism, so as to provide experimental evidence for the prevention and treatment of diabetic hearing loss. Methods: C57BL/6J male mice were used to prepare type 2 diabetes model, which were divided into normal (NG) group, diabetic (DM) group, diabetic+tanshinone ⅡA (HG+tanshinone ⅡA) group and tanshinone ⅡA group. Each group had 10 animals. Primary cochlear pericytes were divided into NG group, HG group (high glucose 35 mmol/L), HG+tanshinone ⅡA (1, 3, 5 μmol/L) group, HG+Tanshinone ⅡA+LY294002 (PI3K/AKT pathway inhibitor) group, LY294002 group, tanshinone ⅡA group and DMSO group. Auditory brainstem response (ABR) was used to measure hearing threshold. Evans blue was used to detect the permeability of blood labyrinth barrier in each group. TBA methods were used to detect oxidative stress levels in various organs of mice. Morphological changes of stria vascularis were observed by hematoxylin-eosin staining (HE). Evans blue was used to detect the vascular labyrinth barrier permeability in cochlea. The expression of apoptosis protein in stria vascularis pericytes was observed by immunofluorescence. Pericytes apoptosis rate was observed by flow cytometry. DCFH-DA was combined with flow cytometry to detect intracellular ROS content, and Western blot was used to detect the expression of apoptotic proteins (Cleaved-caspase3, Bax), anti-apoptotic proteins (BCL-2) and pathway proteins (PI3K, p-PI3K, AKT, p-AKT). SPSS software was used for statistical analysis. Independent sample t test was performed, and P<0.05 was considered statistically significant. Results: Animal experiments: Tanshinone ⅡA decreased the hearing threshold of DM group [(35.0±3.5) dB SPL vs. (55.3±8.1) dB SPL] (t=4.899, P<0.01), decreased the oxidative stress level in cochlea (t=4.384, P<0.05), improved the structure disorder, atrophy of cochlea vascular lines, vacuole increased phenomenon. Tanshinone ⅡA alleviated the increased permeability of the blood labyrinth barrier [Evans blue leakage (6.84±0.27) AU vs. (8.59±0.85) AU] in the cochlea of DM mice (t=2.770, P<0.05), reversed the apoptotic protein: Caspase3 (t=4.956, P<0.01) and Bax (t=4.388, P<0.05) in cochlear vascularis. Cell experiments: Tanshinone ⅡA decreased intracellular ROS content in a concentration-dependent way (t=3.569, P<0.05; t=4.772, P<0.01; t=7.494, P<0.01); Tanshinone ⅡA decreased apoptosis rate and apoptotic protein, and increased the expression of anti-apoptotic protein, p-PI3K/PI3K and p-AKT/AKT in concentration-dependent manner (all P values<0.05); LY294002 reversed the protective effect of tanshinone ⅡA on pericytes apoptosis (all P values<0.05). Conclusion: Tanshinone ⅡA can inhibit the apoptosis of cochlear pericytes induced by high glucose by reducing oxidative stress level and activating PI3K/AKT signaling pathway under high glucose environment, thus playing a protective role in diabetic hearing loss.


Asunto(s)
Animales , Masculino , Ratones , Apoptosis , Proteína X Asociada a bcl-2 , Diabetes Mellitus Tipo 2 , Azul de Evans , Glucosa , Pérdida Auditiva , Ratones Endogámicos C57BL , Pericitos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
9.
Journal of Experimental Hematology ; (6): 1608-1616, 2023.
Artículo en Chino | WPRIM | ID: wpr-1010012

RESUMEN

OBJECTIVE@#To investigate the effect of long non-coding RNA LINC01268 on apoptosis of acute myeloid leukemia (AML) cells and related mechanisms.@*METHODS@#The expression levels of LINC01268 and miR-217 in peripheral blood samples from AML patients and AML cell lines HL-60 and KG-1 were detected by qRT-PCR. HL-60 cells were divided into pcDNA3.1-NC, pcDNA3.1-LINC01268, si-NC, si-LINC01268, miR-NC, miR-217 mimics, si-LINC01268 + inhibitor-NC and si-LINC01268+ miR-217 inhibitor groups. The mRNA expressions of LINC01268 and miR-217 were detected by qRT-PCR. The targeting relationship between LINC01268 and miR-217 was detected by dual-luciferase reporter assay. Cell viability was detected by CCK-8 assay. Cell cycle distribution and apoptosis were detected by flow cytometry. The expression of cell cycle and apoptosis-related proteins p21, Bcl-2, Bax, caspase-3 and PI3K/AKT signaling pathway-related proteins were detected by Western blot.@*RESULTS@#The expression of LINC01268 in peripheral blood samples of AML patients and AML cell lines HL-60 and KG-1 was increased (P < 0.05), and the expression of miR-217 was decreased (P < 0.05). Compared with si-NC group and miR-NC group, the viability of HL-60 cells was decreased in si-LINC01268 group and miR-217 mimics group (P < 0.05), the proportion of cells in G1 phase and apoptosis rate were increased (P < 0.05), the protein expression levels of p21, Bax and caspase-3 were increased (P < 0.05), while the protein expression level of Bcl-2 was decreased (P < 0.05). LINC01268 targeted and negatively regulated the expression of miR-217, and inhibiting the expression of miR-217 partially reversed the effects of LINC01268 interference on the viability, cell cycle and apoptosis of HL-60 cells. Interference with LINC01268 could inhibit the activity of PI3K/AKT signaling pathway. Inhibiting the expression of miR-217 could partially reverse the inhibition of LINC01268 interference on PI3K/AKT signaling pathway.@*CONCLUSION@#LINC01268 is highly expressed and miR-217 is lowly expressed in AML cells. LINC01268 can promote the activity of PI3K/AKT signaling pathway, increase the survival rate and inhibit the apoptosis of AML cells by targeting miR-217 expression.


Asunto(s)
Humanos , Apoptosis , Proteína X Asociada a bcl-2/metabolismo , Caspasa 3 , Línea Celular Tumoral , Proliferación Celular , Leucemia Mieloide Aguda/metabolismo , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/genética
10.
Journal of Experimental Hematology ; (6): 1296-1302, 2023.
Artículo en Chino | WPRIM | ID: wpr-1009984

RESUMEN

OBJECTIVE@#To investigate the effect of phorbol-12-myristate-13-ace-tate (TPA) on the proliferation and apoptosis of acute promyelocytic leukemia cell line NB4 and its molecular mechanism.@*METHODS@#The effect of different concentrations of TPA on the proliferation of NB4 cells at different time points was detected by CCK-8 assay. The morphological changes of NB4 cells were observed by Wright-Giemsa staining. The cell cycle and apoptosis of NB4 cells after TPA treatment were detected by flow cytometry. The mRNA expressions of NB4 cells after TPA treatment were analyzed by high-throughput microarray analysis and real-time quantitative PCR. Western blot was used to detect the protein expression of CDKN1A, CDKN1B, CCND1, MYC, Bax, Bcl-2, c-Caspase 3, c-Caspase 9, PIK3R6, AKT and p-AKT.@*RESULTS@#Compared with the control group, TPA could inhibit the proliferation of NB4 cells, induce the cells to become mature granulocyte-monocyte differentiation, and also induce cell G1 phase arrest and apoptosis. Differentially expressed mRNAs were significantly enriched in PI3K/AKT pathway. TPA treatment could increase the mRNA levels of CCND1, CCNA1, and CDKN1A, while decrease the mRNA level of MYC. It could also up-regulate the protein levels of CDKN1A, CDKN1B, CCND1, Bax, c-Caspase 3, c-Caspase 9, and PIK3R6, while down-regulate MYC, Bcl-2, and p-AKT in NB4 cells.@*CONCLUSION@#TPA induces NB4 cell cycle arrest in G1 phase and promotes its apoptosis by regulating PIK3/AKT signaling pathway.


Asunto(s)
Humanos , Leucemia Promielocítica Aguda , Caspasa 3/metabolismo , Caspasa 9/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Línea Celular Tumoral , División Celular , Apoptosis , ARN Mensajero , Proliferación Celular
11.
Acta Academiae Medicinae Sinicae ; (6): 867-885, 2023.
Artículo en Chino | WPRIM | ID: wpr-1008142

RESUMEN

Objective To investigate the role and mechanism of eukaryotic translation elongation factor 1(EEF1) family members (EEF1D,EEF1A1,and EEF1A2) in lung adenocarcinoma (LUAD) based on public databases.Methods We examined EEF1 member expression levels in human LUAD samples via The Cancer Genome Atlas in the UCSC Xena browser and the Clinical Proteomic Tumor Analysis Consortium.We analyzed the mRNA and protein levels of EEF1D,EEF1A1,and EEF1A2 and their correlations with pathological variables via the Mann-Whitney U test.The Kaplan-Meier curves were established to assess the prognostic values of EEF1D,EEF1A1,and EEF1A2.The single-sample gene set enrichment analysis algorithm was employed to explore the relationship between the expression levels of EEF1 members and tumor immune cell infiltration.Spearman and Pearson correlation analyses were performed to examine the relationship between the expression levels of EEF1 members and those of the genes in the phosphatidylinositol 3-kinase/protein kinase B signaling pathway.The immunohistochemical assay was employed to determine the expression levels of EEF1D,EEF1A1,and EEF1A2 in the LUAD tissue (n=75) and paracancer tissue (n=75) samples.Results The mRNA and protein levels of EEF1D,EEF1A1,and EEF1A2 showed significant differences between tumor and paracancer tissues (all P<0.001).The patients with high protein levels of EEF1A1 showed bad prognosis in terms of overall survival (P=0.039),and those with high protein levels of EEF1A2 showed good prognosis in terms of overall survival (P=0.012).The influence of the mRNA level of EEF1D on prognosis was associated with pathological characteristics.The expression levels of EEF1 members were significantly associated with the infiltration of various immune cells and the expression of key molecules in the phosphatidylinositol 3-kinase/protein kinase B signaling pathway.Conclusion EEF1D,EEF1A1,and EEF1A2 are associated with the progression of LUAD,serving as the candidate prognostic markers for LUAD.


Asunto(s)
Humanos , Factor 1 de Elongación Peptídica/metabolismo , Proteómica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Carcinogénesis , Adenocarcinoma del Pulmón , Neoplasias Pulmonares , ARN Mensajero/genética , Fosfatidilinositol 3-Quinasas , Pronóstico
12.
Acta Academiae Medicinae Sinicae ; (6): 703-712, 2023.
Artículo en Chino | WPRIM | ID: wpr-1008122

RESUMEN

Objective To explore the effect of shionone(SHI)on motor function in the mouse model of spinal cord injury(SCI)and probe into the underlying molecular mechanism.Methods C57BL/6 mice were treated to induce the SCI model and then assigned into a model group(SCI group),a SCI+SHI group,and a sham surgery(control)group.The Basso mouse scale(BMS)score was determined to evaluate the recovery of motor function in SCI mice.Hematoxylin-eosin(HE)staining,Nissl staining,and immunofluorescence staining were employed to examine the fibrosis,morphological changes of neurons,and neuron apoptosis in the spinal cord tissue of SCI mice,respectively.The mouse hippocampal neuronal cell line HT22 was cultured in vitro and then classified into tumor necrosis factor α(TNF-α)induction and SHI groups.Western blotting was employed to determine the expression of apoptosis-associated proteins.Network pharmacology,gene ontology annotation,and Kyoto Encyclopedia of Genes and Genomes pathway enrichment were employed to predict the possible molecular targets and signaling pathways of SHI in promoting functional recovery from SCI.Furthermore,the prediction results were verified by in vitro and in vivo experiments.Results Compared with the SCI group,the SCI+SHI group showed increased BMS score on days 21,28,35,and 42(P=0.003,P=0.004,P=0.023,and P=0.007,respectively),reduced area of spinal cord fibrosis(P=0.021),increased neurons survived(P=0.001),and down-regulated expression of cleaved cysteine aspastic acid-specific protease 3(cleaved Caspase-3)(P=0.017).Compared with the TNF-α group,the SHI group presented down-regulated expression levels of cleaved Caspase-3 and Bax(P=0.010,P=0.001)and up-regulated expression level of Bcl-2(P=0.001).The results of bioinformatics analysis showed that SHI might improve the motor function of SCI mice via the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)signaling pathway.The results of in vivo and in vitro experiments showed that SHI inhibited the phosphorylation of PI3K and Akt in SCI mice or HT22 cells exposed to TNF-α(all P<0.05).The number of apoptotic HT22 cells after treatment with insulin-like growth factor 1 was higher than that in the SHI group(P=0.003).Conclusion SHI may inhibit neuron apoptosis via the PI3K/Akt signaling pathway,thereby promoting the recovery of motor function in SCI mice.


Asunto(s)
Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Caspasa 3/metabolismo , Fosfatidilinositol 3-Quinasas , Factor de Necrosis Tumoral alfa/metabolismo , Ratones Endogámicos C57BL , Traumatismos de la Médula Espinal , Apoptosis , Neuronas/patología , Fibrosis
13.
China Journal of Orthopaedics and Traumatology ; (12): 393-398, 2023.
Artículo en Chino | WPRIM | ID: wpr-981703

RESUMEN

Pentaxin 3 (PTX3), as a multifunctional glycoprotein, plays an important role in regulating inflammatory response, promoting tissue repair, inducing ectopic calcification and maintaining bone homeostasis. The effect of PTX3 on bone mineral density (BMD) may be affected by many factors. In PTX3 knockout mice and osteoporosis (OP) patients, the deletion of PTX3 will lead to decrease of BMD. In Korean community "Dong-gu study", it was found that plasma PTX3 was negatively correlated with BMD of femoral neck in male elderly patients. In terms of bone related cells, PTX3 plays an important role in maintaining the phenotype and function of osteoblasts (OB) in OP state;for osteoclast (OC), PTX3 in inflammatory state could stimulate nuclear factor κ receptor activator of nuclear factor-κB ligand (RANKL) production and its combination with TNF-stimulated gene 6(TSG-6) could improve activity of osteoclasts and promote bone resorption;for mesenchymal stem cells (MSCs), PTX3 could promote osteogenic differentiation of MSCs through PI3K/Akt signaling pathway. In recent years, the role of PTX3 as a new bone metabolism regulator in OP and fracture healing has been gradually concerned by scholars. In OP patients, PTX3 regulates bone mass mainly by promoting bone regeneration. In the process of fracture healing, PTX3 promotes fracture healing by coordinating bone regeneration and bone resorption to maintain bone homeostasis. In view of the above biological characteristics, PTX3 is expected to become a new target for the diagnosis and treatment of OP and other age-related bone diseases and fracture healing.


Asunto(s)
Animales , Masculino , Ratones , Resorción Ósea/metabolismo , Diferenciación Celular , Curación de Fractura/genética , Osteoblastos , Osteoclastos , Osteogénesis , Osteoporosis/genética , Fosfatidilinositol 3-Quinasas/farmacología
14.
Journal of Southern Medical University ; (12): 975-984, 2023.
Artículo en Chino | WPRIM | ID: wpr-987011

RESUMEN

OBJECTIVE@#To investigate the expression of four-jointed box kinase 1 (FJX1) in gastric cancer (GC), its correlation with survival outcomes of the patients, and its role in GC progression.@*METHODS@#The expression level of FJX1 in GC tissues and normal gastric mucosal tissues and its correlation with the survival outcomes of GC patients were analyzed using TCGA and GEO database GC cohort. Immunohistochemistry was used to detect FJX1 expression level in clinical specimens of GC tissue, and its correlations with the patients' clinicopathological parameters and prognosis were analyzed. Bioinformatic analysis was performed to identify the potential pathways of FJX1 in GC. The effects of FJX1 overexpression or FJX1 silencing on GC cell proliferation and expressions of proliferation-related proteins, PI3K, AKT, p-PI3K, and p-AKT were evaluated using CCK-8 assay and Western blotting. The effect of FJX1 overexpression on GC cell tumorigenicity was evaluated in nude mice.@*RESULTS@#GC tissues showed significantly higher expressions of FJX1 mRNA and protein compared with normal gastric mucosa tissues (P < 0.05). The high expression of FJX1 was associated with poor prognosis of GC patients (P < 0.05) and served as an independent risk factor for poor survival outcomes in GC (P < 0.05). FJX1 was expressed mainly in the cytoplasm of GC cells in positive correlation with Ki67 expression (R=0.34, P < 0.05), and was correlated with CA199 levels, depth of tumor infiltration and lymph node metastasis of GC (P < 0.05). In the cell experiment, FJX1 level was shown to regulate the expressions of Ki67 and PCNA and GC cell proliferation (P < 0.05). Gene set enrichment analysis indicated that the PI3K/AKT pathway potentially mediated the effect of FJX1, which regulated the expressions of PI3K and AKT and their phosphorylated proteins. In nude mice, FJX1 overexpression in GC cells significantly promoted the growth of the transplanted tumors (P < 0.05).@*CONCLUSION@#FJX1 is highly expressed in GC tissues and is correlated with poor prognosis of GC patients. FJX1 overexpression promotes GC cell proliferation through the PI3K/AKT signaling pathway, and may serve as a potential prognostic biomarker and therapeutic target for GC.


Asunto(s)
Animales , Ratones , Humanos , Proliferación Celular , Antígeno Ki-67 , Ratones Desnudos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Neoplasias Gástricas/patología , Péptidos y Proteínas de Señalización Intercelular/genética
15.
Journal of Southern Medical University ; (12): 935-942, 2023.
Artículo en Chino | WPRIM | ID: wpr-987006

RESUMEN

OBJECTIVE@#To investigate the effect of pachymic acid (PA) against TNBS-induced Crohn's disease (CD)-like colitis in mice and explore the possible mechanism.@*METHODS@#Twenty-four C57BL/6J mice were randomized equally into control group, TNBS-induced colitis model group and PA treatment group. PA treatment was administered via intraperitoneal injection at the daily dose of 5 mg/kg for 7 days, and the mice in the control and model groups were treated with saline. After the treatments, the mice were euthanized for examination of the disease activity index (DAI) of colitis, body weight changes, colon length, intestinal inflammation, intestinal barrier function and apoptosis of intestinal epithelial cells, and the expressions of TNF-α, IL-6 and IL-1β in the colonic mucosa were detected using ELISA. The possible treatment targets of PA in CD were predicted by network pharmacology. String platform and Cytoscape 3.7.2 software were used to construct the protein-protein interaction (PPI) network. David database was used to analyze the GO function and KEGG pathway; The phosphorylation of PI3K/AKT in the colonic mucosal was detected with Western blotting.@*RESULTS@#PA significantly alleviated colitis in TNBS-treated mice as shown by improvements in the DAI, body weight loss, colon length, and histological inflammation score and lowered levels of TNF-α, IL-6 and IL-1β. PA treatment also significantly improved FITC-dextran permeability, serum I-FABP level and colonic transepithelial electrical resistance, and inhibited apoptosis of the intestinal epithelial cells in TNBS-treated mice. A total of 248 intersection targets were identified between PA and CD, and the core targets included EGFR, HRAS, SRC, MMP9, STAT3, AKT1, CASP3, ALB, HSP90AA1 and HIF1A. GO and KEGG analysis showed that PA negatively regulated apoptosis in close relation with PI3K/AKT signaling. Molecular docking showed that PA had a strong binding ability with AKT1, ALB, EGFR, HSP90AA1, SRC and STAT3. In TNBS-treated mice, PA significantly decreased p-PI3K and p-AKT expressions in the colonic mucosa.@*CONCLUSION@#PA ameliorates TNBS-induced intestinal barrier injury in mice by antagonizing apoptosis of intestinal epithelial cells possibly by inhibiting PI3K/AKT signaling.


Asunto(s)
Animales , Ratones , Ratones Endogámicos C57BL , Enfermedad de Crohn , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Interleucina-6 , Simulación del Acoplamiento Molecular , Factor de Necrosis Tumoral alfa , Colitis/inducido químicamente , Inflamación , Apoptosis , Receptores ErbB
16.
Journal of Southern Medical University ; (12): 764-771, 2023.
Artículo en Chino | WPRIM | ID: wpr-986987

RESUMEN

OBJECTIVE@#To investigate the growth-inhibitory and pro-apoptotic effects of piroctone olamine (PO) on glioma cells and explore the underlying mechanism.@*METHODS@#Human glioma cell lines U251 and U373 were treated with PO and the changes in cell proliferation were detected using CCK-8 assay and EdU assay. Clone formation assay and flow cytometry were used to examine the changes in clone formation ability and apoptosis of the treated cells. Mitochondrial membrane potential of the cells and morphological changes of the mitochondria were detected using JC-1 staining and a fluorescence probe, respectively. The expressions of mitochondrial fission protein DRP1 and the fusion protein OPA1 were determined with Western blotting. Transcriptome sequencing and differential gene enrichment analysis was performed, and the expression levels of PI3K, AKT and p-AKT in the treated cells were verified using Western blotting.@*RESULTS@#CCK-8 assay showed that PO significantly inhibited the proliferation of U251 and U373 cells in a time- and dose-dependent manner (P < 0.001). EdU test showed that the proliferative activity of PO-treated cells was significantly decreased, and the number of cell colonies also decreased significantly (P < 0.01). PO treatment significantly increased apoptotic rates (P < 0.01), decreased mitochondrial membrane potential and caused obvious changes in mitochondrial morphology of the cells. Pathway enrichment analysis showed that the down-regulated genes were significantly enriched in the PI3K/AKT pathway, which was verified by Western blotting showing significantly down-regulated expression levels of PI3K, AKT and p-AKT in PO-treated cells (P < 0.05).@*CONCLUSION@#PO interferes with mitochondrial fusion and fission function through the PI3K/AKT pathway, thereby inhibiting the proliferation and increasing apoptosis of glioma cells.


Asunto(s)
Humanos , Glioma , Dinámicas Mitocondriales , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt
17.
Biomedical and Environmental Sciences ; (12): 1045-1058, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1007880

RESUMEN

OBJECTIVE@#In this study, the combined effect of two stressors, namely, electromagnetic fields (EMFs) from mobile phones and fructose consumption, on hypothalamic and hepatic master metabolic regulators of the AMPK/SIRT1-UCP2/FOXO1 pathway were elucidated to delineate the underlying molecular mechanisms of insulin resistance.@*METHODS@#Weaned Wistar rats (28 days old) were divided into 4 groups: Normal, Exposure Only (ExpO), Fructose Only (FruO), and Exposure and Fructose (EF). Each group was provided standard laboratory chow ad libitum for 8 weeks . Additionally, the control groups, namely, the Normal and FruO groups, had unrestricted access to drinking water and fructose solution (15%), respectively. Furthermore, the respective treatment groups, namely, the ExpO and EF groups, received EMF exposure (1,760 MHz, 2 h/day x 8 weeks). In early adulthood, mitochondrial function, insulin receptor signaling, and oxidative stress signals in hypothalamic and hepatic tissues were assessed using western blotting and biochemical analysis.@*RESULT@#In the hypothalamic tissue of EF, SIRT1, FOXO 1, p-PI3K, p-AKT, Complex III, UCP2, MnSOD, and catalase expressions and OXPHOS and GSH activities were significantly decreased ( P < 0.05) compared to the Normal, ExpO, and FruO groups. In hepatic tissue of EF, the p-AMPKα, SIRT1, FOXO1, IRS1, p-PI3K, Complex I, II, III, IV, V, UCP2, and MnSOD expressions and the activity of OXPHOS, SOD, catalase, and GSH were significantly reduced compared to the Normal group ( P < 0.05).@*CONCLUSION@#The findings suggest that the combination of EMF exposure and fructose consumption during childhood and adolescence in Wistar rats disrupts the closely interlinked and multi-regulated crosstalk of insulin receptor signals, mitochondrial OXPHOS, and the antioxidant defense system in the hypothalamus and liver.


Asunto(s)
Humanos , Ratas , Animales , Adulto , Ratas Wistar , Fructosa/metabolismo , Catalasa , Receptor de Insulina/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Campos Electromagnéticos/efectos adversos , Sirtuina 1/metabolismo , Teléfono Celular , Fosfatidilinositol 3-Quinasas/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteína Desacopladora 2
18.
Chinese Medical Journal ; (24): 2596-2608, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1007557

RESUMEN

BACKGROUND@#Sjögren's syndrome (SS) is an autoimmune disorder characterized by sicca syndrome and/or systemic manifestations. The treatment is still challenging. This study aimed to explore the therapeutic role and mechanism of exosomes obtained from the supernatant of stem cells derived from human exfoliated deciduous teeth (SHED-exos) in sialadenitis caused by SS.@*METHODS@#SHED-exos were administered to the submandibular glands (SMGs) of 14-week-old non-obese diabetic (NOD) mice, an animal model of the clinical phase of SS, by local injection or intraductal infusion. The saliva flow rate was measured after pilocarpine intraperitoneal injection in 21-week-old NOD mice. Protein expression was examined by western blot analysis. Exosomal microRNA (miRNAs) were identified by microarray analysis. Paracellular permeability was evaluated by transepithelial electrical resistance measurement.@*RESULTS@#SHED-exos were injected into the SMG of NOD mice and increased saliva secretion. The injected SHED-exos were taken up by glandular epithelial cells, and further increased paracellular permeability mediated by zonula occluden-1 (ZO-1). A total of 180 exosomal miRNAs were identified from SHED-exos, and Kyoto Encyclopedia of Genes and Genomes analysis suggested that the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) pathway might play an important role. SHED-exos treatment down-regulated phospho-Akt (p-Akt)/Akt, phospho-glycogen synthase kinase 3β (p-GSK-3β)/GSK-3β, and Slug expressions and up-regulated ZO-1 expression in SMGs and SMG-C6 cells. Both the increased ZO-1 expression and paracellular permeability induced by SHED-exos were abolished by insulin-like growth factor 1, a PI3K agonist. Slug bound to the ZO-1 promoter and suppressed its expression. For safer and more effective clinical application, SHED-exos were intraductally infused into the SMGs of NOD mice, and saliva secretion was increased and accompanied by decreased levels of p-Akt/Akt, p-GSK-3β/GSK-3β, and Slug and increased ZO-1 expression.@*CONCLUSION@#Local application of SHED-exos in SMGs can ameliorate Sjögren syndrome-induced hyposalivation by increasing the paracellular permeability of glandular epithelial cells through Akt/GSK-3β/Slug pathway-mediated ZO-1 expression.


Asunto(s)
Ratones , Animales , Humanos , Síndrome de Sjögren/terapia , Proteínas Proto-Oncogénicas c-akt/metabolismo , Uniones Estrechas/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Ratones Endogámicos NOD , Fosfatidilinositol 3-Quinasas/metabolismo , Exosomas/metabolismo , Xerostomía , Fosfatidilinositol 3-Quinasa , MicroARNs/genética
19.
International Journal of Oral Science ; (4): 46-46, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1010701

RESUMEN

Hereditary gingival fibromatosis (HGF) is a rare inherited condition with fibromatoid hyperplasia of the gingival tissue that exhibits great genetic heterogeneity. Five distinct loci related to non-syndromic HGF have been identified; however, only two disease-causing genes, SOS1 and REST, inducing HGF have been identified at two loci, GINGF1 and GINGF5, respectively. Here, based on a family pedigree with 26 members, including nine patients with HGF, we identified double heterozygous pathogenic mutations in the ZNF513 (c.C748T, p.R250W) and KIF3C (c.G1229A, p.R410H) genes within the GINGF3 locus related to HGF. Functional studies demonstrated that the ZNF513 p.R250W and KIF3C p.R410H variants significantly increased the expression of ZNF513 and KIF3C in vitro and in vivo. ZNF513, a transcription factor, binds to KIF3C exon 1 and participates in the positive regulation of KIF3C expression in gingival fibroblasts. Furthermore, a knock-in mouse model confirmed that heterozygous or homozygous mutations within Zfp513 (p.R250W) or Kif3c (p.R412H) alone do not led to clear phenotypes with gingival fibromatosis, whereas the double mutations led to gingival hyperplasia phenotypes. In addition, we found that ZNF513 binds to the SOS1 promoter and plays an important positive role in regulating the expression of SOS1. Moreover, the KIF3C p.R410H mutation could activate the PI3K and KCNQ1 potassium channels. ZNF513 combined with KIF3C regulates gingival fibroblast proliferation, migration, and fibrosis response via the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK pathways. In summary, these results demonstrate ZNF513 + KIF3C as an important genetic combination in HGF manifestation and suggest that ZNF513 mutation may be a major risk factor for HGF.


Asunto(s)
Animales , Humanos , Ratones , Fibromatosis Gingival/patología , Encía , Cinesinas/genética , Mutación/genética , Fosfatidilinositol 3-Quinasas/genética
20.
International Journal of Oral Science ; (4): 38-38, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1010693

RESUMEN

Pleomorphic adenoma (PA) is the most common benign tumour in the salivary gland and has high morphological complexity. However, the origin and intratumoral heterogeneity of PA are largely unknown. Here, we constructed a comprehensive atlas of PA at single-cell resolution and showed that PA exhibited five tumour subpopulations, three recapitulating the epithelial states of the normal parotid gland, and two PA-specific epithelial cell (PASE) populations unique to tumours. Then, six subgroups of PASE cells were identified, which varied in epithelium, bone, immune, metabolism, stemness and cell cycle signatures. Moreover, we revealed that CD36+ myoepithelial cells were the tumour-initiating cells (TICs) in PA, and were dominated by the PI3K-AKT pathway. Targeting the PI3K-AKT pathway significantly inhibited CD36+ myoepithelial cell-derived tumour spheres and the growth of PA organoids. Our results provide new insights into the diversity and origin of PA, offering an important clinical implication for targeting the PI3K-AKT signalling pathway in PA treatment.


Asunto(s)
Humanos , Adenoma Pleomórfico/genética , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transcriptoma , Mioepitelioma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA