RÉSUMÉ
IL-15 belongs to the common gamma chain cytokine family and has pleiotropic immunological functions. IL-15 is a homeostatic cytokine essential for the development and maintenance of NK cells and memory CD8 + T cells. In addition, IL-15 plays a critical role in the activation, effector functions, tissue residency, and senescence of CD8 + T cells. IL-15 also activates virtual memory T cells, mucosal-associated invariant T cells and γδ T cells. Recently, IL-15 has been highlighted as a major trigger of TCR-independent activation of T cells. This mechanism is involved in T cell-mediated immunopathogenesis in diverse diseases, including viral infections and chronic inflammatory diseases. Deeper understanding of IL-15-mediated T-cell responses and their underlying mechanisms could optimize therapeutic strategies to ameliorate host injury by T cell-mediated immunopathogenesis. This review highlights recent advancements in comprehending the role of IL-15 in relation to T cell responses and immunopathogenesis under various host conditions.
RÉSUMÉ
Vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been acknowledged as an effective mean of preventing infection and hospitalization.However, the emergence of highly transmissible SARS-CoV-2 variants of concern (VOCs) has led to substantial increase in infections among children and adolescents. Vaccineinduced immunity and longevity have not been well defined in this population. Therefore, we aimed to analyze humoral and cellular immune responses against ancestral and SARSCoV-2 variants after two shots of the BNT162b2 vaccine in healthy adolescents. Although vaccination induced a robust increase of spike-specific binding Abs and neutralizing Abs against the ancestral and SARS-CoV-2 variants, the neutralizing activity against the Omicron variant was significantly low. On the contrary, vaccine-induced memory CD4+ T cells exhibited substantial responses against both ancestral and Omicron spike proteins.Notably, CD4+ T cell responses against both ancestral and Omicron strains were preserved at 3 months after two shots of the BNT162b2 vaccine without waning. Polyfunctionality of vaccine-induced memory T cells was also preserved in response to Omicron spike protein.The present findings characterize the protective immunity of vaccination for adolescents in the era of continuous emergence of variants/subvariants.
RÉSUMÉ
CD8+ T cells are activated by TCRs that recognize specific cognate Ags, while NK-cell activation is regulated by a balance between signals from germline-encoded activating and inhibitory NK receptors. Through these different processes of Ag recognition, CD8+ T cells and NK cells play distinct roles as adaptive and innate immune cells, respectively. However, some human CD8+ T cells have been found to express activating or inhibitory NK receptors. CD8+ T-cell populations expressing NK receptors straddle the innate-adaptive boundary with their innate-like features. Recent breakthrough technical advances in multi-omics analysis have enabled elucidation of the unique immunologic characteristics of these populations. However, studies have not yet fully clarified the heterogeneity and immunological characteristics of each CD8+ T-cell population expressing NK receptors. Here we aimed to review the current knowledge of various CD8+ T-cell populations expressing NK receptors, and to pave the way for delineating the landscape and identifying the various roles of these T-cell populations.
RÉSUMÉ
Coronavirus disease 2019 (COVID-19) vaccination may non-specifically alter the host immune system. This study aimed to evaluate the effect of COVID-19 vaccination on hepatitis B surface Ag (HBsAg) titer and host immunity in chronic hepatitis B (CHB) patients. Consecutive 2,797 CHB patients who had serial HBsAg measurements during antiviral treatment were included in this study. Changes in the HBsAg levels after COVID-19 vaccination were analyzed. The dynamics of NK cells following COVID-19 vaccination were also examined using serial blood samples collected prospectively from 25 healthy volunteers. Vaccinated CHB patients (n=2,329) had significantly lower HBsAg levels 1–30 days post-vaccination compared to baseline (median, −21.4 IU/ml from baseline), but the levels reverted to baseline by 91–180 days (median, −3.8 IU/ml). The velocity of the HBsAg decline was transiently accelerated within 30 days after vaccination (median velocity: −0.06, −0.39, and −0.04 log 10 IU/ml/year in pre-vaccination period, days 1–30, and days 31–90, respectively). In contrast, unvaccinated patients (n=468) had no change in HBsAg levels. Flow cytometric analysis showed that the frequency of NK cells expressing NKG2A, an NK inhibitory receptor, significantly decreased within 7 days after the first dose of COVID-19 vaccine (median, −13.1% from baseline; p<0.001). The decrease in the frequency of NKG2A + NK cells was observed in the CD56dimCD16+ NK cell population regardless of type of COVID-19 vaccine. COVID-19 vaccination leads to a rapid, transient decline in HBsAg titer and a decrease in the frequency of NKG2A + NK cells.
RÉSUMÉ
Purpose@#To evaluate the expression of multiple chemokine receptors in peripheral blood T cells from patients with age-related macular degeneration (AMD). @*Materials and Methods@#Peripheral blood mononuclear cells and/or aqueous humor were obtained from 24 AMD patients and 24 age- and sex-matched healthy controls. Chemokine receptor expression on T cells from peripheral blood was determined by multicolor flow cytometry. The levels of chemokines and cytokines in the aqueous humor from 12 AMD patients and six healthy controls were assessed. @*Results@#AMD patients had increased expressions of CCR4 in CD4 + T cells (p=0.007) and CRTh2 in CD8 + T cells (p=0.002), and decreased expressions of CXCR3 in CD4+T cells (p=0.029) and CXCR3, CCR5, and CX 3CR1 in CD8+T cells (p=0.005, 0.019, and 0.007, respectively). Monocyte chemoattractant protein-1 levels were increased in the aqueous humor from AMD patients (p=0.018), while the levels of interleukin (IL)-4 and IL-22 were significantly decreased compared to controls (p=0.018 and 0.041, respectively). @*Conclusion@#The chemokine receptor profiles of T cells are altered in AMD patients compared to healthy controls without noticeable associations with chemokine levels in the aqueous humor. Further evaluation is needed to clarify the role of these alterations in AMD pathogenesis.
RÉSUMÉ
Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Type I and III interferon (IFN) responses act as the first line of defense against viral infection and are activated by the recognition of viruses by infected cells and innate immune cells. Dysregulation of host IFN responses has been known to be associated with severe disease progression in COVID-19 patients. However, the reported results are controversial and the roles of IFN responses in COVID-19 need to be investigated further. In the absence of a highly efficacious antiviral drug, clinical studies have evaluated recombinant type I and III IFNs, as they have been successfully used for the treatment of infections caused by two other epidemic coronaviruses, SARS-CoV-1 and Middle East respiratory syndrome (MERS)-CoV. In this review, we describe the strategies by which SARS-CoV-2 evades IFN responses and the dysregulation of host IFN responses in COVID-19 patients. In addition, we discuss the therapeutic potential of type I and III IFNs in COVID-19.
RÉSUMÉ
Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Type I and III interferon (IFN) responses act as the first line of defense against viral infection and are activated by the recognition of viruses by infected cells and innate immune cells. Dysregulation of host IFN responses has been known to be associated with severe disease progression in COVID-19 patients. However, the reported results are controversial and the roles of IFN responses in COVID-19 need to be investigated further. In the absence of a highly efficacious antiviral drug, clinical studies have evaluated recombinant type I and III IFNs, as they have been successfully used for the treatment of infections caused by two other epidemic coronaviruses, SARS-CoV-1 and Middle East respiratory syndrome (MERS)-CoV. In this review, we describe the strategies by which SARS-CoV-2 evades IFN responses and the dysregulation of host IFN responses in COVID-19 patients. In addition, we discuss the therapeutic potential of type I and III IFNs in COVID-19.
RÉSUMÉ
Abdominal aortic aneurysm (AAA) is a chronic dilation of the aorta with a tendency to enlarge and eventually rupture, which constitutes a major cause of cardiovascular mortality.Although T-cell infiltrates have been observed in AAA, the cellular, phenotypic, and functional characteristics of these tissue-infiltrating T cells are not fully understood. Here, we investigated the proportional changes of T-cell subsets—including CD4 + T cells, CD8 + T cells, and γδ T cells—and their effector functions in AAAs. We found that Vδ2 + T cells were presented at a higher frequency in aortic aneurysmal tissue compared to normal aortic tissue and PBMCs from patients with AAA. In contrast, no differences were observed in the frequencies of CD4 + , CD8 + , and Vδ1 + T cells. Moreover, we observed that the Vδ2 +T cells from AAA tissue displayed immunophenotypes indicative of CCR5 + non-exhausted effector memory cells, with a decreased proportion of CD16 + cells. Finally, we found that these Vδ2 + T cells were the main source of IL-17A in abdominal aortic aneurysmal tissue. In conclusion, our results suggest that increased Vδ2 + T cells that robustly produce IL-17A in aortic aneurysmal tissue may contribute to AAA pathogenesis and progression.
RÉSUMÉ
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection causes coronavirus disease 2019 (COVID-19), an ongoing pandemic disease. In the current review, we describe SARS-CoV-2-specific CD4 + and CD8 + T-cell responses in acute and convalescent COVID-19 patients. We also discuss the relationships between COVID-19 severity and SARS-CoV-2-specific T-cell responses and summarize recent reports regarding SARS-CoV-2-reactive T cells in SARS-CoV-2-unexposed individuals. These T cells may be cross-reactive cells primed by previous infection with human common-cold coronaviruses. Finally, we outline SARS-CoV-2-specific T-cell responses in the context of vaccination. A better understanding of SARS-CoV-2-specific T-cell responses is needed to develop effective vaccines and therapeutics.
RÉSUMÉ
Hyperprogressive disease (HPD) is a distinct pattern of progression characterized by acceleration of tumor growth after treatment with anti-PD-1/PD-L1 Abs. However, the immunological characteristics have not been fully elucidated in patients with HPD. We prospectively recruited patients with metastatic non-small cell lung cancer treated with anti-PD-1/PD-L1 Abs between April 2015 and April 2018, and collected peripheral blood before treatment and 7-days post-treatment. HPD was defined as ≥2-fold increase in both tumor growth kinetics and tumor growth rate between pre-treatment and post-treatment.Peripheral blood mononuclear cells were analyzed by multi-color flow cytometry to phenotype the immune cells. Of 115 patients, 19 (16.5%) developed HPD, 52 experienced durable clinical benefit (DCB; partial response or stable disease ≥6 months), and 44 experienced non-hyperprogressive progression (NHPD). Patients with HPD had significantly lower progression-free survival (p<0.001) and overall survival (p<0.001). When peripheral blood immune cells were examined, the pre-treatment frequency of CD39+ cells among CD8+T cells was significantly higher in patients with HPD compared to those with NHPD, although it showed borderline significance to predict HPD. Other parameters regarding regulatory T cells or myeloid derived suppressor cells did not significantly differ among patient groups. Our findings suggest high pre-treatment frequency of CD39+ CD8+ T cells might be a characteristic of HPD. Further investigations in a larger cohort are needed to confirm our results and better delineate the immune landscape of HPD.
RÉSUMÉ
Immune checkpoint blockade targeting PD-1 and PD-L1 has resulted in unprecedented clinical benefit for cancer patients. Anti-PD-1/PD-L1 therapy has become the standard treatment for diverse cancer types as monotherapy or in combination with other anti-cancer therapies, and its indications are expanding. However, many patients do not benefit from anti-PD-1/PD-L1 therapy due to primary and/or acquired resistance, which is a major obstacle to broadening the clinical applicability of anti-PD-1/PD-L1 therapy. In addition, hyperprogressive disease, an acceleration of tumor growth following anti-PD-1/PD-L1 therapy, has been proposed as a new response pattern associated with deleterious prognosis. Anti-PD-1/PD-L1 therapy can also cause a unique pattern of adverse events termed immune-related adverse events, sometimes leading to treatment discontinuation and fatal outcomes. Investigations have been carried out to predict and monitor treatment outcomes using peripheral blood as an alternative to tissue biopsy. This review summarizes recent studies utilizing peripheral blood immune cells to predict various outcomes in cancer patients treated with anti-PD-1/PD-L1 therapy.
RÉSUMÉ
Immune checkpoint blockade targeting PD-1 and PD-L1 has resulted in unprecedented clinical benefit for cancer patients. Anti-PD-1/PD-L1 therapy has become the standard treatment for diverse cancer types as monotherapy or in combination with other anti-cancer therapies, and its indications are expanding. However, many patients do not benefit from anti-PD-1/PD-L1 therapy due to primary and/or acquired resistance, which is a major obstacle to broadening the clinical applicability of anti-PD-1/PD-L1 therapy. In addition, hyperprogressive disease, an acceleration of tumor growth following anti-PD-1/PD-L1 therapy, has been proposed as a new response pattern associated with deleterious prognosis. Anti-PD-1/PD-L1 therapy can also cause a unique pattern of adverse events termed immune-related adverse events, sometimes leading to treatment discontinuation and fatal outcomes. Investigations have been carried out to predict and monitor treatment outcomes using peripheral blood as an alternative to tissue biopsy. This review summarizes recent studies utilizing peripheral blood immune cells to predict various outcomes in cancer patients treated with anti-PD-1/PD-L1 therapy.
Sujet(s)
Humains , Accélération , Antigène CD274 , Marqueurs biologiques , Biopsie , Effets secondaires indésirables des médicaments , Issue fatale , Pronostic , Récepteur-1 de mort cellulaire programméeRÉSUMÉ
No abstract available.
RÉSUMÉ
Cryopreservation and thawing of PBMCs are inevitable processes in expanding the scale of experiments in human immunology. Here, we carried out a fundamental study to investigate the detailed effects of PBMC cryopreservation and thawing on transcriptomes. We sorted Tregs from fresh and cryopreserved/thawed PBMCs from an identical donor and performed single-cell RNA-sequencing (scRNA-seq). We found that the cryopreservation and thawing process minimally affects the key molecular features of Tregs, including FOXP3. However, the cryopreserved and thawed sample had a specific cluster with up-regulation of genes for heat shock proteins. Caution may be warranted in interpreting the character of any cluster of cells with heat shock-related properties when cryopreserved and thawed samples are used for scRNA-seq.
RÉSUMÉ
Although various studies on predictive markers in the use of PD-1/PD-L1 inhibitors are in progress, only PD-L1 expression levels in tumor tissues are currently used. In the present study, we investigated whether baseline serum levels of IL-6 can predict the treatment response of patients with advanced non-small cell lung cancer (NSCLC) treated with PD-1/PD-L1 inhibitors. In our cohort of 125 NSCLC patients, the objective response rate (ORR) and disease control rate (DCR) were significantly higher in those with low IL-6 (<13.1 pg/ml) than those with high IL-6 (ORR 33.9% vs. 11.1%, p=0.003; DCR 80.6% vs. 34.9%, p<0.001). The median progression-free survival was 6.3 months (95% confidence interval [CI], 3.9–8.7) in the low IL-6 group, significantly longer than in the high IL-6 group (1.9 months, 95% CI, 1.6–2.2, p<0.001). The median overall survival in the low IL-6 group was significantly longer than in the high IL-6 group (not reached vs. 7.4 months, 95% CI, 4.8–10.0). Thus, baseline serum IL-6 levels could be a potential biomarker for predicting the efficacy and survival benefit of PD-1/PD-L1 inhibitors in NSCLC.
RÉSUMÉ
Hyperprogressive disease (HPD) is a distinct pattern of progression characterized by acceleration of tumor growth after treatment with anti-PD-1/PD-L1 Abs. However, the immunological characteristics have not been fully elucidated in patients with HPD. We prospectively recruited patients with metastatic non-small cell lung cancer treated with anti-PD-1/PD-L1 Abs between April 2015 and April 2018, and collected peripheral blood before treatment and 7-days post-treatment. HPD was defined as ≥2-fold increase in both tumor growth kinetics and tumor growth rate between pre-treatment and post-treatment.Peripheral blood mononuclear cells were analyzed by multi-color flow cytometry to phenotype the immune cells. Of 115 patients, 19 (16.5%) developed HPD, 52 experienced durable clinical benefit (DCB; partial response or stable disease ≥6 months), and 44 experienced non-hyperprogressive progression (NHPD). Patients with HPD had significantly lower progression-free survival (p<0.001) and overall survival (p<0.001). When peripheral blood immune cells were examined, the pre-treatment frequency of CD39+ cells among CD8+T cells was significantly higher in patients with HPD compared to those with NHPD, although it showed borderline significance to predict HPD. Other parameters regarding regulatory T cells or myeloid derived suppressor cells did not significantly differ among patient groups. Our findings suggest high pre-treatment frequency of CD39+ CD8+ T cells might be a characteristic of HPD. Further investigations in a larger cohort are needed to confirm our results and better delineate the immune landscape of HPD.
RÉSUMÉ
Immune checkpoint blockade targeting PD-1 and PD-L1 has resulted in unprecedented clinical benefit for cancer patients. Anti-PD-1/PD-L1 therapy has become the standard treatment for diverse cancer types as monotherapy or in combination with other anti-cancer therapies, and its indications are expanding. However, many patients do not benefit from anti-PD-1/PD-L1 therapy due to primary and/or acquired resistance, which is a major obstacle to broadening the clinical applicability of anti-PD-1/PD-L1 therapy. In addition, hyperprogressive disease, an acceleration of tumor growth following anti-PD-1/PD-L1 therapy, has been proposed as a new response pattern associated with deleterious prognosis. Anti-PD-1/PD-L1 therapy can also cause a unique pattern of adverse events termed immune-related adverse events, sometimes leading to treatment discontinuation and fatal outcomes. Investigations have been carried out to predict and monitor treatment outcomes using peripheral blood as an alternative to tissue biopsy. This review summarizes recent studies utilizing peripheral blood immune cells to predict various outcomes in cancer patients treated with anti-PD-1/PD-L1 therapy.
RÉSUMÉ
Sujet(s)
Humains , Diagnostic , Cytométrie en flux , Hépatite A , Hépatite , Hépatite auto-immune , Médiateurs de l'inflammation , Défaillance hépatique , Transplantation hépatique , Nécrose , Lymphocytes T régulateursRÉSUMÉ
The clinical benefit of adjuvant intravenous immunoglobulin (IVIG) therapy is controversial in immunocompromised patients with severe varicella. A twenty-one-year-old woman who had received a kidney transplant one year earlier presented with fever and generalized rash for 5 days. Initial immunoglobulin M (IgM) and IgG for varicella zoster virus (VZV) were negative; however, the patient was diagnosed with varicella with fulminant hepatitis because VZV-specific PCR from skin vesicles and blood was positive. The patient received intravenous acyclovir and 5-day IVIG. The decline of plasma viral load was steeper (beta coefficient −0.446) during IVIG therapy than after the therapy (beta coefficient −0.123) (P = 0.04), while VZV glycoprotein IgG titers and VZV-specific T cell responses were not detected during the 5-day IVIG therapy. The patient improved without any complications. This case provides an experimental evidence that adjuvant IVIG can significantly reduce viral load in immunocompromised patients with severe varicella.
RÉSUMÉ
CD4⁺CD25⁺FoxP3⁺ regulatory T (Treg) cells play major roles in the maintenance of immune homeostasis. In this review, we comprehensively describe the relationship between tumor necrosis factor (TNF) and Treg cells, focusing on the effects of TNF on Treg cells and on TNF-producing Treg cells. Contradictory results have been reported for the effect of TNF on the suppressive activity of Treg cells. In patients with rheumatoid arthritis, TNF has been shown to reduce the suppressive activity of Treg cells. Meanwhile, however, TNF has also been reported to maintain the suppressive activity of Treg cells via a TNFR2-mediated mechanism. In addition, Treg cells have been found to acquire the ability to produce TNF under inflammatory conditions, such as acute viral hepatitis. These TNF-producing Treg cells exhibit T helper 17-like features and hold significance in various human diseases.