RÉSUMÉ
Osteosarcopenia (OS) is a multifactorial, multiaetiologic degenerative metabolic syndrome in which sarcopenia coexists with osteoporosis, and its influences are related to aging-induced mechanics, genetics, inflammatory factors, endocrine disorders, and irregular lifestyles. With the accelerated aging process in our country, osteosarcopenia has become a public health problem that cannot be ignored, with a higher risk of falls, fractures, impaired mobility and death. In recent years, scholars at home and abroad have conducted a lot of research on osteosarcopenia, but their pathogenesis is still unclear. Understanding the signaling pathways associated with osteosarcopenia is of great significance for further research on the pathogenesis of these disorders and for finding new targets for treatment. Studies have shown that activation of the PI3K/Akt signaling pathway promotes osteoblast differentiation as well as skeletal muscle regeneration, indicating that inhibition of thePI3K/Akt signaling pathway is closely related to the development of osteosarcopenia. Muscle factor-mechanical stress interactions can maintain osteoblast viability by activating the Wnt/β-catenin signaling pathway, suggesting that Wnt signaling is important in muscle and bone crosstalk. The Notch signaling pathway also plays an important role in improving bone and muscle mass and function, but different researchers hold different views, which need to be further validated and refined in subsequent studies. Exercise, as an existing non-pharmacological treatment with strong and sustained effects on physical function and muscle strength, also significantly increases bone density in osteoporosis patients, which may be mainly due to the fact that exercise induces changes in the form and function of bones, in the form of muscular pulling and indirectly improves the bone mass, and changes in the bone strength can also change the number, shape as well as the function of the muscles. At the same time, the mechanism of different exercise modalities focuses on different aspects, and there are differences in exercise time, exercise intensity, and therapeutic effects in the implementation of interventions. Aerobic exercise can improve the quality of skeletal muscle and increase the expression of osteogenesis-related genes by stimulating mitochondrial biosynthesis, as well as improve the quality and strength of bones and muscles through the Wnt/β- catenin and PI3K/Akt signaling pathways, effectively preventing and controlling the occurrence of musculoskeletal disorders. High-intensity resistance exercise has a significant effect on improving the quality of muscles and bone mineral density, but older people with osteosarcopenia suffer from a decline in muscle quality and strength, and a decline in bone mineral density, which makes them very susceptible to fracture, so they should select the intensity of the training in a gradual and orderly manner, from small to large. What kind of exercise intensity and exercise modalities are most effective in improving the occurrence and development of osteosarcopenia needs to be further investigated. Therefore, this paper mainly reviews the epidemiology of osteosarcopenia, diagnostic criteria, the related signaling pathways (PI3K/Akt pathway, Wnt/β-catenin pathway, Notch pathway, NF-κB pathway) that jointly regulate the metabolic process of myocytes and skeletal cells, as well as the interventional effects of different exercise modes on osteosarcopenia, with the aim of providing theoretical bases for the clinical treatment of osteosarcopenia, as well as enhancing the preventive capacity of the disease in old age.
RÉSUMÉ
Osteoporosis leads to an imbalance in bone remodelling, where bone resorption is greater than bone formation and osteoclast degradation increases, resulting in severe bone loss. Autophagy is a lysosomal degradation pathway that regulates the proliferation, differentiation, and apoptosis of various bone cells (including osteoblasts, osteoclasts, and osteoclasts), and is deeply involved in the bone remodelling process. In recent years, the role of autophagy in the progression of osteoporosis and related bone metabolic diseases has received more and more attention, and it has become a research hotspot in this field. Summarising the existing studies, it is found that senile osteoporosis is the result of a combination of factors. On the one hand, it is the imbalance of bone remodelling and the increase of bone resorption/bone formation ratio with ageing, which causes progressive bone loss. On the other hand, aging leads to a general decrease in the level of autophagy, a decrease in the activity of osteoblasts and osteoclasts, and an inhibition of osteogenic differentiation. The lack of oestrogen leads to the immune system being in a low activation state, and the antioxidant capacity is weakened and inflammatory response is increased, inducing autophagy-related proteins to participate in the transmission of inflammatory signals, excessive accumulation of reactive oxygen species (ROS) in the skeleton, and negatively regulating bone formation. In addition, with aging and the occurrence of related diseases, glucocorticoid treatments also mediate autophagy in bone tissue cells, contributing to the decline in bone strength. Exercise, as an effective means of combating osteoporosis, improves bone biomechanical properties and increases bone density. It has been found that exercise induces oxidative stress, energy imbalance, protein defolding and increased intracellular calcium ions in the organism, which in turn activates autophagy. In bone, exercise of different intensities activates messengers such as ROS, PI3K, and AMP. These messengers signal downstream cascades, which in turn induce autophagy to restore dynamic homeostasis in vivo. During exercise, increased production of AMP, PI3K, and ROS activate their downstream effectors, AMPK, Akt, and p38MAPK, respectively, and these molecules in turn lead to activation of the autophagy pathway. Activation of AMPK inhibits mTOR activity and phosphorylates ULK1 at different sites, inducing autophagy. AMPK and p38 up-regulate per-PGC-1α activity and activate transcription factors in the nucleus, resulting in increased autophagy and lysosomal genes. Together, they activate FoxOs, whose transcriptional activity controls cellular processes including autophagy and can act on autophagy key proteins, while FoxOs proteins are expressed in osteoblasts. Exercise also regulates the expression of mTORC1, FoxO1, and PGC-1 through the PI3K/Akt signalling pathway, which ultimately plays a role in the differentiation and proliferation of osteoblasts and regulates bone metabolism. In addition, BMPs signaling pathway and long chain non-coding RNAs also play a role in the proliferation and differentiation of osteoblasts and autophagy process under exercise stimulation. Therefore, exercise may become a new molecular regulatory mechanism to improve osteoporosis through the bone autophagy pathway, but the specific mechanism needs to be further investigated. How exercise affects bone autophagy and thus prevents and treats bone-related diseases will become a future research hotspot in the fields of biology, sports medicine and sports science, and it is believed that future studies will further reveal its mechanism and provide new theoretical basis and ideas.
RÉSUMÉ
Objective To investigate the clinical and neuroimaging features of cerebral microbleeds(CMBs)in patients with ischemic stroke. Methods MRI,including gradient-echo T2~*-weighted MRI,was performed in 85 patients with acute ischemic stroke.Their clinical information and imaging characteristics were analyzed. Results One hundred and twenty-four CMBs were noted in 26 patients(30.6%)with the number of CMBs ranged from 1 to 16 per patient.CMBs were more frequently presentcd in the cortical-subcortical region and thalamus-basal ganglia than in the cerebellum and brain stem legions.Some CMBs in the brain stem had related neurological symptoms and signs.CMBs,the age of the patient,the number of lacunar infarcts and the white matter changes were correlative(r=0.243,P=0.025;r=0.337,P=0.025;r=0.438,P=0.000).CMBs could be well demonstrated in the gradient-echo T2~*-weighted MRI and some larger ones could be demonstrated in the apin-echo T2~*-weighted MRI and DWI. Conclusion CMBs are the sighs for microangiopathy in the brain with advanced age,mutiple lacunar infartion and leukoaraiosis as its main prognosis factors.