Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Acta Physiologica Sinica ; (6): 503-511, 2023.
Artículo en Chino | WPRIM | ID: wpr-1007765

RESUMEN

In this study, we investigated the effects of Panax notoginseng saponins (PNS) on pulmonary vascular remodeling and ADAM10/Notch3 pathway in pulmonary arterial hypertension (PAH). PAH rat model was established, and male Sprague Dawley (SD) rats were randomly divided into control group, monocrotaline (MCT) group and MCT+PNS group, with 10 rats in each group. Rats in the control group were intraperitoneally injected with equal volume of normal saline. Rats in the MCT group was injected intraperitoneally with 60 mg/kg MCT on the first day, and then with the same volume of normal saline every day. Rats in the MCT+PNS group was injected intraperitoneally with 60 mg/kg MCT on the first day, and then with 50 mg/kg PNS every day. The modeling time of each group lasted for 21 days. After the model was established, the mean pulmonary artery pressure (mPAP) was measured by right heart catheterization technique, the right ventricular hypertrophy index (RVHI) was calculated, the microscopic morphology and changes of pulmonary vascular wall were observed by HE and Masson staining, and the expressions of ADAM10, Notch3, Hes-1, P27, PCNA, Caspase-3 proteins and mRNA in pulmonary vascular tissue of rats were detected by Western blot and qPCR. The expression and localization of Notch3 and α-SMA were detected by immunofluorescence staining. The protein expression of ADAM10 was detected by immunohistochemical staining. The results showed that compared with the control group, mPAP, RVHI, pulmonary vessels and collagen fibers in the MCT group were significantly increased, the expressions of ADAM10, Notch3, Hes-1, and PCNA protein and mRNA were significantly increased, while the expressions of P27 and Caspase-3 protein and mRNA were decreased significantly. Compared with the MCT group, mPAP and RVHI were significantly decreased, pulmonary vessels were significantly improved and collagen fibers were significantly reduced, the expressions of protein and mRNA of ADAM10, Notch3, Hes-1, and PCNA were decreased in MCT+PNS group, but the expressions of protein and mRNA of P27 and Caspase-3 were increased slightly. The results of immunofluorescence showed that Notch3 and α-SMA staining could overlap, which proved that Notch3 was expressed in smooth muscle cells. The expression of Notch3 in the MCT group was increased significantly compared with that in the control group, while PNS intervention decreased the expression of Notch3. Immunohistochemical staining showed that compared with the control group, the amount of ADAM10 in the MCT group was increased significantly, and the expression of ADAM10 in the MCT+PNS group was decreased compared with the MCT group. These results indicate that PNS can improve the PAH induced by MCT in rats by inhibiting ADAM10/Notch3 signaling pathway.


Asunto(s)
Animales , Masculino , Ratas , Caspasa 3/metabolismo , Colágeno , Modelos Animales de Enfermedad , Hipertensión Pulmonar/tratamiento farmacológico , Monocrotalina/efectos adversos , Panax notoginseng/química , Antígeno Nuclear de Célula en Proliferación/farmacología , Hipertensión Arterial Pulmonar , Arteria Pulmonar/metabolismo , Ratas Sprague-Dawley , Receptor Notch3/genética , ARN Mensajero , Solución Salina , Transducción de Señal , Saponinas/farmacología
2.
Chinese Medical Journal ; (24): 1144-1154, 2023.
Artículo en Inglés | WPRIM | ID: wpr-980900

RESUMEN

Tumor chemoprevention and treatment are two approaches aimed at improving the survival of patients with cancers. An ideal anti-tumor drug is that which not only kills tumor cells but also alleviates tumor-causing risk factors, such as precancerous lesions, and prevents tumor recurrence. Chinese herbal monomers are considered to be ideal treatment agents due to their multi-target effects. Astragaloside has been shown to possess tumor chemoprevention, direct anti-tumor, and chemotherapeutic drug sensitization effects. In this paper, we review the effects of astragaloside on tumor prevention and treatment and provide directions for further research.


Asunto(s)
Humanos , Quimioprevención , Antineoplásicos , Neoplasias/prevención & control , Saponinas/farmacología , Triterpenos/farmacología
3.
Chinese journal of integrative medicine ; (12): 44-51, 2023.
Artículo en Inglés | WPRIM | ID: wpr-971324

RESUMEN

OBJECTIVE@#To investigate and reveal the underlying mechanism of the effect of total saponins from Dioscoreae nipponica Makino (TSDN) on the arachidonic acid pathway in monosodium urate (MSU) crystal-induced M1-polarized macrophages.@*METHODS@#M1 polarization of RAW264.7 cells were induced by 1 µ g/mL lipopolysaccharide (LPS). The methylthiazolyldiphenyl-tetrazolium bromide method was then used to screen the concentration of TSDN. MSU (500 µ g/mL) was used to induce the gouty arthritis model. Afterwards, 10 µ g/L TSDN and 8 µ mol/L celecoxib, which was used as a positive control, were added to the above LPS and MSU-induced cells for 24 h. The mRNA and protein expressions of cyclooxygenase (COX) 2, 5-lipoxygenase (5-LOX), microsomal prostaglandin E synthase derived eicosanoids (mPGES)-1, leukotriene B (LTB)4, cytochrome P450 (CYP) 4A, and prostaglandin E2 (PGE2) were tested by real-time polymerase chain reaction and Western blotting, respectively. The enzyme-linked immunosorbent assay was used to test the contents of M1 markers, including inducible nitric oxid synthase (NOS) 2, CD80, and CD86.@*RESULTS@#TSDN inhibited the proliferation of M1 macrophages and decreased both the mRNA and protein expressions of COX2, 5-LOX, CYP4A, LTB4, and PGE2 (P<0.01) while increased the mRNA and protein expression of mPGES-1 (P<0.05 or P<0.01). TSDN could also significantly decrease the contents of NOS2, CD80, and CD86 (P<0.01).@*CONCLUSION@#TSDN has an anti-inflammation effect on gouty arthritis in an in vitro model by regulating arachidonic acid signaling pathway.


Asunto(s)
Ácido Úrico/metabolismo , Ácido Araquidónico/metabolismo , Dioscorea , Artritis Gotosa , Lipopolisacáridos , Saponinas/farmacología , Macrófagos , Transducción de Señal , ARN Mensajero/metabolismo
4.
China Journal of Chinese Materia Medica ; (24): 1203-1211, 2023.
Artículo en Chino | WPRIM | ID: wpr-970591

RESUMEN

To study the residue and dietary risk of propiconazole in Panax notoginseng and the effects on physiological and bioche-mical properties of P. notoginseng, we conducted foliar spraying of propiconazole on P. notoginseng in pot experiments. The physiolo-gical and biochemical properties studied included leaf damage, osmoregulatory substance content, antioxidant enzyme system, non-enzymatic system, and saponin content in the main root. The results showed that at the same application concentration, the residual amount of propiconazole in each part of P. notoginseng increased with the increase in the times of application and decreased with the extension of harvest interval. After one-time application of propiconazole according to the recommended dose(132 g·hm~(-2)) for P. ginseng, the half-life was 11.37-13.67 days. After 1-2 times of application in P. notoginseng, propiconazole had a low risk of dietary intake and safety threat to the population. The propiconazole treatment at the recommended concentration and above significantly increased the malondialdehyde(MDA) content, relative conductivity, and osmoregulatory substances and caused the accumulation of reactive oxygen species in P. notoginseng leaves. The propiconazole treatment at half(66 g·hm~(-2)) of the recommended dose for P. ginseng significantly increased the activities of superoxide dismutase(SOD), peroxidase(POD), and catalase(CAT) in P. notoginseng leaves. The propiconazole treatment at 132 g·hm~(-2) above inhibited the activities of glutathione reductase(GR) and glutathione S-transferase(GST), thereby reducing glutathione(GSH) content. Proconazole treatment changed the proportion of 5 main saponins in the main root of P. notoginseng. The treatment with 66 g·hm~(-2) propiconazole promoted the accumulation of saponins, while that with 132 g·hm~(-2) and above propiconazole significantly inhibited the accumulation of saponins. In summary, using propiconazole at 132 g·hm~(-2) to prevent and treat P. notoginseng diseases will cause stress on P. notoginseng, while propiconazole treatment at 66 g·hm~(-2) will not cause stress on P. notoginseng but promote the accumulation of saponins. The effect of propiconazole on P. notoginseng diseases remains to be studied.


Asunto(s)
Panax notoginseng/química , Panax , Antioxidantes/farmacología , Saponinas/farmacología , Glutatión , Medición de Riesgo
5.
Journal of Zhejiang University. Medical sciences ; (6): 616-626, 2023.
Artículo en Inglés | WPRIM | ID: wpr-1009929

RESUMEN

The traditional Chinese medicine Aralia elata (Miq.) Seem., also known as Aralia mandshurica, has the effect of "tonifying Qi and calming the mind, strengthening the essence and tonifying the kidneys, and dispelling wind and invigorating blood circulation". It is used in the treatment of neurasthenia, Yang deficiency and Qi deficiency, kidney Qi deficiency, spleen Yang deficiency, water-dampness stagnation, thirst, and bruises. Aralia elata saponins are the main components for the pharmacological effects. From the perspective of modern pharmacological science, Aralia elata has a wide range of effects, including anti-myocardial ischaemia and alleviation of secondary myocardium ischemic reperfusion injury by regulating ionic homeostasis, anti-tumor activity by inhibiting proliferation, promoting apoptosis and enhancing immunity, hypoglycemia and lipid lowering effects by regulating glucose and lipid metabolism, and hepato-protective, neuroprotective, anti-inflammatory/analgesic effects. The studies on pharmacological mechanisms of Aralia elata will be conducive to its development and application in the future. This article reviews the research progress of Aralia elata domestically and internationally in the last two decades and proposes new directions for further research.


Asunto(s)
Aralia , Deficiencia Yang , Apoptosis , Saponinas/farmacología , Isquemia Miocárdica
6.
China Journal of Chinese Materia Medica ; (24): 4295-4301, 2023.
Artículo en Chino | WPRIM | ID: wpr-1008684

RESUMEN

Ziziphi Spinosae Semen(ZSS) is an edible TCM derived from the dried ripe seeds of Ziziphus jujube Mill. var. spinosa(Bunge)Hu ex H. F. Chou(Rhamnaceae), which has the effects of nourishing the heart, tonifying the liver, calming the heart, tranquilizing the mind, arresting sweating, and promoting fluid production, and is widely used in the treatment and health care of diseases related to cardiovascular, nervous, and immune systems. Jujuboside B(JuB), one of the main active ingredients of ZSS, possesses various pharmacological effects with application values. This paper reviewed the chemical structure and pharmacological effects of JuB. JuB has sedative, hypnotic, antitumor, anti-platelet, anti-inflammatory, and other biological activities, which shows the potential thera-peutic effects on insomnia, tumors, coronary artery disease, airway inflammation, and liver injury. However, there are some limitations to the results of current studies. More comprehensive studies, including basic research and clinical trials, need to be carried out to provide more reliable evidence.


Asunto(s)
Humanos , Medicamentos Herbarios Chinos/farmacología , Saponinas/farmacología , Hipnóticos y Sedantes , Trastornos del Inicio y del Mantenimiento del Sueño , Ziziphus/química
7.
Chinese journal of integrative medicine ; (12): 333-340, 2023.
Artículo en Inglés | WPRIM | ID: wpr-982273

RESUMEN

OBJECTIVE@#To evaluate toxicity of raw extract of Panax notoginseng (rPN) and decocted extract of PN (dPN) by a toxicological assay using zebrafish larvae, and explore the mechanism by RNA sequencing assay.@*METHODS@#Zebrafish larvae was used to evaluate acute toxicity of PN in two forms: rPN and dPN. Three doses (0.5, 1.5, and 5.0 µ g/mL) of dPN were used to treat zebrafishes for evaluating the developmental toxicity. Behavior abnormalities, body weight, body length and number of vertebral roots were used as specific phenotypic endpoints. RNA sequencing (RNA-seq) assay was applied to clarify the mechanism of acute toxicity, followed by real time PCR (qPCR) for verification. High performance liquid chromatography analysis was performed to determine the chemoprofile of this herb.@*RESULTS@#The acute toxicity result showed that rPN exerted higher acute toxicity than dPN in inducing death of larval zebrafishes (P<0.01). After daily oral intake for 21 days, dPN at doses of 0.5, 1.5 and 5.0 µ g/mL decreased the body weight, body length, and vertebral number of larval zebrafishes, indicating developmental toxicity of dPN. No other adverse outcome was observed during the experimental period. RNA-seq data revealed 38 genes differentially expressed in dPN-treated zebrafishes, of which carboxypeptidase A1 (cpa1) and opioid growth factor receptor-like 2 (ogfrl2) were identified as functional genes in regulating body development of zebrafishes. qPCR data showed that dPN significantly down-regulated the mRNA expressions of cpa1 and ogfrl2 (both P<0.01), verifying cpa1 and ogfrl2 as target genes for dPN.@*CONCLUSION@#This report uncovers the developmental toxicity of dPN, suggesting potential risk of its clinical application in children.


Asunto(s)
Animales , Pez Cebra/genética , Saponinas/farmacología , Panax notoginseng/química , Larva , Análisis de Secuencia de ARN
8.
Journal of Integrative Medicine ; (12): 153-162, 2022.
Artículo en Inglés | WPRIM | ID: wpr-929214

RESUMEN

OBJECTIVE@#The present study investigated antiglycation and antioxidant activities of crude dry extract and saponin fraction of Tribulus terrestris. It also developed a method of microencapsulation and evaluated antiglycation and antioxidant activities of crude dry extract and saponin fraction before and after microcapsule release.@*METHODS@#Antiglycation activity was determined by relative electrophoretic mobility (REM), free amino groups and inhibition of advanced glycation end-product (AGE) formation. Antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric ion-reducing antioxidant power (FRAP), nitric oxide (NO) and thiobarbituric acid reactive species (TBARS) tests. Microcapsules were prepared using maltodextrin as wall material and freeze-drying as encapsulation technique. Morphological characterization of microcapsules was evaluated by scanning electron microscopy, and encapsulation efficiency and microcapsule release were determined by total saponins released. Antiglycation and antioxidant assays were performed using crude dry extract and saponin fraction of T. terrestris before and after release.@*RESULTS@#Saponin fraction showed an increase of 32.8% total saponins. High-performance liquid chromatography-mass spectrometry analysis showed the presence of saponins in the obtained fraction. Antiglycation evaluation by REM demonstrated that samples before and after release presented antiglycation activity similar to bovine serum albumin treated with aminoguanidine. Additionally, samples inhibited AGE formation, highlighting treatment with saponin fraction after release (89.89%). Antioxidant tests demonstrated antioxidant activity of the samples. Crude dry extract before encapsulation presented the highest activities in DPPH (92.00%) and TBARS (32.49%) assays. Saponin fraction before encapsulation in FRAP test (499 μmol Trolox equivalent per gram of dry sample) and NO test (15.13 μmol nitrite formed per gram of extract) presented the highest activities.@*CONCLUSION@#This study presented antiglycation activity of crude dry extract and saponin fraction of T. terrestris, besides it demonstrated promising antioxidant properties. It also showed that the encapsulation method was efficient and maintained biological activity of bioactive compounds after microcapsule release. These results provide information for further studies on antidiabetic and antiaging potential, and data for new herbal medicine and food supplement formulations containing microcapsules with crude extract and/or saponin fraction of T. terrestris.


Asunto(s)
Antioxidantes/química , Cápsulas , Mezclas Complejas , Productos Finales de Glicación Avanzada , Extractos Vegetales/farmacología , Saponinas/farmacología , Sustancias Reactivas al Ácido Tiobarbitúrico , Tribulus
9.
China Journal of Chinese Materia Medica ; (24): 2500-2508, 2022.
Artículo en Chino | WPRIM | ID: wpr-928129

RESUMEN

This study aimed to explore the effects of Gynostemma pentaphyllum saponins(GPs) on non-alcoholic fatty liver disease(NAFLD) induced by high-fat diet in rats and reveal the underlying mechanism. The NAFLD model rats were prepared with high-fat diet. Forty male Sprague Dawley(SD) rats were randomly assigned into the control group, model group, and low-, moderate-, and high-dose GPs(50, 100, and 150 mg·kg~(-1), respectively) groups. After intragastric administration for 8 continuous weeks, we determined the body weight, liver weight, the levels of total cholesterol(TC), triglyceride(TG), low-density lipoprotein cholesterol(LDL-c), high-density lipoprotein cholesterol(HDL-c), alanine aminotransferase(ALT), and aspartate aminotransferase(AST) in serum, and the levels of TC, TG, malondialdehyde(MDA), superoxide dismutase(SOD), catalase(CAT), and interleukin 6(IL-6) in the liver. Furthermore, we observed the pathological changes of liver tissue by oil red O staining and hematoxylin-eosin(HE) staining, sequenced the 16 S rRNA of the intestinal flora in rat feces, and determined the content of short-chain fatty acids in rat feces. The results showed that GPs inhibited the excessive weight gain of high-fat diet-induced NAFLD in rats, reduced the liver weight, lowered the TC, TG, LDL-c, AST, and ALT levels in serum(P<0.05), and rose the HDL-c level in serum(P<0.01). GPs relieved the liver damage caused by high-fat diet, mainly manifested by the lowered levels of TC, TG, MDA, and IL-6 in the liver(P<0.01) and elevated levels of CAT and SOD in the liver. Furthermore, GPs reversed the intestinal flora disorder caused by high-fat diet, restored the diversity of intestinal flora, increased the relative abundance of Bacteroides, and reduced the relative abundance of Firmicutes and the ratio of Firmicutes to Bacteroides. Moreover, GPs promoted the proliferation of beneficial bacteria such as Akkermansia, Bacteroides, and Parabacteroides, and inhibited the growth of harmful bacteria such as Desulfovibrio, Escherichia-Shigella, and Helicobacter. GPs increased the content of short-chain fatty acids(acetic acid, propionic acid, and butyric acid)(P<0.01). These findings indicate that GPs can alleviate the high-fat diet-induced NAFLD in rats via regulating the intestinal flora and short-chain fatty acid metabolism.


Asunto(s)
Animales , Masculino , Ratas , Alanina Transaminasa/metabolismo , LDL-Colesterol/farmacología , Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal , Gynostemma , Interleucina-6/metabolismo , Hígado , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ratas Sprague-Dawley , Saponinas/farmacología , Superóxido Dismutasa/metabolismo
10.
China Journal of Chinese Materia Medica ; (24): 469-475, 2022.
Artículo en Chino | WPRIM | ID: wpr-927991

RESUMEN

This study aimed to investigate the anti-inflammatory effect of astragaloside Ⅳ in mice with ulcerative colitis(UC) and its effect on the percentage of peripheral blood T helper(Th17) cells. Following the establishment of UC mouse model with 2% sodium dextran sulfate(DSS), mice in the positive control group and low-and high-dose astragaloside Ⅳ groups were treated with corresponding drugs by gavage. Disease activity index(DAI) was calculated, and serum interleukin-17(IL-17), tumor necrosis factor-α(TNF-α), and transforming growth factor-β(TGF-β) levels were assayed by ELISA. The pathological changes in colon tissue were observed by HE staining, and Th17/regulatory T cells(Treg) ratio in the peripheral blood was determined by flow cytometry. Western blot was conducted for detecting the relative protein expression levels of forkhead box protein P3(Foxp3) and retinoic acid-related orphan nuclear receptor γT(ROR-γt). The findings demonstrated that in normal mice, the colonic structure was intact. The goblet cells were not reduced and the glands were neatly arranged, with no mucosal erosion, bleeding, or positive cell infiltration. In the model group, the colonic mucosal structure was seriously damaged, manifested as disordered arrangement or missing of glands, vascular dilatation, congestion, and massive inflammatory cell infiltration. The pathological injury of colon tissue was alleviated to varying degrees in drug treatment groups. Compared with the normal group, the model group exhibited elevated percentage of Th17 cells, increased IL-17 and TNF-α content, up-regulated relative ROR-γt protein expression, lowered TGF-β, reduced percentage of Treg cells, and down-regulated relative Foxp3 protein expression. The comparison with the model group showed that DAI score, pathological score, percentage of Th17 cells, IL-17 and TNF-α content, and relative ROR-γt protein expression in the positive control group, low-dose astragaloside Ⅳ group, and high-dose astragaloside Ⅳ group were decreased, while TGF-β content, percentage of Treg cells, and relative Foxp3 protein expression were increased. The DAI score, pathological score, percentage of Th17 cells, IL-17 and TNF-α content, and relative ROR-γt protein expression in the low-dose astragaloside Ⅳ group were higher than those in the positive control group, whereas the content of TGF-β, percentage of Treg cells, and relative Foxp3 protein expression were lower. DAI score, pathological score, percentage of Th17 cells, IL-17 and TNF-α content, relative ROR-γt protein expression in the high-dose astragaloside Ⅳ group declined in contrast to those in the low-dose astragaloside Ⅳ group, while the TGF-β content, percentage of Treg cells, and relative Foxp3 protein expression rose. There was no significant difference between the positive control group and the high-dose astragaloside Ⅳ group. Astragaloside Ⅳ is able to inhibit inflammatory response and diminish the percentage of Th17 cells in mice with UC.


Asunto(s)
Animales , Ratones , Colitis Ulcerosa/metabolismo , Saponinas/farmacología , Linfocitos T Reguladores , Células Th17 , Triterpenos/farmacología
11.
China Journal of Chinese Materia Medica ; (24): 95-102, 2022.
Artículo en Chino | WPRIM | ID: wpr-927915

RESUMEN

In this experiment, Panax notoginseng saponins chitosan nanoparticles(PNS-NPs) were prepared by self-assembly and their appearance, particle size, encapsulation efficiency, drug loading, polydispersity index(PDI), Zeta potential, and microstructure were characterized. The prepared PNS-NPs were intact in structure, with an average particle size of(209±0.258) nm, encapsulation efficiency of 42.34%±0.28%, a drug loading of 37.63%±0.85%, and a Zeta potential of(39.8±3.122) mV. The intestinal absorption of PNS-NPs in rats was further studied. The established HPLC method of PNS was employed to investigate the effects of pH, perfusion rate, and different drugs(PNS raw materials, Xuesaitong Capsules, and PNS-NPs). The absorption rate constant(K_a) and apparent permeability coefficient(P_(app)) in the duodenum, jejunum, ileum, and colon were calculated and analyzed. As illustrated by the results, the intestinal absorption of PNS-NPs was increased in the perfusion solution at pH 6.8(P<0.05), and perfusion rate had no significant effect on the K_a and P_(app) of PNS-NPs. The intestinal absorption of PNS-NPs was significantly different from that of PNS raw materials and Xuesaitong Capsules(P<0.05), and the intestinal absorption of PNS-NPs was significantly improved.


Asunto(s)
Animales , Ratas , Quitosano/farmacología , Absorción Intestinal , Nanopartículas , Panax notoginseng/química , Saponinas/farmacología
12.
China Journal of Chinese Materia Medica ; (24): 36-47, 2022.
Artículo en Chino | WPRIM | ID: wpr-927909

RESUMEN

Panax quinquefolium, as a common precious medicinal plant, has complex chemical components and unique pharmacological activities, which can play a healthcare role in the human body. With the deepening of research, the application of P. quinquefolium has become increasingly extensive. This paper summarized the research progress of the saponins isolated and identified from diffe-rent parts of P. quinquefolium, the structural classification and pharmacological activities of the saponins, and the quality control of Panacis Quinquefolii Radix. Further, this paper put forward the urgent problems to be solved in the development of P. quinquefolium. It is hoped to lay a foundation for the further study and provide reference for the research direction of P. quinquefolium.


Asunto(s)
Humanos , Ginsenósidos , Panax/química , Plantas Medicinales/química , Control de Calidad , Saponinas/farmacología
13.
Chinese journal of integrative medicine ; (12): 819-824, 2021.
Artículo en Inglés | WPRIM | ID: wpr-922104

RESUMEN

OBJECTIVE@#To elucidate the underlying mechanism of Panax notoginseng saponin (PNS) on gastric epithelial cell injury and barrier dysfunction induced by dual antiplatelet (DA).@*METHODS@#Human gastric mucosal epithelial cell (GES-1) was cultured and divided into 4 groups: a control, a DA, a PNS+DA and a LY294002+PNS+DA group. GES-1 apoptosis was detected by flow cytometry, cell permeability were detected using Transwell, level of prostaglandins E2 (PGE2), 6-keto-prostaglandin F1α (6-keto-PGF1α) and vascular endothelial growth factor (VEGF) in supernatant were measured by enzyme linked immunosorbent assay (ELISA), expression of phosphatidylinositide 3-kinase (PI3K), phosphorylated-PI3K (p-PI3K), Akt, phosphorylated-Akt (p-Akt), cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), glycogen synthase kinase-3β (GSK-3β) and Ras homolog gene family member A (RhoA) were measured by Western-blot.@*RESULTS@#DA induced apoptosis and hyper-permeability in GES-1, reduced supernatant level of PGE2, 6-keto-PGF1α and VEGF (P<0.05). Addition of PNS reduced the apoptosis of GES-1 caused by DA, restored the concentration of PGE2, 6-keto-PGF1α and VEGF (P<0.05). In addition, PNS attenuated the alteration of COX-1 and COX-2 expression induced by DA, up-regulated p-PI3K/p-Akt, down-regulated RhoA and GSK-3β. LY294002 mitigated the effects of PNS on cell apoptosis, cell permeability, VEGF concentration, and expression of RhoA and GSK-3β significantly.@*CONCLUSIONS@#PNS attenuates the suppression on COX/PG pathway from DA, alleviates DA-induced GES-1 apoptosis and barrier dysfunction through PI3K/Akt/ VEGF-GSK-3β-RhoA network pathway.


Asunto(s)
Humanos , Ciclooxigenasa 1 , Células Epiteliales/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Panax notoginseng , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Agregación Plaquetaria , Proteínas Proto-Oncogénicas c-akt/metabolismo , Saponinas/farmacología , Factor A de Crecimiento Endotelial Vascular , Proteína de Unión al GTP rhoA
14.
China Journal of Chinese Materia Medica ; (24): 5064-5071, 2021.
Artículo en Chino | WPRIM | ID: wpr-921645

RESUMEN

The present study investigated the effects of chikusetsu saponin Ⅳa(CHS Ⅳa) on isoproterenol(ISO)-induced myocardial hypertrophy in rats and explored the underlying molecular mechanism. ISO was applied to establish a rat model of myocardial hypertrophy, and CHS Ⅳa(5 and 15 mg·kg~(-1)·d~(-1)) was used for intervention. The tail artery blood pressure was measured. Cardiac ultrasound examination was performed. The ratio of heart weight to body weight(HW/BW) was calculated. Morphological changes in the myocardial tissue were observed by HE staining. Collagen deposition in the myocardial tissue was observed by Masson staining. The mRNA expression of myocardial hypertrophy indicators(ANP and BNP), autophagy-related genes(Atg5, P62 and beclin1), and miR199 a-5 p was detected by qRT-PCR. Atg5 protein expression was detected by Western blot. The results showed that the model group exhibited increased tail artery blood pressure and HW/BW ratio, thickened left ventricular myocardium, enlarged myocardial cells, disordered myocardial fibers with widened interstitium, and a large amount of collagen aggregating around the extracellular matrix and blood vessels. ANP and BNP were largely expressed. Moreover, P62 expression was up-regulated, while beclin1 expression was down-regulated. After intervention by CHS Ⅳa at different doses, myocardial hypertrophy was ameliorated and autophagy activity in the myocardial tissue was enhanced. Meanwhile, miR199 a-5 p expression declined and Atg5 expression increased. As predicted by bioinformatics, Atg5 was a target gene of miR199 a-5 p. CHS Ⅳa was capable of preventing myocardial hypertrophy by regulating autophagy of myocardial cells through the miR-199 a-5 p/Atg5 signaling pathway.


Asunto(s)
Animales , Ratas , Cardiomegalia/genética , Isoproterenol , Miocardio , Miocitos Cardíacos , Ácido Oleanólico/análogos & derivados , Saponinas/farmacología
15.
China Journal of Chinese Materia Medica ; (24): 4674-4682, 2021.
Artículo en Chino | WPRIM | ID: wpr-888171

RESUMEN

Astragali Radix is a traditional Chinese herbal medicine with a long history, which has the functions of tonifying Qi and promoting urination and granulation. Astragalosides are the main effective components of Astragali Radix, and more than 40 triterpenoid saponins have been obtained from Astragalus membranaceus and its related plants, mainly including astragalosides Ⅰ-Ⅷ, isoastragalosides Ⅰ, Ⅱ, and Ⅳ, acetylastragalosides, and soyasaponins. Astragalosides have a wide range of biological activities, such as immunomodulation, antioxidation, and neuroprotection. Nervous system diseases seriously affect people's quality of life, threaten human physical and mental health, and impose a burden on families and society. As natural drugs, astragalosides have good preventive and therapeutic effects on central nervous system diseases. This paper reviews the main pharmacological effects and mechanisms of astragalosides in the treatment of multiple sclerosis, Parkinson's disease, Alzheimer's disease, and cerebral ischemic stroke and proposes the research prospects and potential problems, aiming to provide reference for the clinical application and basic research of astragalosides.


Asunto(s)
Humanos , Planta del Astrágalo , Astragalus propinquus , Medicamentos Herbarios Chinos , Enfermedades del Sistema Nervioso , Calidad de Vida , Saponinas/farmacología
16.
China Journal of Chinese Materia Medica ; (24): 3672-3677, 2021.
Artículo en Chino | WPRIM | ID: wpr-888020

RESUMEN

To explore the effect of ophiopogonin D on main fatty acid metabolic enzymes in human cardiomyocyte AC-16,so as to provide reference for cardiovascular protection mechanism and safe clinical application of Ophiopogon japonicus.CCK-8 (cell counting kit-8) was used to detect the effect of different concentrations of ophiopogonin D on the viability of cardiomyocytes.Meanwhile,the effect of different concentrations of ophiopogonin D on the morphology and quantity of cardiomyocytes was observed under microscope.The effect of ophiopogonin D on the mRNA expression of CYP2J2,CYP4F3,CYP4A11,CYP4A22 and CYP4F2 in cardiomyocytes was detected by RT-PCR.Western blot was used to detect the protein expression of CYP4F3 in different concentrations of ophiopogonin D.Compared with the control group,low-concentration ophiopogonin D had no effect on the viability of cardiomyocytes.However,ophiopogonin D with a concentration of higher than 20μmol·L~(-1)could promote the viability.Under the microscope,ophiopogonin D with a concentration of below 100μmol·L~(-1)had no significant effect on the morphology and number of cardiomyocytes.RT-PCR results showed that compared with the control group,5μmol·L~(-1)ophiopogonin D could slightly up-regulate mRNA expressions of CYP2J2 and CYP4F3,while high-concentration ophiopogonin D (10 and 20μmol·L~(-1)) could significantly induce mRNA expressions of CYP2J2and CYP4F3 in a dose-dependent manner (P<0.05).The same concentration of ophiopogonin D had a little effect on the mRNA expressions of CYP4A11,CYP4A22 and CYP4F2.Western blot results showed that 20μmol·L~(-1)ophiopogonin D could significantly induce the protein expression of CYP4F3 in a dose-dependent manner (P<0.05).Based on the above results,ophiopogonin D (less than100μmol·L~(-1)) has no effect on the viability of AC-16 cardiomyocytes.Ophiopogonin D (less than 100μmol·L~(-1)) can selectively induce the expressions of CYP2J2 and CYP4F3,regulate the metabolic pathway of fatty acid signaling molecules,and thus protecting the cardiovascular system.


Asunto(s)
Humanos , Ácidos Grasos , Miocitos Cardíacos , Saponinas/farmacología , Espirostanos/farmacología
17.
China Journal of Chinese Materia Medica ; (24): 380-387, 2021.
Artículo en Chino | WPRIM | ID: wpr-878984

RESUMEN

One new and two known dammarane-type saponins were isolated from the leaves of Gynostemma pentaphyllum using various chromatographic methods. Their structures were identified by HR-ESI-MS,~( 1)H-NMR, ~(13)C-NMR, 2 D-NMR spectra as 2α,3β,12β,20,24(S)-tetrahdroxydammar-25-en-3-O-[β-D-glucopyranosyl(1→2)-β-D-glucopyranosyl]-20-O-β-D-xylopyranosyl(1→6)-β-D-glucopyranoside(1, a new compound, namely gypenoside J5) and 2α,3β,12β,20,24(R)-tetrahdroxydammar-25-en-3-O-[β-D-glucopyranosyl(1→2)-β-D-glucopyranosyl]-20-O-β-D-xylopyranosyl(1→6)-β-D-glucopyranoside(2) and 2α,3β,12β,20-tetrahydroxy-25-hydroperoxy-dammar-23-en-3-O-[β-D-glucopyranosyl(1→2)][β-D-glucopyranosyl]-20-O-[β-D-xylopyranosyl(1→6)]-β-D-glucopy-ranoside(3), respectively. Compounds 1 and 2 were a pair of C-24 epimers. All compounds showed weak cytotoxicity agxinst H1299, HepG2, PC-3, SH-SY5 Y cancer cell lines. However, they exerted protective effect against SH-SY5 Y cellular damage induced by H_2O_2 dose-dependently, of which compound 1 displayed the strongest antioxidant effect. The present study suggested that G. pentaphyllum has antioxidative potential and the saponins from G. pentaphyllum are considered as the active compounds with neuroprotecitve effect.


Asunto(s)
Gynostemma , Estructura Molecular , Fármacos Neuroprotectores/farmacología , Saponinas/farmacología , Triterpenos/farmacología
18.
China Journal of Chinese Materia Medica ; (24): 2260-2266, 2021.
Artículo en Chino | WPRIM | ID: wpr-879186

RESUMEN

Non-alcoholic steatohepatitis(NASH) was induced by high-sugar and high-fat diet in mice to investigate the intervention effect of total saponins from Panax japonicus(TSPJ) and explore its possible mechanism. Mice were fed with high-sugar and high-fat diet to establish NASH model, and intervened with different doses of TSPJ(15, 45 mg·kg~(-1)). The animals were fed for 26 weeks. The histomorphology and pathological changes of liver tissues were observed by HE staining. The transcriptional expression levels of miR-199 a-5 p, autophagy related gene 5(ATG5) and inflammatory cytokines interleukin-6(IL-6), interleukin-1β(IL-1β) and tumor necrosis factor α(TNF-α) in mouse liver were measured by quantitative Real-time polymerase chain reaction(qRT-PCR). Western blot was used to detect the expression of autophagy-related proteins ATG5, P62/SQSTM1(P62), and microtubule-associated protein light chain 3(LC3)-I/Ⅱ proteins in mouse liver. The expression of P62 protein was detected by immunofluorescence staining. In order to verify the targeting regulation relationship between miR-199 a-5 p and ATG5, miR mimic/inhibitor NC and miR-199 a-5 p mimic/inhibitor were transfected into Hepa 1-6 cells, and the expression of ATG5 mRNA and protein was detected. pMIR-reportor ATG5-3'UTR luciferase reporter gene plasmid was constructed and co-transfected with miR mimic/inhibitor NC and miR-199 a-5 p mimic/inhibitor into Hepa 1-6 cells to detect luciferase activity. In vivo, HE staining in the model group showed typical fatty degeneration and inflammatory infiltration, with increased expression of miR-199 a-5 p and decreased expression of ATG5 mRNA and protein. The expression of autophagy-associated protein P62 increased significantly, the ratio of LC3Ⅱ/Ⅰ decreased, and the transcriptional expression of inflammatory factors increased significantly. After the intervention by TSPJ, the pathological performance of liver tissue was significantly improved, the expression of miR-199 a-5 p decreased and the expression of ATG5 mRNA and protein increased, the expression of autophagy-associated protein P62 decreased significantly, the ratio of LC3Ⅱ/Ⅰ increased, and the transcriptional expression of inflammatory cytokines IL-6, IL-1β and TNF-α decreased significantly. In vitro, it was found that the expression of ATG5 mRNA and protein and luciferase activity decreased significantly in miR-199 a-5 p overexpression cells, while after inhibition of miR-199 a-5 p expression, the expression level of ATG5 mRNA and protein and luciferase activity increased. The results showed that TSPJ can improve NASH in mice fed with high-sugar and high-fat diet, and its mechanism may be related to the regulation of miR-199 a-5 p/ATG5 signal pathway, the regulation of autophagy activity and the improvement of inflammatory response of NASH.


Asunto(s)
Animales , Ratones , Autofagia , Proteína 5 Relacionada con la Autofagia , MicroARNs/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Panax , Saponinas/farmacología
19.
Braz. j. med. biol. res ; 54(7): e10240, 2021. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1249316

RESUMEN

Dengue is the most important arthropod-borne viral disease worldwide. Infection with any of the four dengue virus (DENV) serotypes can be asymptomatic or lead to disease with clinical symptoms ranging from undifferentiated and self-limiting fever to severe dengue disease, which can be fatal in some cases. Currently, no specific antiviral compound is available for treating DENV. The aim of this study was to identify compounds in plants from Paraguayan folk medicine with inhibitory effects against DENV. We found high virucidal activity (50% maximal effective concentration (EC50) value of 24.97 µg/mL) against DENV-2 in the ethanolic extract of the roots of Solanum sisymbriifolium Lam. (Solanaceae) without an evident cytotoxic effect on Vero E6 cells. Three saponins isolated from the root extract showed virucidal effects (EC50 values ranging from 24.9 to 35.1 µg/mL) against DENV-2. Additionally, the saponins showed inhibitory activity against yellow fever virus (EC50 values ranging from 126 to 302.6 µg/mL), the prototype virus of the Flavivirus genus, suggesting that they may also be effective against other members of this genus. Consequently, these saponins may be lead compounds for the development of antiviral agents.


Asunto(s)
Saponinas/farmacología , Solanum , Virus del Dengue , Antivirales/farmacología , Replicación Viral , Virus de la Fiebre Amarilla
20.
Frontiers of Medicine ; (4): 79-90, 2021.
Artículo en Inglés | WPRIM | ID: wpr-880969

RESUMEN

Natural killer (NK) cells, a type of cytotoxic lymphocytes, can infiltrate into ischemic brain and exacerbate neuronal cell death. Astragaloside IV (ASIV) is the major bioactive ingredient of Astragalus membranaceus, a Chinese herbal medicine, and possesses potent immunomodulatory and neuroprotective properties. This study investigated the effects of ASIV on post-ischemic brain infiltration and activation of NK cells. ASIV reduced brain infarction and alleviated functional deficits in MCAO rats, and these beneficial effects persisted for at least 7 days. Abundant NK cells infiltrated into the ischemic hemisphere on day 1 after brain ischemia, and this infiltration was suppressed by ASIV. Strikingly, ASIV reversed NK cell deficiency in the spleen and blood after brain ischemia. ASIV inhibited astrocyte-derived CCL2 upregulation and reduced CCR2


Asunto(s)
Animales , Ratas , Encéfalo , Histona Desacetilasas , Células Asesinas Naturales , Saponinas/farmacología , Triterpenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA