Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres








Gamme d'année
1.
Article de Anglais | WPRIM | ID: wpr-896233

RÉSUMÉ

Oxidative stress-induced neurodegeneration is one of several etiologies underlying neurodegenerative disease. In the present study, we investigated the functional role of histone methyltransferase G9a in oxidative stress-induced degeneration in human SH-SY5Y neuroblastoma cells. Cell viability significantly decreased on H2O2treatment; however, treatment with the G9a inhibitor BIX01294 partially attenuated this effect. The expression of neuron-specific genes also decreased in H2O2 -treated cells; however, it recovered on G9a inhibition. H2O2 -treated cells showed high levels of H3K9me2 (histone H3 demethylated at the lysine 9 residue), which is produced by G9a activation; BIX01294 treatment reduced aberrant activation of G9a.H3K9me2 occupancy of the RE-1 site in neuron-specific genes was significantly increased in H2O2 -treated cells, whereas it was decreased in BIX01294-treated cells. The differentiation of H2O2 -treated cells also recovered on G9a inhibition by BIX01294. Consistent results were observed when used another G9a inhibitor UCN0321. These results demonstrate that oxidative stress induces aberrant activation of G9a, which disturbs the expression of neuron-specific genes and progressively mediates neuronal cell death. Moreover, a G9a inhibitor can lessen aberrant G9a activity and prevent neuronal damage. G9a inhibition may therefore contribute to the prevention of oxidative stress-induced neurodegeneration.

2.
Article de Anglais | WPRIM | ID: wpr-903937

RÉSUMÉ

Oxidative stress-induced neurodegeneration is one of several etiologies underlying neurodegenerative disease. In the present study, we investigated the functional role of histone methyltransferase G9a in oxidative stress-induced degeneration in human SH-SY5Y neuroblastoma cells. Cell viability significantly decreased on H2O2treatment; however, treatment with the G9a inhibitor BIX01294 partially attenuated this effect. The expression of neuron-specific genes also decreased in H2O2 -treated cells; however, it recovered on G9a inhibition. H2O2 -treated cells showed high levels of H3K9me2 (histone H3 demethylated at the lysine 9 residue), which is produced by G9a activation; BIX01294 treatment reduced aberrant activation of G9a.H3K9me2 occupancy of the RE-1 site in neuron-specific genes was significantly increased in H2O2 -treated cells, whereas it was decreased in BIX01294-treated cells. The differentiation of H2O2 -treated cells also recovered on G9a inhibition by BIX01294. Consistent results were observed when used another G9a inhibitor UCN0321. These results demonstrate that oxidative stress induces aberrant activation of G9a, which disturbs the expression of neuron-specific genes and progressively mediates neuronal cell death. Moreover, a G9a inhibitor can lessen aberrant G9a activity and prevent neuronal damage. G9a inhibition may therefore contribute to the prevention of oxidative stress-induced neurodegeneration.

3.
Experimental Neurobiology ; : 495-503, 2019.
Article de Anglais | WPRIM | ID: wpr-763778

RÉSUMÉ

Memantine, a noncompetitive antagonist of the N-methyl-d-aspartate (NMDA) receptor, suppresses the release of excessive levels of glutamate that may induce neuronal excitation. Here we investigated the effects of memantine on salicylate-induced tinnitus model. The expressions of the activity-regulated cytoskeleton-associated protein (ARC) and tumor necrosis factor-alpha (TNF α)genes; as well as the NMDA receptor subunit 2B (NR2B) gene and protein, were examined in the SH-SY5Y cells and the animal model. We also used gap-prepulse inhibition of the acoustic startle reflex (GPIAS) and noise burst prepulse inhibition of acoustic startle, and the auditory brainstem level (electrophysiological recordings of auditory brainstem responses, ABR) and NR2B expression level in the auditory cortex to evaluate whether memantine could reduce salicylate-mediated behavioral disturbances. NR2B was significantly upregulated in salicylate-treated cells, but downregulated after memantine treatment. Similarly, expression of the inflammatory cytokine genes TNFα and immediate-early gene ARC was significantly increased in the salicylate-treated cells, and decreased when the cells were treated with memantine. These results were confirmed by NR2B immunocytochemistry. GPIAS was attenuated to a significantly lesser extent in rats treated with a combination of salicylate and memantine than in those treated with salicylate only. The mean ABR threshold in both groups was not significant different before and 1 day after the end of treatment. Additionally, NR2B protein expression in the auditory cortex was markedly increased in the salicylate-treated group, whereas it was reduced in the memantine-treated group. These results indicate that memantine is useful for the treatment of salicylate-induced tinnitus.


Sujet(s)
Animaux , Rats , Acoustique , Cortex auditif , Tronc cérébral , Potentiels évoqués auditifs du tronc cérébral , Gènes précoces , Acide glutamique , Immunohistochimie , Intégrine alpha2 , Mémantine , Modèles animaux , N-Méthyl-aspartate , Neurones , Bruit , Inhibition du réflexe de sursaut , Réflexe de sursaut , Acouphène , Facteur de nécrose tumorale alpha
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE