Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres








Gamme d'année
1.
Braz. j. microbiol ; Braz. j. microbiol;49(3): 641-646, July-Sept. 2018. tab, graf
Article de Anglais | LILACS | ID: biblio-951817

RÉSUMÉ

Abstract DNA genotyping of Mycobacterium tuberculosis has been widely applied in the understanding of disease transmission in many countries. The purpose of this study was to genotype the strains of M. tuberculosis isolated in patients with new tuberculosis (TB) cases in Minas Gerais, as well as to compare the similarity, discriminatory power, and agreement of the clusters between the IS6110 Restriction Fragment Length Polymorfism (RFLP) and 12 loci Variable Number Tandem Repeat - Mycobacterial Interspersed Repetitive Units (MIRU-VNTR) techniques. It was observed that 32% (66/204) of the isolated strains in the RFLP-IS6110 and 50.9% (104/204) of the isolated strains in the MIRU-VNTR presented a similarity of equal to or above 85%. The RFLP-IS6110 and MIRU-VNTR proved to contain a high discriminatory power. The similarity index resulting from the RFLP showed no recent transmission. Good agreement was observed between the techniques when clusters were detected; however, the best epidemiological relationship was found when using the RFLP-IS6110.


Sujet(s)
Humains , Tuberculose/microbiologie , Polymorphisme de restriction , Techniques de typage bactérien/méthodes , Répétitions minisatellites , Analyse de polymorphisme de longueur de fragments amplifiés/méthodes , Mycobacterium tuberculosis/isolement et purification , Brésil , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/génétique
2.
Mem. Inst. Oswaldo Cruz ; 112(11): 769-774, Nov. 2017. tab
Article de Anglais | LILACS | ID: biblio-894852

RÉSUMÉ

BACKGROUND The accurate detection of multidrug-resistant tuberculosis (MDR-TB) is critical for the application of appropriate patient treatment and prevention of transmission of drug-resistant Mycobacterium tuberculosis isolates. The goal of this study was to evaluate the correlation between phenotypic and molecular techniques for drug-resistant tuberculosis diagnostics. Molecular techniques used were the line probe assay genotype MTBDRplus and the recently described tuberculosis-spoligo-rifampin-isoniazid typing (TB-SPRINT) bead-based assay. Conventional drug susceptibility testing (DST) was done on a BACTECTM MGIT 960 TB. METHOD We studied 80 M. tuberculosis complex (MTC) clinical isolates from Minas Gerais state, of which conventional DST had classified 60 isolates as MDR and 20 as drug susceptible. FINDINGS Among the 60 MDR-TB isolates with MGIT as a reference, sensitivity, specificity, accuracy, and kappa for rifampicin (RIF) resistance using TB-SPRINT and MTBDRplus, were 96.7% versus 93.3%, 100.0% versus 100.0%, 97.5% versus 95.0% and 0.94 versus 0.88, respectively. Similarly, the sensitivity, specificity, accuracy, and kappa for isoniazid (INH) resistance were 85.0% and 83.3%, 100.0% and 100.0%, 88.8% and 87.5% and 0.74 and 0.71 for both tests, respectively. Finally, the sensitivity, specificity, accuracy, and kappa for MDR-TB were 85.0% and 83.3%, 100.0% and 100.0%, 88.8% and 87.5% and 0.74 and 0.71 for both tests, respectively. MAIN CONCLUSIONS Both methods exhibited a good correlation with the conventional DST. We suggest estimating the cost-effectiveness of MTBDRplus and TB-SPRINT in Brazil.


Sujet(s)
Humains , Techniques bactériologiques/méthodes , Tuberculose multirésistante/diagnostic , Tuberculose multirésistante/microbiologie , Mycobacterium tuberculosis/génétique , Brésil , Reproductibilité des résultats , Sensibilité et spécificité , Anatomopathologie moléculaire , Génotype
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE