Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres








Gamme d'année
1.
J. vet. sci ; J. vet. sci;: e24-2023.
Article de Anglais | WPRIM | ID: wpr-977131

RÉSUMÉ

Background@#Ergothioneine (EGT) is a natural amino acid derivative in various animal organs and is a bioactive compound recognized as a food and medicine. @*Objectives@#This study examined the effects of EGT supplementation during the in vitro maturation (IVM) period on porcine oocyte maturation and subsequent embryonic development competence after in vitro fertilization (IVF). @*Methods@#Each EGT concentration (0, 10, 50, and 100 µM) was supplemented in the maturation medium during IVM. After IVM, nuclear maturation, intracellular glutathione (GSH), and reactive oxygen species (ROS) levels of oocytes were investigated. In addition, the genes related to cumulus function and antioxidant pathways in oocytes or cumulus cells were investigated. Finally, this study examined whether EGT could affect embryonic development after IVF. @*Results@#After IVM, the EGT supplementation group showed significantly higher intracellular GSH levels and significantly lower intracellular ROS levels than the control group. Moreover, the expression levels of hyaluronan synthase 2 and Connexin 43 were significantly higher in the 10 µM EGT group than in the control group. The expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and NAD(P)H quinone dehydrogenase 1 (NQO1) were significantly higher in the oocytes of the 10 µM EGT group than in the control group. In the assessment of subsequent embryonic development after IVF, the 10 µM EGT treatment group improved the cleavage and blastocyst rate significantly than the control group. @*Conclusions@#Supplementation of EGT improved oocyte maturation and embryonic development by reducing oxidative stress in IVM oocytes.

2.
Article de Anglais | WPRIM | ID: wpr-1002462

RÉSUMÉ

The efficiency of somatic cell nuclear transfer (NT) in pigs is low and requires enhancement. We identified the most efficient method for zona pellucida (ZP) removal and blastomere aggregation in pigs and investigated whether the aggregation of NT and parthenogenetic activation (PA) of blastomeres could reduce embryonic apoptosis and improve the quality of NT-derived embryos by investigating. Embryonic developmental competence after ZP removal using acid Tyrode's solution or protease (pronase E). The embryonic developmental potential of NT-derived blastomeres was also investigated using well-of-the-well or phytohemagglutinin-L. We analyzed apoptosis in aggregate-derived blastocysts. The aggregation rate of protease-treated embryos was lower than that of Tyrode’s solution-treated embryos (69.2% vs. 88.3%). No significant difference was observed between phytohemagglutinin-L and well-of-the-well (35.7%–38.5%). However, 2P1N showed a higher number of blastocysts compared to 3N (73.8% vs. 24.3%) and an increased blastocyst diameter compared to the control and 1P2N (274 μm vs. 230–234 μm). In blastomeres aggregated using phytohemagglutinin-L, the apoptotic cell ratio was significantly higher in 1P2N and 3N than in 3P (5.91%–6.46% vs. 2.94%, respectively). Our results indicate that aggregation of one NT embryo with two PA embryos improved the rate of blastocysts with increased blastocyst diameter.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE