Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres








Gamme d'année
1.
Article de Anglais | WPRIM | ID: wpr-896362

RÉSUMÉ

BACKGROUND@#Poly(lactic-co-glycolic acid) (PLGA) microspheres have been actively used in various pharmaceutical formulations because they can sustain active pharmaceutical ingredient release and are easy to administer into the body using a syringe. However, the acidic byproducts produced by the decomposition of PLGA cause inflammatory reactions in surrounding tissues, limiting biocompatibility. Magnesium hydroxide (MH), an alkaline ceramic, has attracted attention as a potential additive because it has an acid-neutralizing effect. @*METHODS@#To improve the encapsulation efficiency of hydrophilic MH, the MH particles were capped with hydrophobic ricinoleic acid (RA-MH). PLGA microspheres encapsulated with RA-MH particles were manufactured by the O/W method. To assess the in vitro cytotoxicity of the degradation products of PLGA, MH/PLGA, and RA-MH/PLGA microspheres, CCK-8 and Live/Dead assays were performed with NIH-3T3 cells treated with different concentrations of their degradation products. in vitro anti-inflammatory effect of RA-MH/PLGA microspheres was evaluated with quantitative measurement of pro-inflammatory cytokines. @*RESULTS@#The synthesized RA-MH was encapsulated in PLGA microspheres and displayed more than four times higher loading content than pristine MH. The PLGA microspheres encapsulated with RA-MH had an acid-neutralizing effect better than that of the control group. In an in vitro cell experiment, the degradation products obtained from RA-MH/PLGA microspheres exhibited higher biocompatibility than the degradation products obtained from PLGA microspheres. Additionally, the RA-MH/PLGA microsphere group showed an excellent anti-inflammatory effect. @*CONCLUSION@#Our results proved that RA-MH-encapsulated PLGA microspheres showed excellent biocompatibility with an anti-inflammatory effect. This technology can be applied to drug delivery and tissue engineering to treat various incurable diseases in the future.

2.
Article de Anglais | WPRIM | ID: wpr-904066

RÉSUMÉ

BACKGROUND@#Poly(lactic-co-glycolic acid) (PLGA) microspheres have been actively used in various pharmaceutical formulations because they can sustain active pharmaceutical ingredient release and are easy to administer into the body using a syringe. However, the acidic byproducts produced by the decomposition of PLGA cause inflammatory reactions in surrounding tissues, limiting biocompatibility. Magnesium hydroxide (MH), an alkaline ceramic, has attracted attention as a potential additive because it has an acid-neutralizing effect. @*METHODS@#To improve the encapsulation efficiency of hydrophilic MH, the MH particles were capped with hydrophobic ricinoleic acid (RA-MH). PLGA microspheres encapsulated with RA-MH particles were manufactured by the O/W method. To assess the in vitro cytotoxicity of the degradation products of PLGA, MH/PLGA, and RA-MH/PLGA microspheres, CCK-8 and Live/Dead assays were performed with NIH-3T3 cells treated with different concentrations of their degradation products. in vitro anti-inflammatory effect of RA-MH/PLGA microspheres was evaluated with quantitative measurement of pro-inflammatory cytokines. @*RESULTS@#The synthesized RA-MH was encapsulated in PLGA microspheres and displayed more than four times higher loading content than pristine MH. The PLGA microspheres encapsulated with RA-MH had an acid-neutralizing effect better than that of the control group. In an in vitro cell experiment, the degradation products obtained from RA-MH/PLGA microspheres exhibited higher biocompatibility than the degradation products obtained from PLGA microspheres. Additionally, the RA-MH/PLGA microsphere group showed an excellent anti-inflammatory effect. @*CONCLUSION@#Our results proved that RA-MH-encapsulated PLGA microspheres showed excellent biocompatibility with an anti-inflammatory effect. This technology can be applied to drug delivery and tissue engineering to treat various incurable diseases in the future.

3.
Article de Anglais | WPRIM | ID: wpr-919356

RÉSUMÉ

Background@#Inflammation induces dysfunction of endothelial cells via inflammatory cell adhesion, and this phenomenon and reactive oxygen species accumulation are pivotal triggers for atherosclerosis-related vascular disease. Although exosomes are excellent candidate as an inhibitor in the inflammation pathway, it is necessary to develop exosome-mimetic nanovesicles (NVs) due to limitations of extremely low release rate and difficult isolation of natural exosomes. NVs are produced in much larger quantities than natural exosomes, but due to the low flexibility of the cell membranes, the high loss caused by hanging on the filter membranes during extrusion remains a challenge to overcome. Therefore, by making cell membranes more flexible, more efficient production of NVs can be expected. @*Methods@#To increase the flexibility of the cell membranes, the suspension of umbilical cord-mesenchymal stem cells (UC-MSCs) was subjected to 5 freeze and thaw cycles (FT) before serial extrusion. After serial extrusion through membranes with three different pore sizes, FT/NVs were isolated using a tangential flow filtration (TFF) system. NVs or FT/NVs were pretreated to the human coronary artery endothelial cells (HCAECs), and then inflammation was induced using tumor necrosis factor-α (TNF-α). @*Results@#With the freeze and thaw process, the production yield of exosome-mimetic nanovesicles (FT/NVs) was about 3 times higher than the conventional production method. The FT/NVs have similar biological properties as NVs for attenuating TNF-α induced inflammation. @*Conclusion@#We proposed the efficient protocol for the production of NVs with UC-MSCs using the combination of freeze and thaw process with a TFF system. The FT/NVs successfully attenuated the TNF-α induced inflammation in HCAECs.

4.
Article de Anglais | WPRIM | ID: wpr-728352

RÉSUMÉ

3-Deazaadenosine (DZA), a potent inhibitor of S-adenosylhomocysteine hydrolase, was previously proposed to induce intrinsic apoptosis in human leukemic cells. In the present study, we analyzed the mechanism underlying the DZA-induced intrinsic apoptotic pathway. DZA activated typical caspase-dependent apoptosis in HL-60 cells, as demonstrated by an accumulation of hypo-diploidic cells, the processing of multiple procaspases and an inhibitory effect of z-VAD-Fmk on this cell death. During DZA-induced apoptosis, cytochrome c (cyt c) was released into the cytosol. This was neither prevented by z-VAD-Fmk and nor was it associated with the dissipation of mitochondrial membrane potential (DeltaPsim). Prior to the release of cyt c, BAX was translocated from the cytosol to mitochondria and underwent oligomerization. Finally, the overexpression of BCL-XL protected HL-60 cells from apoptosis by blocking both the cyt c release and BAX oligomerization. Collectively, these findings suggest that DZA may activate intrinsic apoptosis by stimulating BAX activation and thereby the release of cyt c.


Sujet(s)
Humains , Adenosylhomocysteinase , Chlorométhyl cétones d'acides aminés , Apoptose , Protéine Bax , Protéine bcl-X , Mort cellulaire , Cytochromes c , Cytosol , Cellules HL-60 , Potentiel de membrane mitochondriale , Mitochondries , Tubercidine
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE